11. Graph Theory

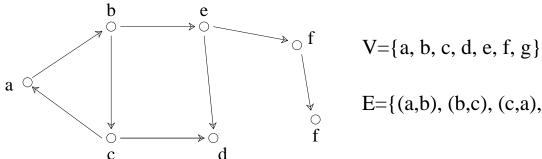
Def: V: non-empty vertex or node set

 $E \subseteq V \otimes V$: edge set

 $G \equiv (V, E)$: directed graph on V,

or digraph on V

Example:

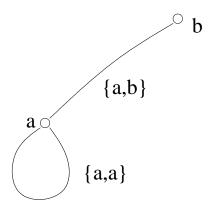


Note: $(a, b) \neq (b, a)$

 $E=\{(a,b), (b,c), (c,a), ...\}$

Def: When there is no concern about the direction of an edge, the graph is called *undirected*. In this case, an edge between two vertices a and b is represented by $\{a, b\}$.

Note: $\{a, b\} = \{b, a\}$



 $\{a, a\}$ is a loop from a to a.

If a graph is not specified as directed or undirected, it is assumed to be undirected.

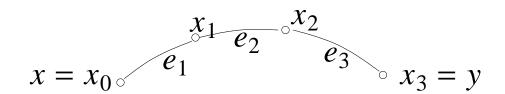
Def:

 $\overline{G} = (V, E)$: undirected graph An x - y walk is a finite alternating sequence

$$x = x_0, e_1, x_1, e_2, \dots, e_{n-1}, x_{n-1}, e_n, x_n = y$$

of vertices and edges from G, starting at vertex x and ending at vertex y, with the n edges $e_i = \{x_{i-1}, x_i\}, 1 \le i \le n$

length = n = no of edgesIf n = 0, a trivial walk When x = y and n > 0, called a *closed* walk, otherwise, *open* walk.

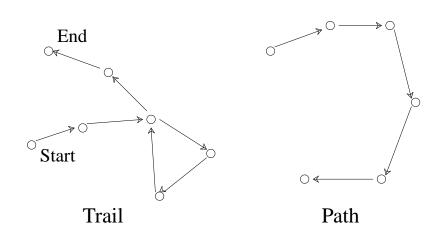


Def:

If no edge in an walk is repeated, then the walk is called a *trail*. A closed trail is called a *circuit*.

When no vertex of the x - y walk occurs more than once, then the walk is called a *path*. A closed path is called a *cycle*.

(The term "cycle" will always imply the presence of at least 3 distinct edges)



For directed graphs, we put "directed" in front of all the terms defined above.

Theorem:

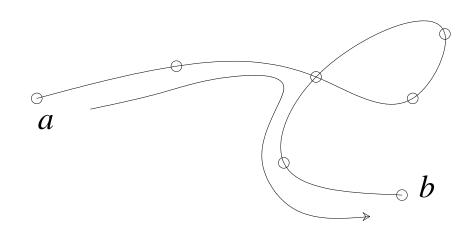
G = (V, E): undirected graph

 $a, b \in V, a \neq b$

If there exists a *trail* from a to b then there is a *path* from a to b.

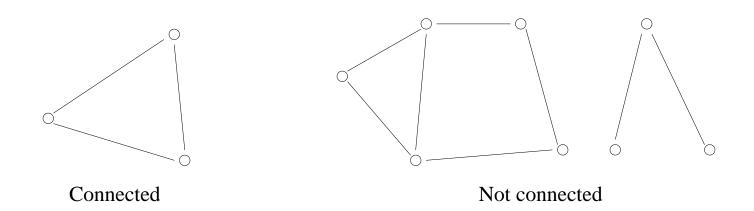
Proof.

Let *T* be the set of all trails from *a* to *b*. *T* has an element with the smallest length. Let *P* be such a trail. Then *P* must be a path. Why?



G = (V, E): undirected graph

G is called *connected* if there is a path between any two distinct vertices of G.



A digraph is said to be connected if the associated undirected graph is connected.

Def:

G = (V, E) (directed or undirected)

A graph $G_1 = (V_1, E_1)$ is called a *subgraph* of G if $V_1 \subseteq V$ and $E_1 \subseteq E$

(edges in E_1 must be incident with vertices in V_1)

G = (V, E) (directed or undirected)

A connected subgraph of G is said to be a *component* of G if it is not properly contained in any connected subgraph of G.

Notation:

The number of components of G is denoted by K(G).

Note:

A graph is connected iff K(G) = 1

Def:

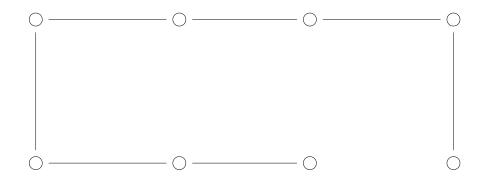
A graph G = (V, E) is called a *multigraph* if $\exists a, b \in V, a \neq b$, such that there are two or more edges between a and b (undirected) (from a to b (directed)).

Def:

multiplicity = 3

n –graph: no vertex has multiplicity > n

Example: (No. 8, page 412)



Removing any edge would result in a disconnected graph

Can such a graph be characterized using the concept of graph path? (the entire graph is a path)

Example: (No. 9, page 412)

If a graph satisfies the above condition then

- it must be loop-free
- G can not be a multigraph
- If G has n vertices then it must have n-1 edges

Example: (No. 10, page 412)

- a) If G = (V, E): undirected, |V| = m, |E| = n, and no loop, then $2n \le m^2 m$
- b) Since $(v_1, v_2) \neq (v_2, v_1)$ for digraph without loops, we have $n \leq m^2 m$

11.2 Complements and Graph Isomorphism

- study the structure of graphs

Def:

G = (V, E) (directed or undirected)

 $U \subseteq V$, U is not empty

The subgraph of G induced by U is the subgraph with vertices in U and all edges (from G) of the following form

- (a) $(x, y), x, y \in U$ (G directed), or
- (b) $\{x, y\}, x, y \in U$ (*G* undirected)

This subgraph is denoted by $\langle U \rangle$

A subgraph G' of a graph G = (V, E) is called an *induced subgraph* if there exists $U \subseteq V$ such that $G' = \langle U \rangle$

Note:

An induced subgraph is a subgraph
But a subgraph is not necessary to be an induced subgraph. Why?

G = (V, E) (directed or undirected)

 $G - v = (V - \{v\}, E')$, E' contains all edges of G except those that are incident with v

$$G - e = (V, E - \{e\})$$

Def:

$$|V| = n$$

 K_n : (the complete graph on V) is a loop-free undirected graph where $\forall a, b \in V, a \neq b$, there is an edge $\{a, b\}$

(Hence, number of edges of $K_n = \frac{n^2 - n}{2}$)

Examples: n = 4, n = 5

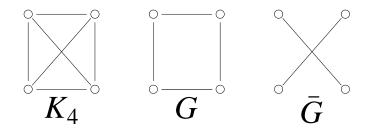
Def:

G = (V, E): loop-free, undirected, |V| = n

 $K_n = (V, E')$: complete graph on V

The *Complement* of *G* is defined as follows:

$$\bar{G} = (V, E' - E)$$



$$G_1 = (V_1, E_1), G_2 = (V_2, E_2)$$
: undirected

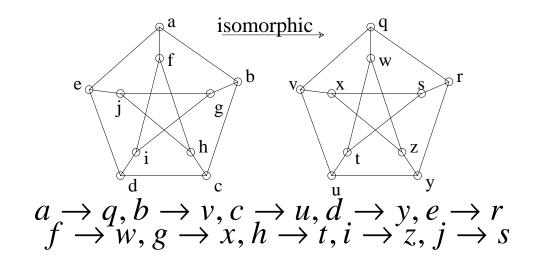
 $f: V_1 \to V_2$ is a graph isomorphism if

(a) f is one-to-one and onto

(b)
$$\{a, b\} \in E_1 \text{ iff } \{f(a), f(b)\} \in E_2$$

In this case, G_1 and G_2 are called *isomorphic* graphs (i.e., G_1 and G_2 have the same structure).

Example:



Notes:

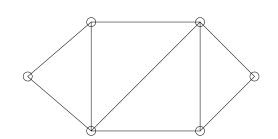
An isomorphism preserves adjacencies, hence, structures such as "paths" and "cycles".

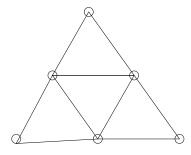
How to determine if two graphs are isomorphic?

- If a cycle in G_1 does not have a counter part in G_2 then G_1 can not be isomorphic to G_2 .
- If a path in G_1 does not have a counter part in G_2 then G_1 can not be isomorphic to G_2 .
- Degrees of adjancy of corresponding vertices in isomorphic graphs must be the same.

Example:

The following two graphs are not isomorphic. Why?





The number of vertices with degree of adjancy 2 is 2 in G_1 but the that number in G_2 is 3, or

The number of vertices with degree of adjancy 4 is 2 in G_1 but the that number in G_2 is 3, or

Each vertex of G_2 can be the start point of a trail which includes every edge of the graph. But in G_1 , f and b are the only vertices with such a property.

Example:

If every induced subgraph of G = (V, E), $|V| \ge 2$ is connected then G is isomorphic to K_n where n = |V|.

(Prove that

$$|E| = (n^2 - n)/2.$$

If $|E| < (n^2 - n)/2$ then it is possible to find an induced subgraph of G with two elements which is not connected.)

Example:

Find all (loop-free) non-isomorphic undirected graphs with four vertices. How many of them are connected?

