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Abstract   Parameterization of a 3D mesh is a fundamental problem in various applications of meshes. The approaches 

are widely used for parameterization because of its good properties, but they are almost based on triangle mesh. In this 

paper, we present a parameterization approach for the quadrilateral open mesh with complex topology. Since mesh 

simplification and weighted discrete mapping are adapted, the parameterization approach reduces the computation of the 

mapping process and can better reflect the shape of the corresponding 3D mesh. 
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1 Introduction 
Parameterization is an important problem in 

Computer Graphics. A parameterization of a 
polygonal mesh in 3D space can be viewed as a 
one-to-one mapping from the given mesh to a 
suitable domain. Parameterization has many 
applications in various fields, including texture 
mapping [1,2], scattered data and surface fitting[3-5], 
multi-resolution modeling [6,7], remeshing [8,9] and 
morphing[10], and so on.  

Due to its primary importance for subsequent 
mesh manipulation, the subject of the mesh 
parameterization has been researched for a number 
of years. The major paradigms in mesh 
parameterization are energy functional minimization 
and the convex combination approach. Several 
approaches have been developed to define and 
minimize an energy functional that measures 
distortion in the embedded mesh. Maillot proposed a 
method to minimize a norm of the Green–Lagrange 
deformation tensor based on elasticity theory [11]. 
The harmonic embedding used by Eck minimizes the 
metric dispersion instead of elasticity[6]. Lévy 
proposed an energy functional minimization method 
based on orthogonality and homogeneous spacing[12]. 
Non-deformation criterion is introduced in[13] with 
extrapolating capabilities. 

The convex combination approach is an 

extension of the barycentric mapping approach 
proposed by Tutte[14]. This approach obtains 
parameterization by fixing the boundary vertices of a 
3D mesh onto a 2D convex polygon and solving a 
linear system to determine the 2D embedded 
positions of the interior vertices. Floater[15] proposed 
shape-preserving parameterization, where the 
coefficients are determined by using conformal 
mapping and barycentric coordinates. The harmonic 
embedding [6] is also a special case of this approach, 
except that the coefficients may be negative. 

The previous works focus on the triangular 
mesh parameterization. Because of the good 
properties of the quadrilateral mesh, it is used more 
and more, which makes the parameterization of 
quadrilateral meshes become a critical problem. 
However, the parameterization approaches of 
triangle meshes are not suitable for that of 
quadrilateral meshes due to different connectivity 
structure. 

In this paper, we propose a parameterization 
approach for a quadrilateral mesh. We firstly map 
the simplified mesh whose interior vertices with low 
Gaussian curvature are deleted on the plane, and 
then embed the interior vertices on the 
parameterization domain. The proposed approach 
has the following advantages: (1) The method 
provably produces good quality parameterization 
results for any open quadrilateral mesh that can be 



mapped to the plane; (2) The method minimizes the 
distortion of both angle and area caused by the 
parameterization; (3) The solution does not place 
any restrictions on the boundary shape; (4) Since the 
mapping computation is local, the method is faster 
and more efficient. 

The rest of this paper is as follows. In section 2, 
we present our model and describe algorithm in 
detail. In Section 3,we give the results of our 
algorithm and compare them with other 
parameterization results. Finally, we draw 
conclusions in Section 4. 

2 Parameterization 

In this section, we outline the parameterization 
process of the quadrilateral mesh on the plane. 
Firstly, we reserve the boundary and the vertices 
with high Gaussian curvature and delete the interior 
vertices with low Gaussian curvature to simplify 
quadrilateral meshes. Secondly, the simplified mesh 
is mapped on the 2D domain through global 
parameterization. Thirdly, the weighted discrete 
mapping is used to embed the deleted vertices on the 
parameterization plane in angle-preserving and 
area-preserving manner, which will minimize the 
angle and area distortion. Finally, we optimize the 
parameterization mesh to eliminate the overlapping. 

In the quadrilateral mesh, the one-ring 
neighbouring vertices of vertex v  are the vertices 
sharing the same faces with the vertex v . The 
one-ring vertices of vertex v  include two parts: 
immediate vertices and diagonal vertices. 

2.1 Simplification Algorithm 

The computation and the distortion may be 
large if the whole quadrilateral mesh is 
parameterized onto the plane. To speed up the 
parameterization and minimize the distortion, we 
reduce the number of vertices while trying to retain 
the good approximation of the original shape and 
appearance. The discrete curvature is one of the 
good criteria of simplification to preserve the shape 
of an original model. 

In spite of the extensive use of quadrilateral 
mesh in geometric modeling and computer graphics, 
there is no agreement on the most appropriate way to 
estimate geometric attributes such as curvatures on 
discrete surfaces. Many surface-oriented applications 
need an approximation of the first and second order 
differential properties. Unfortunately, since meshes 
are piecewise linear surfaces, the concept of 
continuous curvature is not common. Thinking of a 

quadrilateral mesh as a piecewise linear 
approximation of an unknown smooth surface, we 
can try to estimate the curvature using only the 
information that is given by the quadrilateral mesh 
itself, such as the angles and faces that are connected 
to that vertex. 

We estimate the discrete Gaussian curvature to 
reduce the number of the vertices and need not to 
compute the curvature accurately. The Gaussian 
curvature of vertex v  is mainly determined by the 
immediate vertices, to speed up the computation we 
ignore the effect of the diagonal vertices and 
estimate the Gaussian curvature of quadrilateral 
meshes as shown in Fig.1-(a). We define integral 
Gaussian curvature vKK =  with respect to the 
area vSS =  attributed to v  by  
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where iθ is the angle between two successive edges. 
To derive the curvature at the vertex v  from these 
integral values, we assume the curvature to be 
uniformly distributed around the vertex and simply 
normalized by the area. 
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where S  is the sum of the areas of adjacent faces 
around the vertex v . Different ways of defining the 
area S result in different curvature values. We use 
the Voronoi area, which sums up the areas of vertex 
v ’s local Voronoi cells restricted to the triangles 
adjacent to v , according to the Euclidean distance 
to the vertices of the mesh. 

To determine the areas of the local Voronoi 
cells restricted to a triangle, we distinguish between 
obtuse and non-obtuse triangles in Fig.1. In the latter 
case they are given by  
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A vertex deletion means the deletion of the 

vertex with low Gaussian curvature and the edges 
that the vertex belongs to. To keep the geometry 
feature of the original mesh, the simplification 
algorithm is as follows: 

1. Our simplification algorithm reads an input 
original quadrilateral mesh. 

2. It calculates the discrete Gaussian curvature for 
all vertices using Eq.(1),(2),(3) or (4). 

3. If the curvature is bigger than a user-given 
value, then our algorithm deletes the vertex and the 
correlative edges. Otherwise, it ends the 
simplification process. 

4. Our algorithm outputs the simplified mesh, 
which is the polygonal mesh M .  

During the simplification process, we can adjust 
the given value to change the simplified vertex 
number. 

2.2 Global Parameterization 

The vertices with low Gaussian curvature and the 
edges correlative with the vertices of the original 
mesh are deleted, and then a polygonal simplified 
mesh forms instead of a quadrilateral one. 
Parameterizing a 3D simplified mesh amounts to 
computing a correspondence between a discrete 
patch and an isomorphic planar mesh through a 
piecewise linear mapping. Given a piecewise 
simplified mesh M , construct a mapping between 
the mesh M  and an isomorphic planar mesh 

2RU ∈ that best preserves  the original, intrinsic 
characteristic.  We denote by iv  the 3D position 
of thi vertex in the mesh M , and by iu  the 2D 
position (parameterization value) of the 
corresponding vertex in the 2D mesh U . 

The simplified polygonal mesh approximates the 
original quadrilateral mesh, but the angle and area 
are different from the original mesh. We take the 
edges of the mesh M as the spring and project the 
vertices of the mesh onto the parameterization 
domain by minimizing the edge-based energy 
function in the following 
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where Edge  is the edge set of the simplified mesh 
M ,the coefficients can be chosen in different ways 
according to r .  

The parameterization approach reduces the 
number of vertices, so it is different from the 
previous global parameterization, which is more 
complicated and has more distortion. Besides, 
compared with fixed-boundary parameterization, the 
simplified mesh reserves the vertices with high 
Gaussian curvature, so parameterization results 
preserve the whole shape better. 

2.3 Local Parameterization 

After the boundary and the interior vertices with 
high Gaussian curvature are mapped on the 2D plane, 
the deleted vertices with low curvature should be 
embedded on the parameterization plane. The 
mapping of the interior vertices affects the 
parameterization results greatly, so we want to 
preserve as much of the intrinsic qualities of a mesh 
as we possibly can. This implies that we need to 
firstly define what these intrinsic qualities are for a 
discrete mesh: minimal distortion means best 
preservation of these qualities. 

2.3 .1 Discrete Conformal Mapping 

Conformal parameterization preserves angular 
structure, and is intrinsic to geometry and stable with 
respect to small deformations. To flatten a mesh to a 
two-dimensional plane so that it minimizes the 
relative distortion of the planar angles with respect to 
their counterparts in the three-dimensional space, we 
introduce an angle-based energy function as follows 
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where )(iN is the set of the immediate one-ring 

vertices of  the vertex iv ,  and ijij βα ,  are  the 

Figure 1. Voronoi area (a) Voronoi cells around a

vertex (b) Non-obtus angle (c) Obtus angle 

(c) 

(b) (a) 



opposite left angles in the 3D mesh as shown in 
Fig.2-(a). The coefficients in the formula (6) are 
always positive, which reduces the overlapping of 
the parameterization mesh.  

This is discrete quadratic energy in the 
parameterization and only depends on the angles of 
the original surface. To minimize the discrete 
conformal energy AE , we get  
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From Equ. (7), we can get linear coefficients 
which are the functions of the angles of the original 
mesh.  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

2.3.2 Discrete Authalic Mapping 

Authalic mapping preserves the area as much as 
possible. The quadrilateral mesh in the 3D space is 
not flat, so we can not get the accurate area of each 
quadrilateral patch. To minimize the area distortion, 
we divide each quadrilateral patch into four 
triangular parts and then preserve the triangular areas 
differently. As shown in Fig.2-(b), the quadrilateral  

mesh 1+jkji vvvv is divided into ,1+∆ jji vvv  

,kji vvv∆ ,1+∆ jki vvv  1+∆ jkj vvv .  This  will  
change the problem of quadrilateral area preserving 
into that of triangular area preserving.  

The mapping resulted from the energy 

minimization has the property of preserving the area 
among each vertex’s one-ring neighborhood of the 
mesh, and can be written as the form of 
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where ijγ  and ijδ  are corresponding angles of the  

edge  ),( ji vv  as  shown  in  Fig.2-(c). The   
parameterization deriving from xE  is easily 
obtained when the parameterization value 

iu satisfies 
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The way to solve this linear system is similar to 
that of discrete conformal mapping, but the linear 
coefficients are the functions of the local areas of the 
3D mesh. 

2.3.3 Weighted Discrete Parameterization  

Discrete conformal mapping can be seen as an 
angle preserving mapping which minimizes the 
angle distortion for the interior vertices. The 
resulting mapping will preserve the shape but not the 
area of the original mesh. If we map a checkerboard 
image on the parameterization, the resulting texture 
mapped mesh will have the square of different sizes 
as shown in Fig3-(b),(f).  

Discrete authlic mapping is area preserving 
which minimizes the area distortion. Although the 
area of the original mesh would locally be preserved, 
the shape tends to be distorted since the mapping 
from 3D to 2D will in general generate distortion. If 
we map a checkerboard image on the 
parameterization, the resulting texture mapping will 
have squares whose shape is distorted while local 
texture has the same size as shown in Fig3-(d),(h). 

To minimize the distortion and get better 
parameterization results, we define linear 
combinations of the area and the angle distortion as 
the distortion measures. Therefore, it results that the 
family of admissible, simple distortion measures is 
reduced to linear combinations of the two discrete 
distortion measures defined above. A general 
distortion measure E  as we define can thus always 
be written as  
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Figure 2. Edge and angles. (a) Edge and opposite left angles

in the conformal mapping; (b) Quadrilateral mesh divided

into four triangles (c) Edge and corresponding angles in the

authalic mapping. 
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where )10( ≤≤ qq  is an real constant. By 
adjusting the scaling factor q , parameterizations 
appropriate for special applications can be got. 

2.4 Mesh Optimization 

The quadrilateral mesh is not restricted, such as 
convexity, so when parameterizing the mesh on the 
2D plane, the parameterization mesh may produce 
overlapping. To eliminate the overlapping, we 
optimize the parameterization mesh by adjusting 
vertex location without changing the topology of the 
mesh. Mesh optimization is a local iterative process. 
Each vertex is optimized for the new location in a 
number of iterations.  

Let q
iu  be thq times iteration location of the 

parameterization value iu , the optimization process 
to find the new location in iterations is described by 
the following formula 
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where n is the degree of the vertex iu , and 

kj uu ,  are  the  immediate and diagonal one-ring  
vertices respectively. 

It is found that vertex optimization in order of 
“worst one first” is very helpful. We define the 
priority of the vertex iu as the following  
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The priority is simply computed based on the 
shape metrics of each parameterization vertex. For 
the vertex with the worst quality, the highest priority 
is assigned. Through experiments, we find that more 
times iterations are needed if vertices are not 
overlapped in an order of “first come first serve”. 
Besides, we must point out that the optimization is 
local and we only optimize the overlapping vertices 
and its one-ring vertices, which will minimize the 
distortion and preserve the parameterization results 
better.  

3.Examples 

For a quantitative evaluation of various mesh 
parameterization methods we consider angle and 
area distortion error functions defined below. To 
measure the angle distortion error we use  
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where iθ  and iφ  are the corresponding angles  

of the original quadrilateral mesh and 
parameterization mesh respectively. The area 
distortion is measured by  

           ∑∑
=

−
j i ij

ij

UA
TA4

1

2

,

, )1
)(
)(

(      (14)   

where )(),( ,, ijij UATA  are  the  corresponding  
areas of the triangles that each quadrilateral patch is 
divided into.  

To evaluate the visual quality of a 
parameterization we use the checkerboard texture 
shown in Fig.3, where the effect of the scaling factor 
q in Eq. (10) can be found. The parameterization 
approaches are discrete conformal mapping, 
weighted discrete mapping and discrete authalic 
mapping with 0=q , 5.0=q and 

1=q respectively as shown in Fig.3. The angle and 
area distortions of the different mappings are shown 
in table 1. 
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Table 1:Distortion energy of the parameterization 

q      1     0.8    0.5     0.2    0 
AE -(a)  8.74   10.98  14.20  17.41  20.01 
xE -(a)  30.93  26.44  22.58  20.27  19.63 
AE -(e)  12.56  15.42  18.95  25.83  29.57 
xE -(e)  44.81  39.87  31.25  28.21  25.42 
 
The results demonstrate that the medium q value 

(about 0.5) can get more smooth parameterization 
and minimal distortion energy of the 
parameterization. And the closer q to value 0 or 1, 
the larger the sum of the angle and area distortions 
is.  

4.Conclusions 

We present a parameterization approach for 
quadrilateral meshes based on mesh simplification 
and weighted discrete mapping. Mesh simplification 
reduces the computation, and the discrete mapping 
minimizes the angle and area distortion. The scaling 
factor q  of the discrete mapping provides the 
flexibility for user to get appropriate 

parameterizations according to special applications, 
and establish different smoothness and distortion. 

In future work, we will focus on using a better 
objective function to obtain better solutions and 
developing a good hierarchical solver that can speed 
up the mapping process, making parameterization of 
extremely large meshes tractable. 
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