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Abstract. This paper describes a new theoretical framework of Semistructured Probabilistic Database (SPD)

for storing and managing probabilistic information. A formal Semistructured Probabilistic Object (SPO) data

model has been proposed. We discuss the XML-based implementation of this model and show how SPOs are

represented in XML. We also discuss our storage strategies for efficiently mapping XML representations of SPOs

into relational tables. One important difference between semistructured probabilistic databases and classical

relational or relational probabilistic databases is that different semistructured probabilistic objects conform to the

same “schema” template and can be stored in the same semistructured probabilistic relation, whereas relational

tuples over different schemas must be stored in different relations. A Semistructured Probabilistic Algebra (SP-

Algebra), including selection, projection, conditionalization, Cartesian product and join, has been developed

for managing the data stored in SPDs. We also describe a query translation mechanism which automatically

generates a sequence of SQL queries for evaluating SP-Algebra queries. Based on this framework, a prototype

semistructured probabilistic DBMS (SPDBMS) has been implemented on top of a relational DBMS. We report

on the results of the experiments testing the performance of the SPDBMS.

Keywords: Probabilistic databases, Semistructured data

1. Introduction

Probabilistic information occurs in many applications, such as multimedia databases for

storing the results of image recognition, logistics databases, stock market prediction soft-
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ware, and applications of Bayesian Nets [17]. Storing and managing probabilistic infor-

mation has been an active research area in the last two decades. There have been relational

[2, 5, 7, 14] and object [9, 13] data models proposed to support storage and querying of

probabilistic information. Unfortunately, these approaches are not sufficiently flexible to

handle different contexts in which probabilities must be dealt with in analyzing a stochastic

system. For instance, consider auto insurance risk analysis, where the risk level of possible

financial loss when granting a driver with an insurance policy may be represented in variety

of forms: a simple probability distribution for one aspect or a joint probability distribution

for several aspects, or a simple or joint conditional probability distribution (risk level may

depend on earlier driving record).

Information with different formats would require separate storage in any of the current

probabilistic relational models, making even simple queries hard to express. For example,

when one asks a query “Find all probability distributions that involve the aspect Driver’s

Age”, the system has to query on all the relations that have Driver’s Age as a field. Note

that this may require users to know in advance the names of tables that have this field

and may result in thousands of separate queries. Thus we propose a new, semistructured

probabilistic data model designed to alleviate this problem.

The semistructured data model [1, 4, 20] has gained wide acceptance recently as the

means of representing data which do not conform to a rigid structure of schema. In partic-

ular, the similarity between the semistructured data model and the underlying data model

for eXtensible Markup Language (XML) [3], the emerging open standard for data storage

and transmission over the Internet, makes this approach attractive. This paper presents the

formal model for semistructured probabilistic objects, and provides the theoretical founda-

tions for storing and managing Semistructured Probabilistic Objects (SPOs). We discuss

the XML-based implementation of this model, our storage strategies, as well as the pilot

implementation of this framework.

In Section 2, we introduce the auto insurance risk assessment process. Section 3 gives

formal definitions of semistructured probabilistic objects, Section 4 introduces the underly-

ing algebra for semistructured probabilistic databases, Section 5.1 shows how to represent
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this model in XML. Section 5 describes the pilot implementation and the test results of the

performance of SPDBMS.

2. Motivating Example

In order to get car insurance, one must first fill out a complex form, giving information on

driving history, insurance history, and a variety of personal matters. Based on this data, the

insurer sets a policy premium for the available policies.

Insurers want to prevent major losses and maximize annual profits. As described by Rus-

sell and Norvig [19], a 1% improvement of risk assessment brings over a billion dollars an-

nually for a typical insurance company. One way to lure customers is to lower prices; Most

insurance companies try to set the insurance premium for each insurance policy holder as

low as possible without giving up their profit.

How can an insurer increase the likelihood of a reasonable profit? Insurance companies

could try to improve their risk assessment analysis, for instance, by constructing a Bayesian

network which allows the company to decide what the financial risk level is for each policy

holder.

Statistical information about the association between financial risk and driver personal

information, driving skills and vehicle information can be obtained from a database of

previous claims maintained by the company. Under the assumption that this information

correctly reflects or approximates the true probabilities, it can assist in providing better

estimates for policy premiums. However, the statistical information needs to be updated

periodically so that it accurately reflects the current probabilities.

Consider a database designed to assist insurance companies with the risk assessment pro-

cess. Note that the type of probabilistic information available to the insurance company in

this example varies greatly. Figure 1 gives a Bayesian network model that includes many

aspects that contribute to the risk level of a policy holder. The simplest is a probability

distribution of financial risk for one aspect. The company may need the probability dis-

tribution of risk for Driver Age (DA) or the probability distribution over different rough

values for risk given the number of years the driver has had a license (License Years

(LY)).
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Figure 1. A Bayesian network of risk analysis for auto insurance companies.

Another type of probabilistic information that can be useful in this situation is a joint

probability distribution. For instance, one might want to know the risk level of a customer

who has college degree and a brand new passenger car. In this case, the company needs

the probability distribution of risk for both Education Level (EL) and Vehicle Year (VY).

This brings up another type of probabilistic information, the joint probability distribution.

To make matters more complicated, we notice that the risk level can depend on her past

Driving Record (DR) or other aspects observed. A Medium Accident in a Driving

Record (DR) may suggest to the company that the policy holder might belong to the

group of higher risk level. while an Yes in Safety Equipment (SE) might suggest that

the policy holder might belong to the lower risk level group. Other information that can

affect the probability distribution may include: where the policy holder lives, such as city,

state, rural/urban; the policy holder’s background such as race, employment type; vehicle

information such as personal/business vehicle, etc.
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The possible types of probabilistic information to be stored in a database for risk assess-

ment support are shown in Figure 2. Note that here, and in all the work described in this

paper, the domains of the variables are finite, as shown in Table 1.

Table 1. Representation of domain letter for random variables.

Domain Letter A B C F

Driver Age (DA) � 20 21-35 36-55 � 56
Education Level (EL) high school college advanced degree none of above
Driver Gender (DG) male female
Marital Status (MS) single married
License Years (LY) � 1 1-3 3-10 � 10
Driving Record (DR) severe medium minor none
Vehicle Type (VT) heavy truck light truck passenger car motorcycle
Vehicle Make (VM) Toyota BMW Ford GM
Vehicle Age (VA) � 1 1-5 5-10 � 10
Safety Equipment (SE) yes no

� : S1

DA P

A 0.4
B 0.1
C 0.2
F 0.3

� : S2

DA LY P

A A 0.05
A B 0.05
A C 0.1
A F 0.01
B A 0.04
B B 0.08
. . . . . . . . .
F C 0.02
F F 0.03

� : S3

city : Lexington
job : Managerial

DA LY P

A A 0.01
A B 0.02
A C 0.2
A F 0.01
B A 0.05
B B 0.12
. . . . . . . . .
F C 0.03
F F 0.01

� : S4

city : Lexington
race : Asian

DA LY P

A A 0.1
A B 0.1
A C 0.01
A F 0
B A 0.1
B B 0.2
. . . . . . . . .
F C 0.01
F F 0

SE = B
DR ��� A, B �

Figure 2. Different types of probabilistic information to be stored in the database for risk analysis applications
(from left to right: single variable probability distribution, joint probability distribution of 2 variables, joint
probability distribution with context, and conditional joint probability distribution with context.)

When trying to store this data using one of the previously proposed probabilistic database

models, relational or object, a number of problems will be encountered [11]. Probabilistic

relational models [2, 7, 14] lack the flexibility to store all of our data in a straightforward

manner. In the risk analysis application the aspects are viewed as random variables. As
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such, it is natural to represent each aspect as a database attribute that can take values from

its domain. However, with such an interpretation, a joint probability distribution of values

in two aspects will have a schema different from the joint probability distribution of three

aspects, and therefore, will have to be stored in a separate relation. In such a database,

expressing queries like “Find all probability distributions that include Driver Age as a

random variable” is very inconvenient, if at all possible.

Probabilistic Object models [9, 13] are also not a good fit for storing this kind of data.

In the framework of Eiter et al. [9], a probabilistic object is a “real” object, some of

whose properties are uncertain and probabilistically described. For our application, the

probability distribution is the object that needs to be stored.

With this example in mind, we proceed to describe our data model.

3. Data Model

Consider a universe � of random variables ������	��
�
�
�� ���
�� . With each random variable ���
� we associate ����������� , the set of its possible values. Given a set ������� � ��
�
�
 � � �"! � ,

�������#�$� will denote �%���&�'� � �)( 
�
�
 ��������� � � .
Let *+�,�.- � ��
�
�
/� -10�� be a collection of regular relational attributes. For -2�3* ,

�������.-4� will denote the domain of - . We define a semistructured schema 5�6 over *
as a multiset of attributes from * . For example, if *,�7��8:9 ;#< �'=#>@?���ACB 8�D � , the following

are valid semistructured schemas over * : 5 6 � ����8:9 ;#< �'=#>@? � ; 5 6E �F��8:9 ;#< � 8:9 ;#< �'=#>@?%�/AGB 8/D � ;
5H6IH�3� =#>@?%�'=#>�?��G=J>�? � .

Let K denote a probability space used in the framework to represent probabilities of

different events. Examples of such probability spaces include (but are not limited to) the

interval L M ��N/O and the set C[0,1] of all subintervals of L M ��N/O [15, 6, 14]. For each probability

space K there should exist a notion of a consistent probability distribution over K �
.

We are ready to define the key notion of our framework: Semistructured Probabilistic

Objects (SPOs).

Definition 1. A Semistructured Probabilistic Object (SPO) P is defined as a tuple PQ�
R'S � � �UTV�XWH�ZY\[ , where
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� S
is a relational tuple over some semistructured schema 5 6 over * . We will refer to

S
as the context of P .

� � ����� � ��
�
�
�� � � � ! � is a set of random variables that participate in P . We require

that ������ .
� T�� �����&�.� �	��
 K is the probability table of P . Note that T need not be complete,

but it must be consistent w.r.t. K .

� W � ���
� � ��� � � ��
�
�
 ����� ��� � � � , where ��� � ��
�
�
/� ��� � ��� ! � and ��� ! �����&�
� � � ,
N�������� , such that �! "� �#� . We refer to W as the conditional of P .

� Y , called the path expression, is an expression of Semistructured Probabilistic Algebra

(SP-Algebra).

An explanation of this definition is in order. For our data model to possess the ability to

store all the probability distributions mentioned in Section 2 (see Figure 2), the following

information needs to be stored in a single object:

1. Participating random variables. These variables determine the probability distribu-

tion described in an SPO.

2. Probability Table. If only one random variable participates, it is a simple probability

distribution table; otherwise the distribution will be joint. Probability table may be

complete, when the information about the probability of every instance is supplied, or

incomplete.

It is convenient to visualize the probability table T as a table of rows of the form �%$& ��' � ,
where $& �Q�%���&�.�$� and ' � T �%$& � . Thus, we will speak about rows and columns of

the probability table where it makes explanations more convenient.

3. Conditional. A probability table may represent a distribution, conditioned by some

prior information. The conditional part of its SPO stores the prior information in one

of two forms: “random variable � has value & ” or “the value of random variable � is

restricted to a subset � of its values”. In our definition, this is represented as a pair

�
� ��� � . When � is a singleton set, we get the first type of the condition.
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4. Context provides supporting information for a probability distribution – information

about the known values of certain parameters, which are not considered to be random

variables by the application.

5. Origin or path of the object. Each SPO in an SP-Database can either be inserted

into the database directly, or can be a result of one or more SP-Algebra operations

over already existing SPOs. When an SPO is inserted into the database, a unique

identifier is assigned as its path. Whenever an SPO is created as a result of an SP-

Algebra operation, its path is extended by the description of this operation. An SPO

inserted into the database is called a base SPO. In Section 4 we introduce the syntax for

complex path expressions that are formed when SP-Algebra operations are performed

on SPOs.

Intuitively, a Semistructured Probabilistic Object represents a (possibly complex) prob-

ability distribution and the information associated with it. The actual distribution is de-

scribed by the participating random variables and probability table parts of the ob-

ject. The conditional part, when non-empty, indicates that the object represents a con-

ditional probability distribution and specifies the conditions. The context contains any

non-stochastic information associated with the distribution. Finally its path tells us how

this object have been constructed. If the path is atomic (single unique identifier), than the

object had been constructed from scratch and inserted into the database. Complex paths

indicate which database objects participated in its creation and what SP-Algebra operations

have been applied to obtain it. As examples throughout the paper will show, knowing how

an object was constructed may help in the interpretation of its probability table.

EXAMPLE: Consider the joint probability distribution of risk based on Driver Age (DA)

and License Years (LY) for Asian drivers in Lexington who had either a severe or

medium accident within the last 3 years, as defined in Figure 3.

We can break this information into our five constituent parts as follows:

participating random variables: � � ����� ����� � .

probability table: as shown in Figure 3, the probability table defines a complete and con-

sistent probability distribution.
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� : S1

race : Asian
city : Lexington

DA LY P

A A 0.09
A B 0.12

A C 0.03
A F 0.005
B A 0.12
B B 0.16
B C 0.13
B F 0.01
C A 0.03
C B 0.08

C C 0.11
C F 0.045
F A 0.0
F B 0.01
F C 0.02
F F 0.04

DR � � A, B �

Figure 3. Joint Probability Distribution of risk on Driver Age and License Years for Asian drivers in Lexington.

conditional: there is a single conditional ��� � � � ��� � associated with this distribution,

which is stored in an SPO as W �3������� � � � ��� � � � .

context: information about where the driver lives and the driver’s race is not represented

by random variables in our universe. They are, therefore, represented as relational

attributes city and race, respectively. Thus, city: Lexington and race: Asian are the

context of the probabilistic information in this example.

path: assuming that this information is being added to the database, we associate with

this SPO a unique identifier S1 that will serve as its path.

4. Semistructured Probabilistic Algebra

Let us fix the universe of random variables � , the universe of context attributes * , and the

probability space K . In the remainder of this paper we will assume that K3� L M ��N�O .
A finite collection � �3��P � ��
�
�
/� P 0 � of semistructured probabilistic objects over

R � � * � K [
is called a semistructured probabilistic relation (SP-relation). A finite collection ��� �
��� � ��
�
�
�� � 
 � is called a semistructured probabilistic database (SP-database).

One important difference between semistructured probabilistic databases and classic

relational or relational probabilistic databases is that each table in a relational database

has a specified schema whereas all SP-relations are “schema-less”: any collection of SPOs

can form an SP-relation. Thus, the division of a semistructured probabilistic database

into relations is a matter of the logic of a particular application. For example, if the SP-
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database is built from the information supplied by three different experts, this information

can be arranged into three semistructured probabilistic relations according to the origin

of each object inserted in the database. Alternatively, the information can be arranged in

SP-relations by the date it was obtained.

The key to the efficient use of semistructured probabilistic databases in representing

probabilistic information is the management of data stored in SPDs. Just as with proba-

bilistic relational databases, where probabilistic relational algebras of Barbara et al. [2],

Dey and Sarkar [7] and Lakshmanan et al. [14] extend classical relational algebra by

adding probability-specific (and probability theory compliant) manipulation of the proba-

bilistic attributes in the relations, a new semistructured algebra needs to be developed for

SPDs, in order to capture properly the manipulation of probabilities.

In the remainder of this section we introduce such algebra, called Semistructured Proba-

bilistic Algebra (SP-Algebra). This algebra contains three standard set operations, union,

intersection and difference and extends the definitions of standard relational operations

selection, projection, Cartesian product and join to account for the appropriate man-

agement and maintenance of probabilistic information within SPOs. In addition, a new

operation, conditionalization (see also [7]), is defined in SP-algebra. This operation is

specific to the probabilistic databases and results in the construction of SPOs that represent

conditional probability distributions of the input SPOs.

Before proceeding with the description of individual operations, we need to make an

important distinction between the notions of equality and equivalence of SPOs. Two SPOs

P and P � are equal if all their components, including the paths are equal. At the same time,

only the first four components of any SPO: context, participating variables, probability

table and conditional information represent the real content of the object. The path merely

records how the object was obtained in the database. It is possible to obtain, as a result of

SP-Algebra operations, two SPOs with the same first four components but different paths.

Such objects, will not, technically, be equal. However, they would represent exactly the

same information, and in many cases, we could substitute one such object with another

without any loss. We reserve the notion of equivalence of SPOs for such situations.
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Definition 2. Let P � R'S � � �UTV�XWH�ZY\[ and P � � R�S � � ��� �UT � �XW � � Y � [ be two SPOs. P is

equivalent to P � , denoted P � P � iff
S � S � , � � � � , T � T � and W � W � .

4.1. Set Operations

Semistructured Probabilistic relations are sets of SPOs. Because of it, the definitions of

union, intersection and difference of SP-relations are straightforward.

Definition 3. Let � and �)� be two SP-relations. Then,

� Union: �
�
�)� � �	P�� PQ� � or P � �\� � .

� Intersection: ��� �\� �3��P�� P � � and P � �)� � .

� Difference: � � �\� � �	P�� P � � and P �� �)� � .

We note two features of the set operations in SP-Algebra. Classical relational algebra has

a restriction on applicability of the set operations: they are defined only on pairs of relations

with matching schemas. Because SP-relations are schema-less and represent logical rather

than syntactic grouping of probability distributions in an SP-database, set operations are

applicable to any pair of SP-relations. Another note is that set operations do not leave their

imprint on the path component of individual SPOs.

4.2. Selection

Given an SPO P � R�S � � �UTV� WH� Y\[ , a selection query may be issued to its any part, save

for the path. Each part requires its own language of selection conditions.

Given an SPO P , selection on context, participating random variables and conditionals

will result in either P being selected or not in its entirety (as is the case with selection on

classical relations). It is also possible to select a subset of rows of the probability table

based either on the values of random variables or on the probability values of individual

rows in the probability table. Such selection operations may return only part of the original

probability table T , while keeping context, conditionals and participating random variables
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intact. For any selection operation, the path expression of the result will be updated to

include the selection operation.

The five different types of selections are illustrated in the following example.

EXAMPLE: Consider the SPO P described in Example 1. Five different types of selection

queries are illustrated below.

1. “Find all probability distributions related to Asian drivers.” P 
 S contains tuple race

: Asian, therefore P matches the selection condition.

2. “Find all probability distributions that involve the Driver Age aspect.” As DA is

one of the participating random variables of P , P matches the selection condition.

3. “Find all probability distributions related to drivers who had a medium or severe

accident within the last 3 years”. The conditional part of P contains expression

��� � � � ��� � which matches the selection condition (“medium or severe accident

within the last 3 years”).

4. “What information is available about the risk when granting insurance to a

driver with less than one year of driving experience?” P 
 T contains four entries

that relate to the probability for drivers with less than one year of driving experience.

This part of P 
 T should be returned as a result together with the
S � � and W parts of

P . The remainder of the P 
 T should not be returned.

As an alternative, consider the query, “what is the risk when granting insurance

to a 30 years old driver with 5 years of driving experience?” The answer to this

query on P would contain only one line from P 
 T , for the appropriate information of

drivers).

5. “What outcomes have probability over 0.1?” In the probability table of P , there

are five possible outcomes that have the probability greater than 0.1. In the result of

executing this query on P , P 
 T should contain exactly these five rows, with P 
 S , P 
 �
and P 
 W remaining unchanged.
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4.2.1. Selection on Context, Participating variables or Conditionals Here, we define

the three selection operations that do not alter the content of the selected objects. We start

by defining the acceptable languages for selection conditions for the three types of selects.

Recall that the universe * of context attributes consists of a finite set of attributes

- � ��
�
�
 - 0 with domains �����&��- � � ��
�
�
�� �������.- 0 � . With each attribute - �3* we as-

sociate a set T�� ��-4� of allowed predicates. We assume that equality and inequality are

allowed for all - � * .

Definition 4.

1. An atomic context selection condition is an expression � of the form - Q & (
� ��- � & � ),

where -3� * , & � �%���&��-H� and
� � T�� ��-H� .

2. An atomic participation selection condition is an expression � of the form � � � ,

where � � � is a random variable.

3. An atomic conditional selection condition is one of the following expressions: � �
� & � ��
�
�
 &�� � or ��� & where � � � is a random variable and & � & � ��
�
�
�� &�� � �%���&�
� � .

Complex selection conditions can be formed as Boolean combinations of atomic selec-

tion conditions.

Definition 5. Let PQ� R�S � � �UTV� WH� Y\[ be an SPO and let � � � �.- � & � be an atomic context

selection condition. Let Y � �	��
:� Y � and let P � � R�S � � �UTV� WH� Y � [ . Then ��
��.P � � �	P � � iff

� - � P 
 S ;

� For some instance -46 of - in
S

, �#P 
 S 
 -16 � & � � � ;

otherwise ��
��.P � � � .

Definition 6. Let P � R'S � � �XTV�XWH�ZY\[ be an SPO and let � � � �3� be an atomic par-

ticipation selection condition. Let Y � ����
:� Y � and let P � � R'S � � �UTV�XWH�ZY � [ . Then

�

��#P � � �	P � � iff ��� � .

Definition 7.
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1. Let P � R'S � � �XTV�XWH� Y\[ be an SPO and let � � � � � & � ��
�
�
�� & � � be an atomic con-

ditional selection condition. Let Y � � � 
 � Y � and let P � � R�S � � �UTV� WH� Y � [ . Then

� 
 �.P � �3��P � � iff W � �
� ��� � and � � � & � ��
�
�
/� &�� � .

2. Let � � �	� & be an atomic conditional selection condition. Then � 
 �#P ��� �	P � � iff

W � �
� ��� � and � � & .

The semantics of atomic selection conditions can be extended to their Boolean combina-

tions in a straightforward manner: � 
 � 
�� �.P � �	��
:� �

	�#P �Z� and ��
�� 
��Z�#P � � ��
	�.P � � ��
��.P � .
The interpretation of negation in the context selection condition requires some additional

explanation. In order for a selection condition of a form �
� �.- � & � to succeed on some

SPO P � R'S � � �UTV�XWH�ZY\[ , attribute - must be present in P 
 S . If - is not in P 
 S , the

selection condition does not get evaluated and the result will be � . Therefore, the statement

P � ��
��.P �	� P � ��
 
��.P � is not necessarily true. This also applies to conditional selection

conditions.

4.2.2. Selection on Probability Table or Probabilities Selection operations considered

in the previous sections were simple in that their result on a semistructured probabilistic

relation was always a subset of the relation.

The two types of selections introduced here are more complex. The result of each oper-

ation applied to an SPO can be a non-empty part of the original SPO. In particular, both

operations preserve the context, participating random variables and conditionals in an SPO,

but may return only a subset of the rows of the probability table. In both selection on prob-

ability table and selection on probabilities, the selection condition will indicate which rows

are to be included and which are to be omitted.

Definition 8. An atomic probabilistic table selection condition is an expression of the form

� � & where ��� � and & � ����������� . Probabilistic table selection conditions are Boolean

combinations of atomic probabilistic table selection conditions.

Definition 9. Let P � R'S � � �UTV�XWH�ZY\[ be an SPO, � � ��� � ��
�
�
�� �
� � and let � � � � & be

an atomic probabilistic table selection condition.
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If � � � , then (assume � � � �Z��N � � ��� ), the result of selection from P on � , � 
 �#P � is

a semistructured probabilistic object P � � R�S � � �UT � �XWH�ZY � [ , where

T � ��� � ��
�
�
������J��
�
�
�� � ���\�
�	 
 T ��� � ��
�
�
������J��
�
�
�� � ��� if ��� � &�


undefined if � � �� & �
and Y � �	� 
 � Y � .

Definition 10. An atomic probabilistic selection condition is an expression of the form

T op ' , where ' �&L M ��N/O and op � � � � �� � � ��� ��� ��� � . Probabilistic selection conditions

are Boolean combinations of atomic probabilistic selection conditions.

Definition 11. Let P � R�S � � �UTV� WH� Y\[ be an SPO and let � �@T op ' be an atomic prob-

abilistic selection condition. Let $& � �����&�.� � . The result of selection from P on � is

defined as follows: ��� op � �#P � � P � � R�S � � �UT � �XWH�ZY � [ where

T � �%$& � �
�	 
 T � $& � if T � $& � op ' 


undefined otherwise,

and Y � �	�

	� Y � .

EXAMPLE: Figure 4 shows two examples of selection queries on an SPO. The central ob-

ject is obtained from the original SPO (left) as the result of the query, “Find all information

about the risk when granting insurance to a 19 years old driver”, denoted ��������� �.P � .
In the probability table of the resulting SPO, only the rows that have the value of the DA

random variable equal to A remain.

The rightmost object in the figure is the result of the query “Find all combinations

whose probability is greater than 0.11”. This query can be written as � ������ �X� �.P � .
The probability table of the resulting object will contain only those rows from the original

probability table where the probability value was greater than M 
 N%N .

SP-Algebra operations can be extended to a semistructured probabilistic relation, as de-

scribed in the following proposition.



� �

� : S

race: Asian

DA LY P

A A 0.10
A B 0.10
B A 0.13
B C 0.09
C C 0.16

DR = B

� : ��������� (S)

race: Asian

DA LY P

A A 0.10
A B 0.10

DR = B

� : ���
	���
 ��� (S)

race: Asian

DA LY P

B A 0.13
C C 0.16

DR = B

Figure 4. Selection on Probabilistic Table and on Probability values in SP-Algebra

PROPOSITION 1 Any SP-Algebra operation on a semistructured probabilistic relation is

equivalent to the union of the SP-Algebra operation on each SPO in the SP-relation.

� Let � be a semistructured probabilistic relation and � be one of the three unary SP-

Algebra operators. Then � � �)�\� � ����� ��� �.P �U� .
� Let � � and � E be two semistructured probabilistic relations and � be one of the two

binary SP-Algebra operators. Then � � � � E � � ��������� � ���
����� �.P � � P E � .

Different selection operations commute, as shown in the following theorem. Proofs for

all theorems are provided in Appendix A.

THEOREM 1 Let � and � � be two (arbitrary) selection conditions and let � be a semistruc-

tured probabilistic relation. Then � 
�� ��
 � � �V� � ��
 � � ��
	� �)�U� .

4.3. Projection

Just as with selection, the results of projection operation differ, depending on which parts

of an SPO are to be projected out. Projection on context and conditionals is similar to

the traditional relational algebra projection: either context attribute or a conditional is re-

moved from an SPO object, which does not change otherwise. These operations change

the semantics of the SPO and thus must be used with caution. However, it can be argued

that removing attributes from the relations in a relational database system also changes the

semantics of the data.
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Definition 12. Let P � R�S � � �UTV� WH� Y\[ be an SPO and let ����� be a set of context

attributes. The projection of P onto � , denoted ��� �.P � is an SPO P �\� R�S � � � �XTV�XWH�ZY � [
where

� S � � ���.- � & � � ��- � & � � S � - ��� � , i.e.,
S � contains all entries from

S
for attributes

from the list � only.

� Y � �	� � � Y � .

Definition 13. Let P � R�S � � �UTV� WH� Y\[ be an SPO and let 
 be a set of conditionals.

The projection of the conditional part of P onto 
 , denoted � 
�� 
H�.P � E is an SPO P � �
R'S � � �UTV�XW � �ZY � [ where

� S �@� ���
� ��� � � ��� ��� � � WH� � ��
 � .

� Y � �	� 
�� 
 � Y � .

A somewhat more difficult and delicate operation is the projection on the set of partici-

pating random variables. A removal of a random variable from the SPO’s participant set

entails that information related to this random variable has to be removed from the prob-

ability table as well. Informally, this corresponds to removing one random variable from

consideration in a joint probability distribution, which is usually called marginalization.

The result of this operation is a new marginal probability distribution that needs to be

stored in the probability table component of the resulting SPO.

This computation is performed in two steps. First, the columns for random variables that

are to be projected out are removed from the probability table. In the remainder of the

table, there can now be duplicate rows: rows that have all values (except for the probability

value) coincide. All duplicate rows of the same type are then collapsed (coalesced) into

one, with the new probability value computed as the sum of the values in the collapsed

rows.

A formal definition of this procedure is given below.



� �

Definition 14. Let P � R�S � � �UTV� WH� Y\[ be an SPO, � �F��� � ��
�
�
�� � � � , � ��N and ��� �
� � ��� �� � . The projection of P on ��� , denoted � ���)�.P � , is defined to be an object

P � � R'S � ��� �UT � �XWH�ZY � [ where T � � ������� ���\� � 
 L M ��N/O and for each $& � ������� ���\� ,

T � � $& � �
�

�� �
	�� 
�
 ��� ������� � 
 ���� �� � is defined

T �%$& � $���
and Y � � � ���)� Y � .

Notice that projection on the set of participants is allowed only if the set of participants

is not a singleton and if at least one random variable remains in the resulting set.

EXAMPLE: Figure 5 illustrates how projection on the set of participating random vari-

ables works. First, the columns of random variables to be projected out are removed from

the probability table (step I). Next, the remaining rows are coalesced (step II). After the

Vehicle Type (VT) random variable has been projected out, the interim probability table

has three rows (B,A) with probabilities 0.07, 0.02 and 0.04 respectively. These rows are

combined into one row with probability value set to M 
 M���� M 
 M���� M 
 M � � M 
 N"! . Similar

operations are performed on the other rows.

4.4. Conditionalization

Conditionalization is an operation specific to probabilistic algebras. Dey and Sarkar [7]

were the first to consider this operation in the context of probabilistic databases.

Similarly to the projection operation, conditionalization reduces the probability distri-

bution table. The difference is that the result of conditionalization is a conditional prob-

ability distribution. Given a joint probability distribution, conditionalization answers the

following general query, “What is the probability distribution of the remaining random

variables if the value of some random variable � in the distribution is restricted to

subset � of its values?”

Informally, the conditionalization operation proceeds on a given SPO as follows. The

input to the operation is one participating random variable of the SPO, � , and a subset of

its values � . The first step of conditionalization consists of removing from the probability



� �

� : S

race: Asian

DA LY VT P

A A A 0.05
A B A 0.04
B A B 0.07
A B C 0.03
B A A 0.02
B A C 0.04
B C A 0.02
B C B 0.01
B B A 0.03
B B B 0.05
C C A 0.01
C C B 0.02
C C C 0.03

DR = B

� : � ����� ��� (S) (step I)

race: Asian

DA LY P

A A 0.05
A B 0.04
B A 0.07
A B 0.03
B A 0.02
B A 0.04
B C 0.02
B C 0.01
B B 0.03
B B 0.05
C C 0.01
C C 0.02
C C 0.03

DR = B

� : � � ��� ��� (S) (step II)

race: Asian

DA LY P

A A 0.05
A B 0.07
B A 0.13
B C 0.03
B B 0.08
C C 0.06

DR = B

Figure 5. Projection on Probabilistic Table and on Probability values in SP-Algebra

table of the SPO all rows whose � values are not from the set � . Then the � column is

removed from the table. The remaining rows are coalesced (if needed) in the same manner

as in the projection operation and the probability values are normalized. Finally, ��� ��� � is

added to the set of conditionals of the resulting SPO.

The formal definition of conditionalization is given below. Note that if the original table

is incomplete, there is no meaningful way to normalize a conditionalized probability distri-

bution. Thus, we restrict this operation to situations where normalization is well-defined.

Definition 15. An SPO P � R'S � � �XTV�XWH�ZY\[ is conditionalization-compatible with an

atomic conditional selection condition � � � & � ��
�
�
�� &�� � iff

� ��� � ;

� T on � & � ��
�
�
�� & � � for � is a complete function.

Definition 16. Let P � R'S � � �UTV�XWH�ZY\[ be an SPO which is conditionalization-compatible

with an atomic conditional selection condition � � � � � & � ��
�
�
/� & � � .
The result of conditionalization of P by � , denoted � 
 �.P � , is defined as follows:



� �

� 
 �.P � � R'S � � � �UT � �XW � � Y � [ �

where

� ��� � � � �:� � ;

� W � � W � ����� � � & � ��
�
�
/� & � � � ;

� T � � ��� � 
 L M ��N�O .
Let

� �
�

�� �
	�� 
�
 � � �

�
�� ��� � � �    � ����� T �%$& � $��� 


For any $� � �������#�$� � ,

T � � $��� � � �� ��� � � �    � ����� T �%$& � $���
� 


� Y � � � 
�� Y � .

Conditionalization can be extended to a semistructured relation in a straightforward man-

ner. Given a relation � , � 
 � �)� will consist of � 
 �.P � for each P � � that is conditionalization-

compatible with � . SPOs not conditionalization-compatible with � will not be included in

� 
 � �)� .

EXAMPLE: Consider the SPO P defined in Example 1 describing the joint probability

distribution of risk on Driver Age (DA) and License Years (LY) for Asian drivers in

Lexington who had either a severe or medium accident within the last 3 years. We try to

derive the probability distribution for drivers with less than one year of driving experience.

Figure 6 depicts the work of the conditionalization operation �	��
 ��� �.P � . The original

object is shown to the left. As P 
 T is a complete distribution, P is conditionalization

compatible with � � � � . The first step of conditionalization consists of removing all

rows that do not satisfy the conditionalization condition from P 
 T (result depicted in the

center). Then, on step II, the LY column is dropped from the table, probability values in

the remaining rows are normalized and � � � � is added to the list of conditionals. The

rightmost object in Figure 6 shows the final result.



� �

� : S

race: Asian

DA LY P

A A 0.09
A B 0.12
A C 0.03
A F 0.005
B A 0.12
B B 0.16
B C 0.13
B F 0.01
C A 0.03
C B 0.08
C C 0.11
C F 0.045
F A 0
F B 0.01
F C 0.02
F F 0.04

DR � � A, B �

� : � ��� ��� (S) (step I)

race: Asian

DA LY P

A A 0.09

B A 0.12

C A 0.03

F A 0

DR � � A, B �

� : � ������� (S) (step II)

race: Asian

DA P

A 0.375
B 0.5
C 0.125
F 0

DR � � A, B �
LY = A

Figure 6. Conditionalization in SP-Algebra.

4.5. Cartesian Product

Sometimes an SP database has only simple probability distributions for some random vari-

ables. In order to get a joint probability distribution, either a Cartesian product or join

operation has to be performed on the SPOs storing these distributions. Intuitively, a Carte-

sian product or join of two probabilistic distributions is the joint probability distribution

of random variables involved in both original distributions. Cartesian product is defined

only on pairs of compatible SPOs. Here, we will restrict ourselves to the assumption of

independence between the probability distributions in Cartesian products. This restriction

allows us to represent the result as a point probability distribution
I
.

Two SPOs are compatible for Cartesian product if their participating variables are dis-

joint, but their conditionals coincide. When the sets of participating variables are not dis-

joint, we will use the join operation instead of Cartesian product to find, for instance, the

Driver’s joint probability distribution.
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Definition 17. Two SPOs P � R�S � � �UTV� WH� Y\[ and P � � R�S � � ��� �UT � �XW � � Y � [ are Cartesian

product-compatible (cp-compatible) iff �! �$� � � and W � W � .

We can now define the Cartesian product.

Definition 18. Let P � R'S � � �UTV�XWH�ZY\[ and P � � R�S � � � � �UT � �XW � � Y � [ are two cp-compatible

SPOs. Then, the result of their Cartesian product (under assumption of independence), de-

noted P ( P � , is defined as follows:

P ( P � � P � � � R'S � � � � � � �UT � � �XW � � �ZY � � [/�

where

� S � �@� � S � S � � ;

� ��� � � � � � � ;
� T � � � �%���&�.�$� � � ��
 L M ��N�O .

For all $� � �%���&�.�$� �C� ; $� �3� $& � $��� ; $& � �%���&�.�$� , $� � �������#�$� � :

T � � �%$� � � T �%$& ��� T � � $��� 

� W � � � W � W � .
� Y � � � Y ( Y � .

4.6. Join

Join is also defined only on pairs of compatible SPOs. Two SPOs are join-compatible

if they share some participating variables (these will be the “join attributes”) and their

conditionals coincide.

Definition 19. Two SPOs P � R'S � � �UTV�XWH�ZY\[ and P �$� R'S � � � � �XT � � W � �ZY � [ are join-

compatible iff �! � � ���� and W � W � .
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Given two join-compatible SPOs P and P � , we can break the set � � �$� into three non-

empty disjoint parts: � � � � � � � , � �� �F� � � � and � 
 � �  ��� . The information

about the probability distribution of random variables in � 
 can be found in both P and P � .
The join operation must take this into consideration when the joint probability distribution

for variables in � � � � is computed. The key to computing the joint distribution correctly

is the following statement.

LEMMA 1 Let $& �&�����&�.� � � , $��� �%���&�.� 
 � , $� � �������#� �� � , and let � � � � 
 and ���� be all

disjoint. Under the assumption of independence between variables in � � and � �� ,

T � $& � $� � $� � � T �%$& � $��� � T � $� � $� � � T � $��� � T �%$& � $��� � T �%$� ��$��� � T �%$� � $� � � T � $& ��$��� 

We can now define the join operations. We want the join of P and P\� to contain the joint

probability distribution of the set � � � � 
 � � �� . Since T � $��� could be obtained either from

P or from P � , there exist two families of join operations, called left join, � , and right join,
� , with the following definitions. The only difference between the two join operations is

the probability distribution.

Definition 20. Let P � R'S � � �UTV�XWH�ZY\[ and P � � R�S � � � � �UT � �XW � � Y � [ be two join-compatible

SPOs. Let � � � � � ��
 and ��� � ���� � ��
 , i.e. ��
)� �  � � . We define the operations of

left join of P and P � , denoted P�� P � and right join of P and P � , denoted P � P � as follows:

P�� P � � P � � � R'S � � � � � � �UT � � �XW � � �ZY � � [ 

P � P � � P � � � � R'S � � � � � � �UT � � � � W � � �ZY � � � [ �

where

� S � � � S � S � ;
� ��� � � � � � ��
 � ���� ;

� T � � �UT � � � � �%���&�.� � �G� � 
 L M ��N/O .
For all $� � �%���&�.� � �G� ; $� � � $& � $� � $� � ; $& � �������#� � � , $��� �%���&�.��
/� , $� � �����&�.�$�� � :

T � � ��$� � � T � $& � $��� � T � � $� � $� � � T � � $��� 




� �

T � � � � $� � � T � $& � $��� � T � � $� � $� � � T � $��� 

� W � � � W � W � .

� Y � � � Y � Y � ; Y � � � � Y � Y � .

Two join-compatible SPOs are join-consistent if probability distributions on the set of

shared participating variables are identical for both SPOs.

Definition 21. Let P � R'S � � �UTV�XWH�ZY\[ and P � � R�S � � � � �UT � �XW � � Y � [ be two join-compatible

SPOs with �  �� � �F��
 . Then, S and S’ are join-consistent iff T � $����� T �#� $��� for any

$� � �������#�

/� .

EXAMPLE: Consider two simple SPOs P and P � as presented in Figure 7. P and P � share

one random variable (LY) and their conditional parts coincide (DR = B). Hence, P and P)�
are join-compatible.

� : S

race: Asian

DA LY P

A A 0.25
A B 0.25
B A 0.25
B B 0.25

DR = B

� : S’

city: Lexington

LY VT P

A A 0.2
A B 0.2
B A 0.3
B B 0.3

DR = B

� : � ��� (S)

race: Asian

LY P

A 0.5
B 0.5

DR = B

� : � ��� (S’)

city: Lexington

LY P

A 0.4
B 0.6

DR = B

� : S � S’

race: Asian
city: Lexington

DA LY VT P

A A A 0.1
A A B 0.1
A B A 0.15
A B B 0.15
B A A 0.1
B A B 0.1
B B A 0.15
B B B 0.15

DR = B

� : S � S’

race: Asian
city: Lexington

DA LY VT P

A A A 0.125
A A B 0.125
A B A 0.125
A B B 0.125
B A A 0.125
B A B 0.125
B B A 0.125
B B B 0.125

DR = B

Figure 7. Join operations in SP-Algebra
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The results of the two join operations of P and P � , P � P � and P � P � , are presented in the

rest of Figure 7. In the resulting SPOs, the context will be a union of the contexts of the two

original objects and the conditional part will be the same as in P and P\� . The probability

table is formed first by projecting the shared variable set from one of the original SPOs.

For left join, do projection on all the variables in � 
 , in this case LY, against the right

operand SPO P � , and save the result in a temporary SPO object temp,

��� ��� �	� ��� �.P � � �

as shown in the center of the figure. Then, formulate the probability table by using the

definition for left join, which is T � �#�%$& � $� � $� � � T �%$& � $���V( T �.� $� � $� � � ��� ��� 
 T ��� $��� . The right

join can be computed in the same manner.

Respective join results are shown in the last two columns in Figure 7. One can see that

these two SPOs are not join-consistent.

4.7. Semantics of SP-Algebra Operations

The problem of determining the meaning of the results of the operations of SP-Algebra is

complicated by the fact that at any moment, SP-databases can contain SPOs of two types.

In the SPOs of the first type, the probabilities of all rows are exact, while in the SPOs of

the second type, the probabilities of some rows may represent the lower bounds on the

probability of those instances. We start this section by defining the two types of SPOs

formally, discussing their properties and the effects that different SP-Algebra operations

have on the SPOs in light of all this.

Definition 22. An SPO P&� R'S � � �XTV�XWH� Y\[ is a Type I SPO iff

�
�� �
	�� 
�
 � �

T � $& � � N 


Otherwise, P is a Type II SPO.

When P is a Type I SPO, its probability table is complete: the probabilities of all rows add

up to exactly 1. The probability table may contain a row for every instance $& � �������#�$� , or
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it may omit some of the instances. However, because the probabilities of the rows present

in the table add up to 1, we know that the probabilities of all omitted rows are 0, and these

can be added to the probability table of P . Basically, when P is a Type I SPO, we are

guaranteed that for all $& � �������#�$� , T �%$& � is the exact point probability of instance $& .

The nature of Type II SPOs is somewhat more complex. The fact that the sum of proba-

bilities in all rows of the probability table is less than 1 means that the probability table is

missing some information. This can either be missing instances: some $& � �������#�$� has a

non-zero probability but is not included in the probability table of P , or underestimation:

all possible instances are present, but the probabilities add up to less than 1, which means

that information about the probabilities of some (possibly all) instances presents only a

lower bound on the true probability of the instance in the distribution.

It is important to note here that SP-Algebra operations allow for Type II SPOs to occur

in the SP-database, even if all original SPOs in the database were Type I. We illustrate this

on the following example.

EXAMPLE: Consider the SPO P : the left-most SPO depicted in Figure 8. It is clear that

��������� �\�V� ������� � � �V� � � ��� ��� � , which means that not all instances are present in the

probability table T of P . However, because the probabilities of all rows present in T add

up to exactly 1, P is a Type I SPO and the probabilities of all instances not in T are 0. We

also can be assured that each probability is exact.

Consider now the central SPO P � � � ������ E �.P � in Figure 8. Here, only the rows with

probability value less than or equal to 0.2 are selected from the probability table of P .

There are 3 such rows, for a combined probability of 0.35. Therefore, P)� is a Type II SPO.

We note here that, despite being of Type II, the probability of each row is exact. Consider

now the SPO P � � � � � 
 �.P �C� � � ��
 � � ��� �� E �.P �U� shown on the right side of Figure 8.

The projection operation leads to removal of the DA random variable from P\� � . However,

because each row of T � had a different value for LY, T � � will have three rows, one for

each value of LY: A,B and C. While the probability table T � � of P � � has no missing rows,

the probabilities add up to the same value of 0.35 as in T � , and therefore P � � is also a

Type II SPO. More importantly, the rows for A and C contain incomplete probability —

applying � ��
 to P we can see that the probability of getting the grade of A in LY is 0.43 and
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the probability of getting the grade of C is 0.37. Therefore, the probability values in the

probability table T � � represent only the lower bounds on the probabilities of these rows.

� : S

race: Asian

DA LY P

A A 0.1
A B 0.2
B A 0.33
B C 0.22
C C 0.15

DR = B

� : � ������
 � (S)

race: Asian

DA LY P

A A 0.1
A B 0.2
C C 0.15

DR = B

� : � ����� � ��� ��
 � (S))

race: Asian

LY P

A 0.1
B 0.2
C 0.15

DR = B

Figure 8. Selection on Probabilistic Table and on Probability values in SP-Algebra

The difference in the meaning of probability values for Type I and Type II SPOs causes us

to apply extra caution when interpreting the results of SP-Algebra operations. In particular,

when considering a specific SP-Algebra operation applied to an SPO or a pair of SPOs, it is

important for us to know the type of the input objects and be able to determine the type of

the result. The following proposition identifies the set of ”safe” operations in SP-Algebra:

operations that given Type I SPOs are guaranteed to produce Type I results.

PROPOSITION 2 Let P and P � be two Type I SPOs. Then, the following SPOs are also

Type I:

1. ��
��.P � , where � is a selection condition on context, participating random variables or

conditional.

2. � � �.P � , � 
�� 
H�.P � and � � �)�#P � , where 
 is a list of context attribute names and 
 ,

� � � � .

3. � 
:�#P � , where � is a conditional selection condition.

4. P ( P � .

5. P�� P � and P � P � .
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Two operations missing from the list in Proposition 2 are selection on probabilities and

selection on probability table. Example 22 shows how selection on probabilities can pro-

duce a Type II SPO from Type I input; selection on probability table can be used instead

to obtain the same result.

The following statements specify the semantics of the SP-Algebra operations producing

Type I results.

THEOREM 2 Let P � R'S � � �XTV�XWH� Y\[ be a Type I SPO and let � �� � � � � . Let P � �
R'S � � � �UT � �XWH�ZY � [ � � � � . Then T � contains the correct marginal probability distribution

of random variables in � � given the probability distribution T .

THEOREM 3 Let P � R�S � � �UTV� WH� Y\[ be a Type I SPO and let � be a conditional selection

condition involving variable � � � . Let P �\� R'S � � � ��� � �XT � �XW � �ZY � [ � � 
 . Then T �
contains the correct conditional probability distribution of random variables � � ��� � from

the distribution T given condition � on � .

THEOREM 4 Let P � R'S � � �XTV�XWH� Y\[ and P � � R'S � � � � �UT � �XWH� Y � [ be two Cartesian

product-compatible SPOs. Let P � �H� R'S � � � � � � �XT � � �XWH�ZY � � [ � P ( P � . Then T � � is the

correct joint probability distribution of random variables in � and �$� under the assump-

tion of independence between them, given distributions T of � and T � of � � .

THEOREM 5 Let P&� R'S � � �XTV�XWH� Y\[ and P � � R'S � � � � �XT � � WH� Y � [ be two join-compatible

SPOs. Let P � � � R'S � � � � � � �UT � � �XWH�ZY � � [ � P � P � and P � � � � R'S � � � � ��� � � �XT � � � � WH� Y � � � [ �
P � P � . Then T � � and T � � � are the correct joint probability distributions of random variables

in � and � � under the assumption of independence between them, given distributions T of

� and T � of � � .

THEOREM 6 Let P and P � be two join-compatible SPOs. The left join P � P � and right

join P � P � are equivalent iff the two SPOs are join-consistent.

5. Semistructured Probabilistic DBMS

In this section we describe in detail the design and implementation of the database man-

agement system for SPOs.



� �

5.1. Represention of SPOs

One of the major considerations in the design of the SPDBMS was the idea that it would

take over the data management routine from complex AI applications dealing with un-

certain data. Applications, such as support of Bayes net construction typically consist of

different components, some of which serve to extract and/or elicit the probability tables

while other — to support the construction and further use of Bayes nets given the data. If

SPDBMS were to take on the role of the data backbone of such an application, the issue of

representation of SPOs for the purpose of passing the information between different com-

ponents of the system becomes important. Representation mechanism must be transparent

and easy-to-use by diverse applications.

Extensible Markup Language (XML) [3], provides us with such a representation frame-

work. It affords us the benefit of using clear APIs for parsing and processing XML data,

together with open source software implementing these tasks, relieving the SPDBMS from

the need to do its own syntactic parsing. This makes SPO data encoded in XML easy to

pass from component to component.

To be more specific, we represent SPOs in XML using a markup meta-language we

call SPO-ML for markup. Among a number of possible XML encodings of SPOs we

choose the approach that utilizes the names of random variables and context attributes

as element names in the markup language. Thus, the actual DTD/XML schema of the

markup language depends on the application domain, namely the pair
R � � * [ . SPO-ML

simply represents the general markup rules for any domain.

For example, consider an application domain with a the universe � of random variables

� v1, v2, . . . , vn � and a collection of context attributes *2� ��- N ��
�
�
�� - � � , we construct

the appropriate markup language as shown on the template DTD in Figure 9 � .

Figure 10 (right) shows the SPO-ML encoding of the SPO shown on the left side. The

top layer of the XML document for the SPO consists of three elements � context � ,� table � and � conditional � . The path is represented as an attribute for the � spo �
element. The contents of context and conditional parts are fairly straightforward. The prob-

ability table is modeled as a collection of rows, each of which consists of a sequence of

random variables with values and its corresponding probability.
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<!DOCTYPE spo [
<!ELEMENT spo (context?, table, conditional?)>
<!ELEMENT context ((A1|A2| ...|Ai|... |Ak)*)>
<!ELEMENT table (row+)>
<!ELEMENT conditional (v1?, v2?, ...vj?,... ,vn?)>
<!ELEMENT row (v1?, v2?, ...vj?,... ,vn?, P)>
<!ELEMENT Ai (#PCDATA)>
<!ELEMENT vj (#PCDATA)>
<!ELEMENT P (#PCDATA)>
<!ATTLIST spo

path PCDATA #REQUIRED>
]>

Figure 9. XML DTD template for SPOs in the specified application domain.

� : S

race : Asian

DA LY P

A A 0.09
A B 0.12
A C 0.03
A F 0.005
B A 0.12
B B 0.16
B C 0.13
B F 0.01
C A 0.03
C B 0.08
C C 0.11
C F 0.045
F A 0.0
F B 0.01
F C 0.02
F F 0.04

DR � � A, B �

<?xml version="1.0"?>
<spo path = "S">

<context>
<race> Asian </race>

</context>
<table>

<row> <DA>A</DA> <LY>A</LY> <P>0.09 </P> </row>
<row> <DA>A</DA> <LY>B</LY> <P>0.12 </P> </row>
<row> <DA>A</DA> <LY>C</LY> <P>0.03 </P> </row>
<row> <DA>A</DA> <LY>F</LY> <P>0.005</P> </row>
... ... ...

<row> <DA>F</DA> <LY>A</LY> <P>0.0 </P> </row>
<row> <DA>F</DA> <LY>B</LY> <P>0.01 </P> </row>
<row> <DA>F</DA> <LY>C</LY> <P>0.02 </P> </row>
<row> <DA>F</DA> <LY>F</LY> <P>0.04 </P> </row>

</table>
<conditional>

<DR> {A B} </DR>
</conditional>

</spo>

Figure 10. A typical SPO object for risk level on Driver Age and License Years, and its XML representation.

Semistructured Probabilistic Objects are complex structures and not all their properties

can be captured by XML validity checks. An SPO representation in SPO-ML should

satisfy the following extra validity constraints. First, all � row � elements inside the� table � elements have to have exactly the same sequence of participating random vari-

ables. Second, the set of random variable elements inside � table � and the set of random

variable elements inside � conditional � must be disjoint. Finally, the content of � P �
elements inside � row � elements is expected to be real numbers between 0 and 1, and their
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sum must be less than or equal to 1. These additional constraints mean that validation on

an XML representation of an SPO is a two-step process: first the XML is validated against

the appropriate DTD/XML schema, and then the additional constraints are verified. While

the validity of the SPO-ML documents is checked by a validating parser, these extra checks

are performed by the SPDBMS itself.

5.2. Architecture of SPDBMS

We have implemented a prototype semistructured probabilistic database system on top

of a RDBMS in Java, JDK1.3. Figure 11 depicts the overall architecture of our system.

The core of the system is the SPDBMS application server which processes query requests

from a variety of client applications. The application server provides a JDBC-like API,

through which client applications can send standard database management instructions,

such as CREATE DATABASE, DROP DATABASE, CREATE SP-RELATION, DROP SP-

RELATION, INSERT INTO SP-RELATION, DELETE FROM SP-RELATION, as well as

SP-Algebra queries to the server.

5.3. Mapping SPOs to relational tables

A relational database system has been used as a backend to store SPO-ML encoded data by

mapping the XML schema onto a set of relational tables. While numerous techniques for

converting XML documents into relational databases exist [?, ?, ?, ?], as shown in [?] none

of the proposed translation schemes is monotonically better than others. These schemes

are proposed for storage of arbitrary XML with unknown structure. In the case of storing

SPO-ML � spo � elements in relational database, we can take advantage of our knowledge

of the general structure of these elements when designing the translation mechanism. This

consideration lead to us adopt a translation scheme, described below, that is specific to the

structure of SPO-ML object in lieu of a generic mechanism.

The SPO-ML - to relational database translation works as follows. SPOs are stored in a

relational database with the following schema:
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Application
Client

Application
Client

Application
Client

XML TCP/IP

User

App.

Query

XML Schema

JDBC

RDBMS

Domain Specific

Communication Protocol Layer

Auth. SPO Request Dispatcher

Insert Delete Update

Database Adapter

Server

SQL

Figure 11. The overall architecture of SPDBMS.

RELATION (rid integer, name varchar, schema varchar) contains SP-relation level

information. It connects all other tables by using the table naming convention that every

table uses the unique identifier of the corresponding SP-relation rid as a prefix for its name.

The attributes name and schema represent the SP relation name and the corresponding

schema URL, respectively.

rid SPO (id integer, path varchar, head varchar, numvar integer) contains SPO level

information. The association between this table and other tables is established by the

unique identifier of an SPO id. The attribute head stores the prolog of an XML document

and numvar stores the number of participating random variables in an SPO.

rid SPO CONS (id integer, type char, elemname varchar, elemvalue varchar, idref

varchar) contains all the information about SPO context and conditional. The attribute

id is a foreign key, and type tells whether it’s a context or conditional. The attributes

elemname and elemvalue give the pair of element name and element value.
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rid SPO VAR (id integer, position integer, varname varchar) contains all the infor-

mation of SPO participating variables. The attributes position and varname represent a

pair of position and variable name.

rid SPO num
�

(id integer, var 1 char, ... , var num char, p decimal) contains all

the information of the probability tables for SPOs which have num participating random

variables. The attribute p stores the probability value.

In order to improve data integrity and query performance, we created primary keys and

foreign keys, such as primary key rid for relation RELATION, primary key id for rela-

tion rid SPO and foreign keys id for all other relations. We also created indexes for the

last three type of relations, for instance, multicolumn index on (id, elemname) for rela-

tion rid SPO CONS, multicolumn index on (id, varname) for relation rid SPO VAR and

multicolumn index on (id, var 1,..., var num) for relation rid SPO num.

The database system stores SPOs from each SP-relation in a separate set of relational

tables. The CREATE algorithm starts by storing the SP-relation name, the path and the

schema url, generates a unique identifier rid for the SP-relation. It also creates all the

empty tables with the schema defined above and associates them with the SP-relation. In

order to store SPOs in an SP-relation, the SPOs must be parsed to a Document Object

Model (DOM) tree and decomposed into four components, Head, Path, Context, Table

and Conditional, based on a predefined schema template. The INSERT algorithm gets

a unique SPO object identifier id, then stores the XML prolog information, the path and

the number of participating random variables in the SPO in the rid SPO table. It stores

SPO context and conditional in the table rid SPO CONS, the probability table in the table

rid SPO num and participating random variables in the table rid SPO VAR, respectively.

Figure 12 shows the resulting tables after storing the SPO defined in Figure 3 in an SP-

relation.

5.4. Querying the SPDBMS

The SP-Algebra operations described in previous sections have been implemented. The

query language allows us to navigate through the entire database with structured queries,

including any combination of SELECTION, PROJECTION, CONDITIONALIZATION,
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1 SPO 2

id var 1 var 2 P

2 A A 0.09

2 A B 0.12

2 A C 0.03

2 A F 0.005

2 B A 0.12

2 B B 0.16

2 B C 0.13

2 B F 0.01

2 C A 0.03

2 C B 0.08

2 C C 0.11

2 C F 0.045

2 F A 0.0

2 F B 0.01

2 F C 0.02

2 F F 0.04

RELATION

rid name schema

1 First schema url

1 SPO

id path head numvar

2 S null 2

1 SPO VAR

id position varname

2 1 DA

2 2 LY

1 SPO CONS

id type elemname elemvalue idref

2 cont race Asian null

2 cond DR � A,B � null

Figure 12. internal representation for the SPO defined in Figure 3.

CARTESIAN PRODUCT and JOIN. In the current implementation the query processing

proceeds as follows. Structured queries are first parsed and then transformed into a query

tree
�

. Each internal node in the resulting parse tree is an SP-Algebra operator and each

of the leaves is an SP-relation. Each operator is translated in a straightforward manner

into a sequence of corresponding SQL statements that can be executed by the underlying

RDBMS.

This, however, is not enough for some SP-Algebra queries. Conditionalization, pro-

jection, Cartesian product and join change the probability tables in the results according

to the semantics of each operation. These computations are performed at the SPDBMS

server during the special postprocessing stages of the query processing. Postprocessing

also includes the assembly of the resulting XML document.
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Space limitations prevent us from describing query translations for all SP-Algebra queries.

Here we give two examples of probabilistic queries, illustrating how to map from an SP-

Algebra query to a set of SQL statements; other translations can be found in [21]. First,

consider selection on probabilities. Given a selection condition T op & and an SP-relation

� �3��P � ��
�
�
�� P 0 � , this operation returns SPOs that have at least one row with probability

that satisfies the selection condition. Selection preserves the context, participating random

variables and conditionals in the original SPOs, but returns only those rows of the proba-

bility table satisfying the selection condition. Consider a sample query ��� � �� � � �)� . Figure

13 shows the sequence of SQL statements needed in order to evaluate this query.

step 1. Get the SPO ID list based
on given probability value:

SELECT DISTINCT id
FROM rid_SPO_1
WHERE p > 0.1
...
UNION ALL
SELECT DISTINCT id
FROM rid_SPO_i
WHERE p > 0.1
...
UNION ALL
SELECT DISTINCT id
FROM rid_SPO_max
WHERE p > 0.1

step 2. Get the variable list for
each SPO in the ID list:

SELECT id, varname, position
FROM rid_SPO_VAR
WHERE id IN {ID list}

step 3. Retrieve context/conditional:
SELECT id, elemname, elemvalue, idref
FROM rid_SPO_CONS
WHERE id IN {ID list}

step 4. Retrieve probability table
SELECT *
FROM rid_SPO_1
WHERE id IN {ID list}

AND p > 0.1
...
UNION ALL
SELECT *
FROM rid_SPO_i
WHERE id IN {ID list}

AND p > 0.1
...
UNION ALL
SELECT *
FROM rid_SPO_max
WHERE id IN {ID list}

AND p > 0.1

Figure 13. Steps to evaluate the selection query

Our second example is the operation of conditionalization. This operation computes

conditional probability distributions and thus, is specific to probabilistic algebras. Given

the constraint � ��� and an SP-relation � �F��P � ��
�
�
�� P 0 � , conditionalization ��� ��� first

selects SPOs in which � is a participating random variable. For each selected SPO, con-

ditionalization preserves the context, conditions the joint probability distribution, replaces

the probability table with a new conditional probability distribution over the remaining

random variables, and adds the condition �'� � ��� � � to the conditional part of each of the
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resulting SPOs. Consider a sample query ����� � � � � � �)� . We need the following sequence

of SQL statements to perform the query, as shown in Figure 14.

step 1. Get the SPO ID list based
on the variable name(s):

SELECT DISTINCT id
FROM rid_SPO_VAR
WHERE varname = ’DA’

step 2. Get the variable list for
each SPO in the ID list:

SELECT id, varname, position
FROM rid_SPO_VAR
WHERE id IN {ID list}

step 3. Retrieve context/conditional:
SELECT id, elemname, elemvalue, idref
FROM rid_SPO_CONS
WHERE id IN {ID list}

step 4. Retrieve probability table
SELECT id, {var_i list}, P
FROM rid_SPO_1
WHERE id IN {ID list}

AND var_position = ’A’
...
UNION ALL
SELECT id, {var_j list}, P
FROM rid_SPO_i
WHERE id IN {ID list}

AND var_position = ’A’
...
UNION ALL
SELECT id, {var_k list}, P
FROM rid_SPO_max
WHERE id IN {ID list}

AND var_position = ’A’

Figure 14. Steps to evaluate the conditionalization query

5.5. Experimental results

In this section we present the results of tests conducted with the prototype system. The

current system uses Oracle8i as the RDBMS back-end. To avoid network delays during

tests, both the application server and Oracle DB server were running on the same machine,

a 440 MHz Sun Ultra 10 running Solaris OS with 1GB of main memory, and the timing

was done on the server side.

In order to ensure consistency, each experiment consists of 20 runs, and each point on

a graph represents the average running time for the 20 runs. We also restarted the appli-

cation server for each experiment to minimize the time difference consumed by garbage

collection. Most test data sets used in the experiments are generated randomly by a custom

data generator
�
. However, for Cartesian product and join, we generated specific data sets

in order to control the selectivity for each query. Each data set was generated based on the

following three parameters: number of SPOs per SP-relation, number of participat-

ing random variables in an SPO, and size of the domain of participating random

variables. The first parameter affects the number of objects to be stored in the database
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while the other two affect the size of individual objects. Throughout the experiments, we

used a fixed number of context and conditional elements in a single SPO. So the last two

parameters specify the internal structure of each SPO and consequently the size of each

SPO. Table 2 shows some typical data sets with corresponding file size and number of

tuples in the underlying Oracle database.

Table 2. File size and number of tuples in Oracle database for typical data sets.

number of SPOs 1,000 1,000 1,000 10,000 10,000 10,000

number of variables 2 4 2 2 4 2

size of domain 2 2 4 2 2 4

size of original XML file (MB) 0.38 1.64 1.10 3.81 16.4 11.0

number of tuples in Oracle DB 10,000 24,000 22,000 100,000 240,000 220,000

We examined the running time for each type of atomic SP-Algebra query. Most queries

are generated randomly at runtime by a custom query generator0 in the client application

running on another machine. We have collected both the total running time and the time

consumed by the Oracle DB server for executing SQL statements. The Oracle server con-

sumes 75 - 95% of the total execution time for most queries, and the percentage increases

with the size of the XML files. A typical case is shown in Table 3.

Table 3. Time distribution between Oracle and postprocessing for data set with 3 variables and

10,000 SPOs and domain size of 2.

Test type Total time/sec Oracle time/sec Postprocessing/sec %Oracle

Select on context 1.193 1.053 0.140 88

Select on conditional 0.955 0.845 0.110 88

Select on variable 1.081 0.959 0.122 88

Select on table 0.736 0.661 0.075 89

Project on conditional 1.080 0.958 0.122 88

Project on variable 0.502 0.471 0.031 93

Conditionalization 0.769 0.619 0.150 80
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To study the effects of the number of SPOs in an SP-relation on the query running time,

different experiments were conducted with the number of SPOs varying from 10 to 10,000.

The results are plotted in Figure 15. It can be observed that all types of unary SP-Algebra

queries scale well as the size of SP-relations increases: the running time increases sub-

linearly with the number of SPOs for large SP-relations, but at a much slower rate for

SP-relations of small size. In Figure 16, the effects of domain size for participating vari-

ables are shown. Notice that the number of tuples considered grows polynomially (i.e.

quadratically in this case, the number of variables equals 2) with the size of the domain.

The running time increases with the size of domain, but not as quickly as does the size of

the XML files.

Figure 17 shows the effects of the number of variables in SPOs on the time for the

conditionalization operation. The effect of running time on the size of the SP-relation and

query selectivity for selection on probability is shown in Figure 18. We can see that the

running time increases with selectivity faster at lower selectivity and increases with the

number of SPOs linearly. Finally, Figure 19 shows the dependence of running time on the

size of the SP-relation and query selectivity for the Cartesian product operation. The graph

shows that the running time for Cartesian product increases with the number of SPOs at a

nearly quadratic rate, and also increases with the selectivity, but at a much slower rate. One

reason is that the number of SPOs output increases quadratically with the number of SPOs

in the initial SP-relations. The same effect can be seen for the join operation, as shown in

figure 20.

5.6. Advantages and drawbacks

The algorithms for storing and querying SPO objects in a structure-oriented way are com-

pletely independent of the underlying RDBMS. All features specific to a RDBMS are

implemented in a class called database adapter, so the system can port to any relational

database with little modification. The mapping of SPOs onto sets of relational tables makes

queries efficient, especially queries on the part of an SPO object. No information loss

occurs during the decomposition. However, in order to ensure that the probability infor-

mation is stored and manipulated correctly, the current decomposition algorithm produces
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Figure 15. Effect of number of SPOs in an SP-

relation.
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Figure 16. Effect of domain size of participating ran-

dom variables.

five predefined components for each SPO to be inserted into the relational database. So

only XML objects which conform to the predefined SPO schema template can be stored in

the database.
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Figure 17. Effect of number of variables on condi-

tionalization operation.
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Figure 18. Effect of number of SPOs and selectivity

on selection query on probability.
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Figure 19. Effect of number of SPOs and selectivity

on Cartesian Product.
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Figure 20. Effect of number of SPOs and selectivity

on join operation.

6. Related Work

While modeling and managing uncertain information has received considerable attention

in the last two decades, most of that work has been in the context of probabilistic relational

databases. Different probabilistic relational models have been developed. Cavallo and

Pittarelli [5] first outlined a theory of probabilistic relational databases which incorporates

probability into relational data. The probabilistic system was defined as a four-tuple T �
�.� ��� � �%��� � � � , where V is a non-empty set of distinct attributes, � is a non-empty set of

domains of attributes, dom : V ��
 � is a function that associates a domain with each
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attribute, and p : dom(V) ��
 L M ��N/O is a probability distribution over V. Their data model

requires that the probabilities for all the tuples in a relation must add up to exactly 1. As

a result, separate relations are needed to represent different objects. They focused their

work on information content, functional dependency and multivalued dependency. They

defined only two probabilistic relational operations, namely projection and join, in this

context. Pittarelli [18] extended the probabilistic algebra defined in [5] to include some

new operators, e.g. the pooling operator, which combines estimates from different sources

into a single distribution. A common approach is to use linear pooling which computes

a weighted average of different estimates. We are investigating techniques of data fusion

which are similar to the idea of pooling.

Barbará, Garcia-Molina and Porter [2] presented a non-1NF probabilistic data model as

an extension of the relational model. In their model, relations have deterministic keys, and

tuples with different keys represent real world entities. All the non-key attributes describe

the properties of the entities and may be deterministic or stochastic, and independent or

interdependent. Probabilities are associated with the values of stochastic attributes, and

the interdependent relationship indicates that the attributes involved are jointly distributed

ones. Besides the basic relational operators, they also introduced a new set of operators to

illustrate the various possibilities. For example, the STOCHASTIC operator takes as input

a deterministic relation (one where all attributes are deterministic) and returns a probabilis-

tic relation according to a specified probabilistic schema. The DISCRETE operator goes

the opposite direction. It takes as input a probabilistic relation and returns a deterministic

expected value relation.

Dey and Sarkar [7] provided a probabilistic database framework with relations abiding

by first normal form (1NF). Unlike Barbará, et al. [2], they assigned probabilities to tuples,

instead of individual attributes, in terms of joint probability distribution. they required the

sum of all probabilities associated with a key value to be no more than 1. They provided

a closed form query algebra and first introduced the conditionalization operation in the

context of a probabilistic model. Later they proposed a non-procedural probabilistic query

language called PSQL [8] as an extension of the SQL language.
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Based on a first-order probabilistic logic language proposed by Halpern [10], Zimányi

[22] formalized a relational model to represent probabilistic information. The data model

is similar to [7]. Zimányi also provided a complete method for evaluating queries in prob-

abilistic theories. Lakshmanan et al. [14] proposed axioms characterizing reasonable

probabilistic conjunction and disjunction strategies. They first implemented a relational

probabilistic database system called ProbView.

Instead of modeling uncertain information with relational models, Kornatzky and Shi-

mony [13] developed a probabilistic object-oriented model to represent uncertain infor-

mation based on a probabilistic calculus. Uncertainty in the values of attributes was rep-

resented by probabilities. One of the limitations is that they assume events involved are

independent. Eiter et al. [9] extended the work in [13] by proposing an algebra for the

probabilistic object bases. Unlike the previous work, their algebra allows users to specify

dependencies between involved events based on their knowledge.

All these approaches above are extensions to either relational databases or object databases

with limitations inherent in each. The probabilistic object (e.g. as described in [9]) rep-

resents a single real world entity with uncertain attribute values. In our case, an SPO

represents a probability distribution of one or more random variables. Our work combines

and extends the ideas contained in these papers and applies them to a semistructured data

model, which provides us with the benefit of schema flexibility. For instance, this model

provides additional context information, providing general information for the probabil-

ity distribution and conditional information, making it possible to represent conditional

probability distributions.

There are two approaches to semistructured probabilistic data management that are closely

related to ours: the ProTDB [16] and the PIXml [12] frameworks. ProTDB [16] extends

the XML data model by associating a probability to each element with the modification of

regular non-probabilistic DTDs. They provided two ways of modifying non-probabilistic

DTDs. One is to introduce to every element a probability attribute Prob to specify the prob-

ability of the particular element existing at the specific location of the XML document. The

other is to attach a new subelement called Dist to each element, which makes it possible to

represent probability distributions. One of the drawbacks is that in their model probabilities
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in an ancestor-descendant chain were related probabilistically, meaning that probabilities

in the document are always conditional probability. All other probabilities were assumed

to be independent. Hung, Getoor and Subrahmanian [12] proposed a probabilistic interval

XML data model, PIXml. They provided two types of semantics for uncertain data, along

with connections between the two. The global interpretation is a distribution over an entire

XML document, while the local interpretation specifies an object probability function for

each non-leaf object. They also proposed a path expression-based query language to access

stored information. This approach overcomes some drawbacks presented in [16], but does

not provide a convenient way to represent joint probability distributions.

Our approach is different from theirs in that we define probability distributions over a

set of random variables along with additional context information, providing general in-

formation for the probability distribution, and conditional information, making it possible

to express conditional probability distributions. Also, our framework provides a compre-

hensive query algebra to efficiently query the semistructured probabilistic database. The

algebra presented here works on the semistructured data irrespective of the format in which

it is actually stored. The semistructured probabilistic algebra presented here has no data

format-specific syntax.

7. Conclusions and Future Work

In this paper, we presented a semistructured probabilistic database framework for storing

and managing probabilistic information. The SPO data mode has been defined to repre-

sent probabilistic distributions over arbitrary sets of random variables, along with addi-

tional information applicable to the probabilistic distributions. This construction allows

us to specify general information about a probabilistic distribution and express conditional

probabilistic distributions by specifying conditions associated with the probabilistic dis-

tribution. We described the pilot implementation of this data model. We also reported a

performance evaluation of the SPDBMS for different types of SP-Algebra queries.

There are three major foci of our ongoing work: (i) implementation of a query optimizer

for the current semistructured probabilistic DBMS; (ii) extension of the data model and the
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algebra to handle interval probabilities, and (iii) study of data fusion and conflict resolution

problems that arise in this framework.
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Proofs for SPO Framework.

Proof: Proof of Theorem 1

Here we prove that different selection operations commute.

Let � and �/� be two atomic selection conditions. There are 5 types of atomic selection

conditions, namely context, participation, conditional, table and probability. Selection

on context, participation or conditional will result in entire SPOs being selected, while

selection on table or probability will select only parts of the relevant SPOs. We could

partition the conditions into two groups,

� Group � , containing context, participation and conditional conditions, and

� Group ��� , containing table and probability conditions.

First we prove � 
 � � 
�� �#P �Z��� � 
�� � � 
 �.P �Z� for a single SPO P , and we consider here all

the possible cases for each pair of condition groups.

Case 1. Both conditions � and ��� are in Group � .

There are three possible combinations for whether each condition is satisfied:

a) P satisfies � but not ��� , or

b) P satisfies � � but not � , or

c) P satisfies both � and ��� , or

d) P does not satisfy either � or ��� .
By the definition of selection on atomic selection conditions in Group � , we know selec-

tion on these conditions will result in the entire SPO being selected, or none of it.

For case a), since P does not satisfy ��� , � 
�� �#P � returns empty and subsequently � 
 � � 
�� �#P �Z�
will return empty. Since � 
��.P � returns P , we see that � 
 � � ��
	�.P �U� �	��
 � �#P � will also return

empty for the same reason. Thus, � 
	� �

 � �#P �Z� � �

 � � �

	�#P �Z� holds for case (a). The same

applies to case (b). Similarly, for case (d).

For case c), ��
:� �

��U�.P �U�V� �

��.P � returns P , and ��
��Z� �

	�.P �Z� � �

��U�.P � returns P too. This

proves that ��
�� �

 � �#P �Z�\� �

 � � ��
	�.P �U� holds for case (c).

So � 
 � � 
 � �#P �Z�\� � 
 � � � 
 �.P �U� holds for all the cases.

Case 2. Condition � is in Group � and condition ��� is in Group ��� .
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There are only two possible combinations for whether each condition is satisfied, assum-

ing that condition ��� is always partially satisfied:

a) P does not satisfy � , or

b) P satisfies � .

By the definition of selection on atomic selection conditions in both Group � and Group

��� , we know selection on conditions in Group � will result in the entire SPO being selected

or not, while selection on conditions in Group ��� will preserve all the context, participating

random variables and conditionals in the original SPO, but produce only a part of the

probability table.

Let �

 � �#P � � P � , where P � has part of the probability table which satisfies the condition

�/� and retains all the context, participating random variables and conditionals in P .

For case a), ��
�� �

 � �.P �U� � �

	�#P � � will return empty since P � does not satisfy the condi-

tion � either. Since ��
��.P � returns empty, subsequently � 
 � � ��
	�.P �U� will also return empty.

This proves ��
�� ��
 � �.P �Z� �	�

 � � �

	�#P �Z� for case (a).

For case (b), � 
 � � 
�� �#P �Z�V� � 
 �#P �G� will return P � since P � should satisfy the condition �

too. Since � 
 �.P � returns P , so � 
�� � � 
 �.P �U� � � 
�� �#P � will also return P � . This proves that

�

�� �

 � �#P �Z�\�	��
 � � ��
	�.P �U� holds for case (b).

So �

�� �

 � �#P �Z�\� �

 � � ��
	�.P �U� holds for both cases.

Case 3. Both � and � � are conditions in Group ��� .

First we prove ��
:� �

 � �.P �U�H� ��
 � � ��
	�.P �U� for a single SPO P . Assume that both condi-

tions � and � � are partially satisfied by P . By the definition of selection on atomic selection

conditions in Group ��� , we know selection on these conditions will result in part of the

probability table and will preserve all the context, participating random variables and con-

ditionals in the original SPO. In other words, all the components in the original SPO except

the probability table will be preserved.

Let P � R'S � � �XTV�XW [ . Then P � � ��
:� �

 � �.P �U� � R'S � � �XT � � W [ and P � � � �

 � � �

	�.P �Z� �
R'S � � �UT � � � W [ with T �1��� 
 ��� 
 � � T � , and T � �1��� 
 � ��� 
 � T � where � is the relational se-

lection operator. Since the relational selection operator � is commutative, � 
 ��� 
 � � T ���



���

� 
 � ��� 
 � T � . Therefore we have T � � T � � or P � � P � � . So � 
 � � 
 � �.P �Z� � � 
 � � � 
 �.P �U� holds

for this case.

Now let an SP-relation � � � ����� P . Since the union operator is commutative, � 
 � � �

	� �)�Z� �
�

 � � ��
:� � ����� �.P �U�Z� � � � ��� � �

 � � �

	�#P �Z�U� , and ��
�� ��
 � � �)�Z�)� �

	� �

 � � � ����� �.P �U�Z� � � ����� � �

�� ��
 � �#P �Z�U� .

So this proves � 
 � � 
�� � �)�Z�)� � 
�� � � 
 � �)�U� .
Proof: Proof of Theorem 2

Let PF� R'S � � �XTV�XWH� Y\[ be a Type I SPO and � � �7� . We prove that the projection

operation correctly computes the marginal probability distribution.

Let T �%$& � $� � be a probability distribution with � $& � $��� � �%���&�.�$� . By the definition of

projection in Section 4.3, we know that T � � �%���&� � � � � 
 L M ��N�O and for each $& �
������� � � � ,

T � �%$& � �
�

�� �
	�� 
�
 � � � � ��� � 
 �� � �� � is defined

T � $& � $��� 

Note that this sum is exactly the marginal probability, for any $& � �%���&� ���)� .

Proof: Proof of Theorem 3

Let P�� R'S � � �UTV� WH� Y\[ be a Type I SPO and let � be a conditional selection condition

involving variable � � � . We prove that the conditionalization computes the correct

conditional probability distribution.

Let T �%$& � $� � be a probability distribution with � $& � $��� � �%���&�.�$� . By the definition of

conditionalization in Section 4.4, we have T � � ��� � 
 L M ��N�O . Let

� �
�

�� �
	�� 
�
 � � �

�
�� ��� � � �    � ����� T � $& � $��� 


For any $� � �����&�.�$�C� ,
T � � $��� � � �� ��� � � �    � ����� T �%$& � $� �

� 


We can see that
�

represents the sum of the probabilities of those rows which satisfy the

conditional selection condition $& ��� & � ��
�
�
�� &�� � . Then we know that T �.� $� � computes the

conditional probability for any $� � �%���&�.� � �:� � � .
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Proof: Proof of Theorem 4

Let P&� R'S � � �UTV�XWH�ZY\[ and P � � R'S � � � � �UT � �XWH� Y � [ be two Cartesian product-compatible

SPOs. We prove that the Cartesian product gives the correct joint probability distribution.

Let T �%$& � and T �#� $��� be two probability distributions with $& � �������#� � and $� � �%���&�.� � � .
Since we assume that the variables in the two SPOs are independent, the definition of

Cartesian product in Section 4.5, T � �J�%$& � $��� � T �%$& � � T �.� $� � , correctly computes the joint

probability distribution by multiplying the probabilities of the individual events.

Proof: Proof of Lemma 1

Let $& � �%���&�.� � � , $� ���������#� 
 � , $� �������&�.���� � , and � � � � 
 and � �� be disjoint. We

prove, under the assumption of independence between variables in � � and � �� , the following

equation holds:

T �%$& � $� � $� �\� T �%$& � $����� T �%$� ��$��� � T � $� � $� � � T �%$& ��$� � 


By the definition of conditional probability, we have

T �%$& � $� � $� � � T �U�%$& � $� � � $���
� T �Z� $& � $� � ��$��� � T � $� �
� T �%$& �
$� � $� ��$��� � T � $��� .

By using the assumption that $& and $� are independent, which implies $& ��$� and $� �
$� are in-

dependent, we got

T �%$& � $� � $� � � T �U�%$& ��$��� � T �%$� �
$� � � T � $���
� T �%$& � $��� � T � $� � $� � � T � $���
� T �%$& � $��� � T � $� ��$���
� T �%$� � $��� � T � $& ��$��� 


Proof: Proof of Theorem 5

Let P � R�S � � �UTV� WH� Y\[ and P � � R'S � � � � �UT � �XWH� Y � [ be two join-compatible SPOs. Here
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we prove that the left join operation gives the correct joint probability distribution. Note

that the case of the right join is completely analogous.

Let T � $& � $��� and T �J� $� � $� � be two probability distributions with $& � �������#� � � , $� �
�������#�

/� and $� �F�������#� �� � By assuming that the variables $& and $� are independent,

Lemma 1 gives T �%$& � $� � $� ��� T �%$& � $� � � T �#� $� � $� � � T �.� $� � . So the definition of left join in

Section 4.6 computes the joint probability distribution of random variables in � � � .

Proof: Proof of Theorem 6

Let P and P � be two join-compatible SPOs. We prove that the left join and the right join

are equivalent if and only if the two SPOs are join-consistent.

First, consider if the two SPOs are join-consistent, then the join operations P � P\� and

P � P � are equivalent. From the definition of join-consistent, we know that T � $� � � T �J� $� �
for any $� � �%���&�.��
/� and ��
 ���� . Then the probability distribution T �%$& � $� � $� � will be

identical, which implies the the two join operations P�� P � and P � P � are equivalent.

Second, consider the other direction. If the join operations P � P\� and P � P � are

equivalent, i.e. T � �J��$� � � T � � �#��$� � for any $� � �%���&�.�$� �C� , then by the definition of both

join operations we see that

T � � $��� � T � $& � $����� T � � $� � $� � � T � � ��$� � �

and

T � $��� � T � $& � $��� � T � � $� � $� � � T � � � ��$� � 


so the two probability distributions are identical, i.e. T � $� � � T �J� $��� , for any $��� �%���&�.� 
 � ,
which implies that the two SPOs are join-consistent.
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Notes

1. For ����� ���	��
 the consistency constraint states that the sum of probabilities in a complete probability distri-

bution must add up to exactly 1.

2. The list of variables is also used in the projection onto the participating random variables. The syntax ��
��
is chosen to distinguish between the two types of projection operation.

3. In general, given two events � and � and their point probabilities � � ��� and � � ��� , the probability � � ������� of

their conjunction lies in the interval � ����� � ����� � ��� �!� � ���#"$�%�	�&�(' ) � � � ���*�+� � ���,�-
 . One can obtain a point

probability for � � �(�.��� only if a specific relationship between � and � , such as independence, positive or

negative correlation is known to exist between them, or assumed.

4. DTD representation of SPO-ML is chosen here for its simplicity and succinctness. We also maintain and use

the corresponding XML schemas.

5. /1032 is a variable, which equals the number of participating variables in a particular SPO. Thus, /1042 may

vary from 1 to 5 6�5 .
6. Work on query optimization in SPDBMS is underway, but the current version of the SPDMBS server does

not have this feature.

7. Both the SPO data generator and the SP-Algebra query generator utilize a linear congruential pseudo-random

number generator, which comes with Sun JDK1.3 package.
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