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Abstract. A new parametrization technique and its applications for general Catmull-Clark subdivision surfaces are
presented. The new technique extends J. Stam’s work by redefining all the eigen basis functions in the parametric
representation for general Catmull-Clark subdivision surfaces and giving each of them an explicit form. Therefore, the
new representation can be used not only for evaluation purpose, but for analysis purpose as well. The new approach
is based on an Ω-partition of the parameter space and a detoured subdivision path. This results in a block diagonal
matrix with constant size diagonal blocks (7 × 7) for the corresponding subdivision process. Consequently, eigen
decomposition of the matrix is always possible and is simpler and more efficient. Furthermore, since the number of
eigen basis functions required in the new approach is only one half of the previous approach, the new parametrization
is also more efficient for evaluation purpose. This is demonstrated by applications of the new techniques in texture
mapping, special feature generation, surface trimming, boolean operations and adaptive rendering.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling - curve, surface, solid
and object representations;

Keywords: subdivision, Catmull-Clark surfaces, surface parametrization, surface evaluation, eigenanalysis, discrete
Fourier transform

1 Introduction
Subdivision surfaces have become popular recently in graphical modelling and animation because of their capability in
modeling/representing complex shape of arbitrary topology [7], their relatively high visual quality, and their stability
and efficiency in numerical computation. Subdivision surfaces can model/represent complex shape of arbitrary
topology because there is no limit on the shape and topology of the control mesh of a subdivision surface. With
the parametrization technique for subdivision surfaces becoming available [15] and with the fact that non-uniform
B-spline and NURBS surfaces are special cases of subdivision surfaces becoming known [13], we now know that
subdivision surfaces cover both parametric forms and discrete forms. Parametric forms are good for design and
representation, discrete forms are good for machining and tessellation (including FE mesh generation) [1]. Hence,
we have a representation scheme that is good for all graphics and CAD/CAM applications.

Research work for subdivision surfaces has been done in several important areas, such as surface interpolation
[9], surface evaluation [5, 14, 15, 16, 17], surface trimming [10], boolean operations [4], and mesh editing [18].
However, powerful evaluation and analysis techniques for subdivision surfaces have not been fully developed yet.
Parametrization methods that have been developed so far are suitable for evaluation purpose only, not for analysis
purpose, because these methods either do not have an explicit expression, or are too complicated for each part to
be explicit. For instance, in [15], eigen functions are pre-computed numerically and stored in a file. So they can be
used for evaluation purpose only. Note that exact evaluation at a point of a subdivision surfaces is possible only if
there is an explicit parametrization of the surface. Hence, an explicit parametrization is not only critical for analysis
purpose, but for evaluation and rendering purpose as well.

In this paper we will present an Ω-partition based approach to solve several important problems of subdivision
surfaces: (1) computation of new control vertices at a specified subdivision level, (2) explicit parametrization of an
extra-ordinary patch, and (3) surface evaluation at arbitrary parameter space point with eigen functions computed
on the fly. The new approach will be presented for general Catmull-Clark subdivision surfaces [6]. But it works for
any subdivision surfaces whose subdivision schemes can be implemented as a matrix-vector multiplication.

The new approach is based on the observation that the subdivision process on the control vertices can be broken
into subdivision processes on smaller, same frequency groups after a few linear transformations. Each such subdivision
process on points of the same frequency is independent of the valence of the extra-ordinary vertex. The dimension
of the corresponding subdivision matrix for each frequency group is 7 × 7. Therefore, the process of using a large
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Figure 1: (a) Control vertices that influence an extra-ordinary patch. (b) New control vertices (solid dots) generated
after a Catmull-Clark subdivision.

subdivision matrix to perform the subdivision process on the control vertices can be replaced with a set of 7 × 7
matrices on the same frequency groups. This not only makes computation of the eigenstructures of the subdivision
matrices always possible, but also simpler and more efficient. Inverses of the eigenvector matrices can also be explicitly
computed. In addition to the parametric representation, we also derive a set of evaluation algorithms for applications
in texture mapping, special feature generation, surface trimming, Boolean operations and adaptive rendering.

The remaining part of the paper is arranged as follows. Section 2 gives a brief review of the Catmull-Clark
subdivision scheme and previous evaluation techniques. Section 3 shows an intuitive but expensive approach in
parametrizing an extra-ordinary Catmull-Clark patch. Section 4 shows a more efficient approach in parametrizing a
Catmull-Clark patch using an extended subdivision path. Section 5 shows how to compute the eigen structure of the
subdivision matrix of the extended subdivision path. Section 6 shows the evaluation process of the new parametric
representation at an arbitrary point of a Catmull-Clark patch. Section 7 gives some examples of analysis with our
explicit representation around an extra-ordinary vertex. Section 8 shows application examples of the new scheme
in texture mapping, special feature generation, surface trimming, boolean operations and adaptive rendering. The
concluding remarks are given in Section 9.

1.1 Notations
The following notational conventions are adopted in this paper. Space objects such as points, lines and parametric
functions are denoted by boldface upper case roman characters, e.g., V. Linearly transformed items or Fourier points
are denoted by boldface lower case roman characters, e.g., v. All vectors are assumed to be columns. Vectors of
ordinary items (resp. linearly transformed items or Fourier points) are denoted by upper (resp. lower) case italicized
characters, e.g., V (resp. g). Matrices are denoted by uppercase roman characters, e.g., M. The transpose of a vector
V (resp. matrix M) is denoted by V T (resp. MT).

2 Background and Previous Work
2.1 Catmull-Clark Subdivision Surfaces
Given a control mesh, a Catmull-Clark subdivision surface (CCSS) is generated by iteratively refining the control
mesh [6]. The limit surface is called a subdivision surface because the mesh refining process is a generalization of the
uniform B-spline surface subdivision technique. The valence of a mesh vertex is the number of mesh edges adjacent to
the vertex. A mesh vertex is called an extra-ordinary vertex if its valence is different from four. Vertex V in Figure
1(a) is an extra-ordinary vertex of valence five. A mesh face with an extra-ordinary vertex is called an extra-ordinary
face. The valance of an extra-ordinary face is the valence of its extra-ordinary vertex. In the following, for the sake
of simplicity, a mesh face and the corresponding surface patch will be treated the same and denoted by the same
notation.

Given an extra-ordinary face S = S0,0. If the valence of its extra-ordinary vertex is n, then the surface patch
corresponding to this extra-ordinary face is influenced by 2n+8 control vertices. The control vertices shown in Figure
1(a) are the ones that influence the patch marked with an “S = Sm−1,0”. In general, if Sm−1,0 is the extra-ordinary
subpatch generated after m−1 subdivision steps, then by performing a Catmull-Clark subdivision step on the control
vertices of Sm−1,0, one gets 2n + 17 new control vertices. See Figure 1(b) for the new control vertices generated for
the patch Sm−1,0 shown in (a). These 2n+17 new control vertices define four subpatches: Sm,b, b = 0, 1, 2, 3 (Figure
1(b)). Sm,0 is again an extra-ordinary patch but Sm,1, Sm,2, and Sm,3 are regular uniform bicubic B-spline patches.
Iteratively repeat this process, one gets a sequence of regular bicubic B-spline patches (Sm,b), m ≥ 1, b = 1, 2, 3,
a sequence of extra-ordinary patches (Sm,0), m ≥ 0, and a sequence of extra-ordinary vertices. The extra-ordinary
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patches converge to the limit point of the extra-ordinary vertices [9]. The regular bicubic B-spline patches (Sm,b),
m ≥ 1, b = 1, 2, 3, and the limit point of the extra-ordinary vertices form a partition of S.

2.2 Previous Parametrization/Evaluation Methods
An algorithm for the evaluation of a subdivision surface at an arbitrary point was first proposed by J. Stam in 1998
for Catmull-Clark subdivision surfaces [15] and then in 1999 for Loop subdivision surfaces [16]. Stam’s approach
shows that an extra-ordinary surface patch and its derivatives can be represented as a linear combination of the
control points with weights defined by a set of 2n+8 eigenbasis functions where n is the valence of the extra-ordinary
patch. The representation satisfies simple scaling relations and can be easily evaluated in constant time. However,
even though analytical expressions for the eigenbasis functions have been derived, some of them are too complicated
to be reported in the paper [15]. Besides, some of the eigenbasis functions are redundant. We will show in this paper
that only n+6 eigenbasis functions are actually needed and, consequently, the evaluation process can be made more
efficient. J. Stam’s approach is mainly developed for evaluation purpose. As we shall present, our parametrization
results can be used not only for evaluation, but for analysis purpose as well.

D. Zorin and D. Kristjansson extend the work of J. Stam by considering subdivision rules for piecewise smooth
surfaces with parameter-controlled boundaries [17]. The main contribution of their work is the usage of a different set
of basis vectors for the evaluation process which, unlike eigenvectors, depend continuously on the coefficients of the
subdivision rules. The advantage of this algorithm is that it is possible to define evaluation for parametric families
of rules without considering excessive number of special cases, while improving numerical stability of calculation.

In addition to Stam’s approach, two different parametrizations of Catmull-Clark subdivision surfaces have been
proposed by Boier-Martin and Zorin [5]. The motivation of their work is to provide parametrization techniques that
are differentiable everywhere. Although all the natural parameterizations of subdivision surfaces are not C1 around
extraordinary vertices of valence higher than four[5], the resulting surfaces are still C2 almost everywhere. Moreover,
despite of the fact that the partial derivatives diverge around an extraordinary vertex, in this paper, we will show
that an standardized normal vector can be calculated explicitly everywhere. As we know, precisely calculated normal
vector is indispensable for surface shading purposes.

Exact evaluation of piecewise smooth Catmull-Clark surfaces near sharp and semi-sharp features is considered in
[14]. Constant-time performance is achieved by employing Jordan decomposition of the subdivision matrix. In this
paper we will show that special features can be generated using ordinary Catmull-Clark rules with constant-time
evaluation performance as well.

3 Parametrization of an Extra-Ordinary Patch
The regular bicubic B-spline patches {Sm,b}, m ≥ 1, b = 1, 2, 3, induce a partition on the unit square [0, 1] × [0, 1].
The partition is defined by : {Ωm,b}, m ≥ 1, b = 1, 2, 3, with

Ωm,1 = [ 1
2m , 1

2m−1 ]× [0, 1
2m ],

Ωm,2 = [ 1
2m , 1

2m−1 ]× [ 1
2m , 1

2m−1 ],

Ωm,3 = [0, 1
2m ]× [ 1

2m , 1
2m−1 ]

(see Figure 2 for an illustration of the partition [15]). For any (u, v) ∈ [0, 1]× [0, 1] but (u, v) 6= (0, 0), there is an Ωm,b

that contains (u, v). To find the value of S at (u, v), first map Ωm,b to the unit square. If (u, v) is mapped to (ū, v̄)
by this mapping, then compute the value of Sm,b at (ū, v̄). The value of S at (0, 0) is the limit of the extra-ordinary
vertices. For convenience of subsequent reference, the above partition will be called an Ω-partition of the unit square.

In the above process, m and b can be computed as follows:

m(u, v) = min{dlog 1
2
ue, dlog 1

2
ve} ,

b(u, v) =





1, if 2mu ≥ 1 and 2mv < 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu < 1 and 2mv ≥ 1 .

The mapping from Ωm,b to the unit square is defined as: (u, v) → (ū, v̄) = (φ(u), φ(v)), where

φ(t) =
{

2mt, if 2mt ≤ 1
2mt− 1, if 2mt > 1 .

(1)
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Figure 2: Ω-partition of the unit square [15].

Since each Sm,b is a standard B-spline surface, it can be expressed as S(u, v) = WT (ū, v̄)MGm,b where Gm,b is the
control point vector of Sm,b, W (u, v) is a vector containing the 16 power basis functions:

WT (u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3, u3v, u2v2, uv3, u3v2, u2v3, u3v3]

and M is the B-spline coefficient matrix. An important observation is, WT (ū, v̄) can be expressed as the product of
WT (u, v) and two matrices: WT (ū, v̄) = WT (u, v)KmDb, where K is a diagonal matrix

K = Diag(1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 32, 32, 64)

and Db is an upper triangular matrix depending on b only. Db can be obtained by replacing ū, v̄ in W (ū, v̄) with
φ(u), φ(v) defined in Eq. (1). Therefore, we have

S(u, v) = WT (u, v)KmDbMGm,b.

The computation of the control vertices of Sm,b involves two matrices, A and Ā [15]. Ā is a (2n + 17)× (2n + 8)
matrix, representing the subdivision process shown in Figure 1(b). A is a (2n + 8) × (2n + 8) submatrix of Ā,
representing the process of mapping the 2n+8 control vertices of the given extra-ordinary patch to the 2n+8 control
vertices of its extra-ordinary subpatch. Let

G = [V,E1, · · · ,En,F1, · · · ,Fn, I1, · · · , I7]

then G (See Fig. 1(a) for its labelling) is the column vector representing the control vertices of S. By applying
A to G (m − 1) times we get the 2n + 8 control vertices of the extra-ordinary subpatch Sm−1,0. Now by applying
Ā to the control vertices of Sm−1,0 (represented as Gm−1), we get 2n + 17 new control points which include the
2n + 8 control vertices of Sm,0. Let Ḡm be the column vector representation of these 2n + 17 vertices, we have
Ḡm = ĀGm−1 = ĀAm−1G . Then by multiplying Ḡm with an appropriate “picking” matrix Pb, we get the control
vertices of the subpatch Sm,b: Gm,b = PbḠm = PbĀAm−1G . Hence we have

S(u, v) = WT (u, v)KmDbMPbĀAm−1G. (2)

This is a parametrization of an extra-ordinary patch. However, this is a costly process to use because it involves
m− 1 multiplications of the (2n + 8)× (2n + 8) matrix A. In the next section, we will present an efficient approach
to calculate Gm,b for any b and m.

4 Calculate Control Vertices after m Subdivisions
The goal here is to show that instead of using the direct path from G to Gm−1 to compute Gm−1 = Am−1G in the
above equation, one should use the indirect, longer path (G → g → gm−1 → Gm−1) in Figure 3 to do the job. The
reason for doing so is: the corresponding matrix T is a block diagonal matrix with each diagonal block of dimension
7×7 only. Therefore, the process of computing their eigen decompositions is not only always possible, but also much
simpler and more efficient. Details of this new approach and definitions of related mappings are given below. We
consider a general CCSS here. That is, the new vertex point V′ after one subdivision is computed as follows:

V′ = αnV + βn

n∑

i=1

Ei + γn

n∑

i=1

Fi (3)
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Figure 3: The extended subdivision diagram.

where αn, βn and γn are positive numbers and their sum equals one. New face points and edge points are computed
the same way as in [6].

First, to prepare G for the major transformation, we extend G into a vector of seven equal-length components,
called Ĝ: Ĝ = (V T , ET , FT , IT

1 , IT
2 , IT

3 , IT
4 )T , where

V = (V,V, · · · ,V)T ,

E = (E1,E2, · · · ,En)T ,

F = (F1,F2, · · · ,Fn)T ,

Ik = (Ik, Ik+4,0, · · · ,0)T , k = 1, 2, 3

I4 = (I4,0,0, · · · ,0)T

with all of them having the same length of n. We can get Ĝ from G by a simple extension matrix H1, i.e., Ĝ = H1G.
Next, let ĝ be the result of applying an invertible linear transformation L to the components of Ĝ:

ĝ = (LV T , LET , LFT ,LIT
1 , LIT

2 ,LIT
3 , LIT

4 )T = (vT , eT , fT , iT1 , iT2 , iT3 , iT4 )T

Each component of ĝ has the same length n, but is indexed from 0 to n− 1. We can get ĝ from Ĝ by combining all
L’s into a single matrix H2, i.e., ĝ = H2Ĝ. It is easy to see that H2 is a block diagonal matrix. If we re-arrange the
elements of ĝ into a set of same frequency groups: g = (hT

0 , hT
1 , · · · , hT

n−1)
T , where hω = (vω, eω, fω, i1ω, i2ω, i3ω, i4ω)T ,

with 0 ≤ ω ≤ n − 1. We can get g from ĝ through a 7n × 7n permutation matrix H3, i.e., g = H3ĝ. The above
relationships hold for gj , Gj , ĝj and Ĝj , j ≥ 1, as well (See Fig. 3). Since H1, H2 and H3 are invertible, we can
easily calculate gj and Gj from each other.

For each j ≥ 1, the subdivision process performed on Gj−1 to get Gj can be reflected on gj−1 and gj through H1, H2

and H3. The induced subdivision process [2] on gj−1 can be represented by a 7n×7n matrix T as: gj = Tgj−1 = Tjg.
T is a block diagonal matrix with each diagonal block Tω (ω = 0, 1, 2, · · · , n− 1), being a 7× 7 matrix. Tω depends
on the transformation L. However, the choice of L does not affect the result. In our derivation, for convenience,
we choose L to be the Discrete Fourier Transform. The corresponding Tω can be found in [2]. Therefore, for each
m ≥ 1, we have (See Fig. 3):

Am−1 = H−1
1 H−1

2 H−1
3 Tm−1H3H2H1 .

By combining the above expression with (2), we have

S(u, v) = WT KmDbMPbĀH−1
1 H−1

2 H−1
3 Tm−1H3H2H1G (4)

For a given (u, v), every matrix in (4) is known to us if valance n is known. Hence it can be used to exactly and
explicitly evaluate the position of S(u, v).

5 Eigenanalysis of T
Equation (4) provides a formal parametrization of an extra-ordinary patch. This parametrization, however, is still
costly to evaluate because it involves m−1 multiplications of the matrix T. The evaluation process can be considerably
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simplified if T is decomposed as T = X−1ΛX, where Λ is a diagonal matrix of eigenvalues of T and X is an invertible
matrix whose columns are the corresponding eigenvectors. Therefore, the evaluation of Tm−1 becomes the evaluation
of X−1Λm−1X only.

Note that T is a block diagonal matrix. To find the eigen decomposition of T, we first find the eigen decomposition
of each diagonal block Tω of T: Tω = X−1

ω ΛωXω, (ω = 0, 1, · · · , n− 1). Since each diagonal block Tω is of size 7× 7,
its eigen decomposition can be calculated explicitly. X, Λ and X−1 are then formed as block diagonal matrices with
diagonal blocks being Xω, Λω and X−1

ω , respectively. Consequently, S(u, v) can be expressed as:

S(u, v) = WT KmZbΛm−1ZG (5)

where Z = XH3H2H1 and Zb = DbMPbĀZ−1. For any given n, these matrices are known explicitly.
There are totally n + 6 different eigenvalues in Λ. These different eigenvalues of T are:

λ0 = (4αn − 1 +
√

16α2
n − 8αn + 8βn − 3 )/8

λ1 = (4αn − 1−
√

16α2
n − 8αn + 8βn − 3 )/8

λ2ω = (cω + 5 +
√

c2
ω + 10cω + 9 )/16

λ2ω+1 = (cω + 5−√c2
ω + 10cω + 9 )/16

λn+1 = 1
λn+2 = 1/8
λn+3 = 1/16
λn+4 = 1/32
λn+5 = 1/64

where 1 ≤ ω ≤ n/2, cω = cos(2πω/n), and αn and βn are defined in (3). It is easy to check that λ0 > λ1 and λ2 > λi

for 3 ≤ i ≤ n.

6 Evaluation of a CCSS Patch
In this section we show how can Eq. (5) be used in the efficient evaluation of a CCSS patch at a given (u, v). Eq. (5)
can be used for both extra-ordinary and regular patches because the derivation of Eq. (5) did not use the assumption
that n 6= 4.

First note that S(u, v) defined in Eq. (5) can be written as a linear combination of these different eigenvalues in
Λ to the (m − 1)st power: S(u, v) = WT Km

∑
λm−1

j (ZbΘjZ)G, where Θj is a 7n × 7n matrix with all the entries
being zero except the ones corresponding to λj in matrix Λ. Those entries of Θj are 1. Let Mb,j = ZbΘjZ. We get

S(u, v) = WT Km
n+5∑

j=0

λm−1
j Mb,j G. (6)

The exact expressions of Mb,j are shown in Appendix A. Eq. (6) is the most important result of this paper. This
equation can be used to evaluate a CCSS patch at any point (including (0, 0)), and it can also be used to compute
the derivative of a CCSS patch at any point (including (0, 0) as well). The patch can be regular or extra-ordinary.

Note that for any m ≥ 0, we have WT (u, v)Km = WT (2mu, 2mv). Define

Φb,j(u, v) = WT (2mu, 2mv)λm−1
j Mb,j and Φb(u, v) =

n+5∑

j=0

Φb,j(u, v).

Φb,j(u, v) are called the jth eigen basis function of CCSSs. There are totally n + 6 eigen basis functions and for any
given (u, v), every eigen basis function can be exactly and explicitly represented. It is esay to check that all the eigen
basis functions satisfy the so called scaling relation [15, 17]:

Φb,j(u/2, v/2) = λjΦb,j(u, v)

With the above definition, Eq. (6) can be represented as

S(u, v) = Φb(u, v) G,

which is used for fast rendering in our implementation.
One can compute the derivatives of S(u, v) to any order simply by differentiating W (u, v) in Eq. (6) accordingly.

For example,
∂

∂u
S(u, v) = (

∂W

∂u
)T Km

n+5∑

j=0

λm−1
j Mb,j G. (7)
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7 Analysis with an Explicit Representation

7.1 Limit Point of an Extra-Ordinary Vertex
Eq. (6) not only can be used for evaluation purpose, but analytic derivation as well. For example, one gets the limit
point of an extra-ordinary vertex simply by setting u = v = 0 and m →∞ in (6):

S(0, 0) = [1, 0, · · · , 0] ·Mb,n+1 ·G =
5V + (12βn + 8γn)Ē + (2βn + 8γn)F̄

5 + 14βn + 16γn

where Ē = (
∑n

i=1 Ei)/n and F̄ = (
∑n

i=1 Fi)/n. This result generalizes Eq. (13) of [9].

7.2 Partial Derivatives Around an Extra-Ordinary Vertex
It is known the first partial derivatives of S(u, v) at (0, 0) diverge in a natural parametrization [5]. However, knowing
the directions of them is sufficient in many applications. As pointed out by [2], when λ0 ≥ λ2, a general Catmull-
Clark subdivision surface is not C1 continuous. Suppose λ0 < λ2, dividing both sides of Eq. (7) by 2mλm−1

2 , and by
setting u = v = 0 and m →∞, we get

Du = [0, 1, 0, 0, · · · , 0] ·Mb,2 ·G
Dv = [0, 0, 1, 0, · · · , 0] ·Mb,2 ·G

where Du and Dv are the direction vectors of ∂S(0,0)
∂u and ∂S(0,0)

∂v , respectively. The normal vector at (0, 0) is the
cross product of them. Similarly, when λ0 < λ2, it is easy to calculate the second partial derivatives at (0, 0). These
derivatives are listed as follows.

Duu = [0, 0, 0, 2, 0, · · · , 0] ·Mb,2 ·G
Duv = [0, 0, 0, 0, 1, 0, · · · , 0] ·Mb,2 ·G
Dvv = [0, 0, 0, 0, 0, 2, 0, · · · , 0] ·Mb,2 ·G

where Duu, Duv and Dvv are the direction vectors of ∂2S(0,0)
∂u2 , ∂2S(0,0)

∂u∂v and ∂2S(0,0)
∂v2 , respectively. Since Mb,2 is

explicitly and exactly known, all these vectors can be calculated once G is given.

7.3 Proof of C1-Continuity
With the explicit expressions of partial derivatives of S(u, v) at (0, 0), some properties of CCSS at an extra-ordinary
point can be proved easily. For instance, one can prove that when λ0 < λ2, a CCSS is C1 continuous everywhere.

C1-Continuity of CCSS has been proven by many people with different approaches [2, 9, 11, 12]. Here a simple
proof using our parametrization results is given below.

Expand Du and Dv, we have
Du =

∑n
i=1 ēi ·Ei +

∑n
i=1 f̄i · Fi

Dv =
∑n

i=1 êi ·Ei +
∑n

i=1 f̂i · Fi

where
ēi =

∑5
t=1 xt1c(i−t+2), êi =

∑5
t=1 xt2c(i−t+2)

f̄i =
∑5

t=1 xt3c(i−t+2), f̂i =
∑5

t=1 xt4c(i−t+2))

where cω = cos(2πω/n). All scalars xij ’s in the above definitions depend on valance n only and can be derived
from Mb,2 explicitly. To prove C1-continuity at an extra-ordinary point, one needs to show that computation of the
normal vector is independent of k (the ID of a face adjacent to an extra-ordinary point [2], which determines the
order of the control points of a patch):

(
n∑

i=1

ēiEi+k +
n∑

i=1

f̄iFi+k)× (
n∑

i=1

êiEi+k +
n∑

i=1

f̂iFi+k).

To prove this, it is sufficient to show that
∑

ēiEi+k ×
∑

êiEi+k is independent of k. The other parts can be proved
similarly. Note

n∑

i=1

ēi−kEi ×
n∑

j=1

êj−kEj =
∑

i≤j

(ēi−kêj−k − ēj−kêi−k)Ei ×Ej

To prove the above expression is independent of k, we only need to prove (ēi−kêj−k − ēj−kêi−k) is independent of k:

ēi−kêj−k − ēj−kêi−k

=
∑

1≤s,t≤5 xs1xt2(c(i−k−s+2) c(j−k−t+2) − c(j−k−s+2) c(i−k−t+2))
=

∑
1≤s,t≤5 xs1xt2 (c(i−j−s+t) − c(j−i−s+t))/2
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which is independent of k. Hence all the patches sharing a common extra-ordinary point have the same normal
vector at the extra-ordinary point. Therefore, a CCSS is C1-continuous at an extra-ordinary point.

When λ0 ≥ λ2, it can be proved similarly that the resulting surface is not C1 continuous [2]. In fact, Eq. (6) and
Eq. (7) can be used for many other analytic purposes as well. For example, the C2 discontinuity at an extra-ordinary
point can be proved using these two formulas [3].

Although most of these properties of CCSS around an extra-ordinary vertex are well known, an explicit parametriza-
tion of CCSS nevertheless makes the analyzing process much more simpler and intuitive. Moreover, our results
possibly can be used for studying other unknown properties of CCSS as well. For instance, we are investigating the
integrability of a CCSS using the results in this paper.

8 Applications
8.1 Fast, Exact and Explicit Rendering
Eq. (6) not only gives us an explicit method to evaluate S(u, v), but also a faster and convenient way to render
S(u, v). Note that Mb,j depend on the valence of the extra-ordinary vertex only. They can be explicitly and analyt-
ically computed for every different valence. For a given valence, we only need to perform such calculation once, no
matter how many patches in the mesh are with such a valence. Once the step sizes for u and v are given, we can
calculate all Φb(ui, vk) beforehand and store them in a look-up table. Therefore, the evaluation of S(u, v) at each
point (ui, vk) basically is just a multiplication of Φb(ui, vk) and G only. An algorithm of the fast rendering process
is shown below. All the examples shown in this paper are rendered using this algorithm. One can see that it is
essentially the same as the rendering process of a regular patch. An important difference between this approach and
the previous approach [15] is that the previous approach was developed for speical αn and βn only. Therefore, it
cannot handle general eigen basis functions while we can calculate all the eigen basis functions explicitly with only
a small overhead. The horse shown in Fig. 5(b) is rendered using this algorithm with all the positions and normals
exactly computed, not approximated. Hence, the quality of the image is better than those generated through the
subdivision process.

CCSS-Rendering(Mesh, ustep, vstep,βn,γn)
1. For each valance n involved in input Mesh
2. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep
3. Calculate Φb(u, v)
4. For each patch whose valance is n in input Mesh
5. Find its 2n + 8 control points G
6. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep
7. calculate each S(u, v) and its normal

8.2 Generating Special Features
Eq. (6) can be used to render subdivision surfaces with special features. As we know, special features can be
generated by properly arranging the control mesh. For instance, tripling a line in the control mesh generates a
ridge or edge-like feature; tripling a control point generates a dart-like feature. One can get subdivision surfaces
with complicated features and, consequently, complicated shape through this process. However, no matter how
complicated the topology of the control mesh, as long as it is a two-manifold (to satisfy the definition of a CCSS),
(6) will always generate the correct result. An example of a CCSS with sharp edges, corners and several genera is
shown in Fig. 5(h). The control mesh of the surface is shown in Fig. 5(g). Since the features are generated from
parametrization of the control mesh directly, the result is better than those generated by Boolean operations.

8.3 Texture Mapping
Precise texture mapping on a CCSS is possible only if a proper parametric representation is available for each extra-
ordinary patch. However, to implement texture mapping on a CCSS, one needs to divide the interior faces of the
control mesh into regions such that each region is of a rectangular structure first. Such a division will be called a
regular division. Figure 4 shows a division of the interior faces of a CCSS into seven rectangular regions. Once a
regular division of the interior faces of the control mesh is available, one simply performs texture mapping on each of
these regions using standard approach. Examples of texture mapping on four subdivision surface represented objects:
two rocker arms, a space station, a cow, and a leopard are shown in Fig. 5(c), 5(f), 5(l), 5(j) and 5(k), respectively.
The regular division usually is not unique. Different divisions of the interior faces of the control mesh would lead to
different texture outputs.
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Figure 4: Regular division of the control mesh of a CCSS.

8.4 Surface Trimming
Surface trimming is another important application in computer graphics and CAD/CAM. The trimming loops are
defined in the parameter space of the surface and iso-parametric lines in the parameter space are clipped against
the trimming loops to have the trimmed regions removed. Hence, a global or local parametrization is necessary for
precise and efficient rendering of a trimmed CCSS. In Fig. 5(a), a trimmed CCSS surface is shown. The trimmed
regions are defined by the boundaries of the word ’ACMTOG05’. The CCSS surface has four extra-ordinary vertices
in the trimmed region, but partitioning of the control mesh is not required here because the surface is rendered on
the basis of individual patches.

8.5 Adaptive Rendering
Adaptive rendering is a technique for fast rendering of complicated objects. The rendering process of a patch depends
on its flatness. A flat patch will not be tessellated as densely as other patches. Adaptive rendering is not a problem
with (6) because (6) is capable of generating any point of the surface required in the tessellation process. One thing
we must keep in mind is that, in order to avoid crack, we must generate the same number of points on the shared
boundary of adjacent faces. But we can generate any number of points, even zero, inside a patch. An example of
adaptive rendering is shown in Fig. 5(i) where a ventilation control component is represented by a single CCSS. The
flatness of a patch is determined by the maximum norm of the second order forward differences of its control points.

8.6 Boolean Operations
In solid modelling, an object is formed by performing Boolean operations on simpler objects or primitives. A CSG
tree is used in recording the construction history of the object and is also used in the ray-casting process of the
object. Surface-surface intersection (including the in-on-out test) and ray-surface intersection are the core operations
in performing the Boolean operations and the ray-casting process. Each operation requires a parametrization of the
surface to do the work. This is especially important for the in-on-out test. None of these is a problem with (6).
Examples of performing Boolean operations on two and three cows are presented in Figure 5(d) and 5(e), respectively.
A difference operation is first performed to remove some portions from each of these cows and a union operation is
then performed to join them together. Perfroming Boolean operations on subdivision surfaces has been studied by
Biermann, Kristjansson, and Zorin [4]. The emphasis of their work is different though - they focus on construction
of the approximating multiresolution surface for the result, instead of precise computation of the surface-surface
intersection curves.

9 Summary
New parametrization and evaluation techniques for extra-ordinary patches of CCSSs are presented in this paper.
The parametrization is obtained by performing subdivision on a group of same-frequency point sets after a few
linear transformations, not on the control vertices themselves directly. This results in a block diagonal matrix with
constant size diagonal blocks (7 × 7) for the corresponding subdivision process. Consequently, eigen decomposition
of the subdivision matrix is always possible and is simpler and more efficient. Besides, the new approach works
for the general CCSSs, not just a special case. The evaluation process using this parametrization works for both
extra-ordinary and regular CCSS patches.

Two points have to be made here. First, the exponent m in (6) can not be cancelled out. This is because when
λj is not a multiple of 1/2, m − 1 in Km−1 and λm−1

j Mb,j does not cancel out. Hence, when n 6= 4, there does not
exist a matrix M such that S(u, v) = WT MG. Second, even though the computation is presented for Catmull-Clark
subdivision surfaces, the new approach actually works for any subdivision surfaces whose subdivision schemes can
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(a) Trimmed surface (b) Exactly evaluated surface (c) Textured surface

(d) Boolean operations (e) Boolean operations (f) Textured surface

(g) Mesh with tripled edges (h) Surface with special features (i) Adaptive rendering

(j) Textured surface (k) Textured surface (l) Textured surface

Figure 5: Applications of parametric CCSS.
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be implemented as a matrix-vector multiplication.

Acknowledgement. Data set for Fig. 5(d), 5(e) and 5(j), and data sets for Fig. 5(b) and 5(k) are downloaded
from the following web sites

• http://graphics.cs.uiuc.edu/∼garland/research/quadrics.html.

• http://graphics.csail.mit.edu/∼sumner/research/deftransfer/data.html

respectively.

A Eigen Basis Matrices Mb,j

We introduce two notations first:

Mb,j [k] and Mb,j = [Y1, Y2, · · · , Y2n+8].

The first notation, Mb,j [k], represents the kth row of the matrix Mb,j . The second notation means that Mb,j is a
matrix of 2n + 8 columns and the ith column of Mb,j is Yi. Recall that cω = cos(2πω/n). Also, we define

f(k, ω, x1, x2, x3, x4, x5) =
5∑

i=1

xic(k−i+2)ω.

The matrices Mb,j , b = 1, 2, 3, j = 0, 1, ..., n + 5, are shown below in eight groups.

1. Mb,0 and Mb,1 (corresponding to eigenvalues λ0 and λ1): let

h = (r − 1)(8r − 1)(32r − 1)(64r − 1)(r − s);
Y T

b = 1
hQb · [1, r, r2, r3, r4, r5, r6];

Ŷb = − 8s
n Yb; Ȳb = 8s−1

n Yb

where r = λ0, s = λ1, and Qb (see Supplemental Material) is a constant matrix of dimension 16× 7. Then

Mb,0 = [Yb, Ŷb, · · · , Ŷb, Ȳb, · · · , Ȳb,0,0,0,0,0,0,0]

where 0 is a zero vector of dimension 16. Mb,1 is obtained by switching r and s in the above items.

2. Mb,2ω and Mb,2ω+1 (corresponding to eigenvalues λ2ω and λ2ω+1), 1 ≤ ω < n/2: let

h = (64r − 1)(32r − 1)(16r − 1)(r − s)/2;

V T
k = [c(k+1)ω, ckω, c(k−1)ω, c(k−2)ω, c(k−3)ω];

BT
k = [V T

k , rV T
k , r2V T

k , r3V T
k , r4V T

k , r5V T
k ];

Ŷk = 1
nhQb1Bk; Ȳk = 4s−1

nh(1+cω)Qb2Bk

where 1 ≤ k ≤ n, r = λ2ω, s = λ2ω+1 and Qb1 and Qb2 (see Supplemental Material) are constant matrices of
dimension 16× 30. Then

Mb,2ω = [0, Ŷ1, · · · , Ŷn, Ȳ1, · · · , Ȳn,0,0,0,0,0,0,0].

Mb,2ω+1 is obtained by switching r and s in the above items. Note that if n is odd, the last two matrices in this
group are Mb,n−1 and Mb,n. Otherwise, the last two matrices are Mb,n−2 and Mb,n−1.

3. Mb,n when n is even (corresponding to eigenvalue λn): set

Ŷ T = [1, − 1, 1, − 1, · · · , (−1)n+1]/(4n),
Ȳ T = [0, 0, 0, 0, · · · , 0]

where Ŷ and Ȳ are of length n. Then for b = 1, 2 and 3, we have

Mb,n[4] = [0, Ŷ T , Ȳ T , 0, 0, 0, 0, 0, 0, 0];
Mb,n[5] = [0, Ȳ T , Ŷ T , 0, 0, 0, 0, 0, 0, 0];
Mb,n[6] = [0, − Ŷ T , Ȳ T , 0, 0, 0, 0, 0, 0, 0]
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and all the other rows are zero.

4. Mb,n+1 (corresponding to eigenvalue= 1): set

t = 5 + 14βn + 16γn; ĥk = 4(3βn + 2γn)/(nt); h̄k = 2(βn + 4γn)/(nt),

1 ≤ k ≤ n. Then for b = 1, 2 and 3, we have

Mb,n+1[1] = [5/t, ĥ1, ...ĥn, h̄1, ..., h̄n, 0, 0, 0, 0, 0, 0, 0]

and all the other rows are zero.

5. Mb,n+2 (corresponding to eigenvalue= 1/8): set

ŷk =
{ −11(n−1)

144n , k = 1
11

144n , 1 < k ≤ n
ȳk =

{
5(n−2)
288n , k = 1 or k = n
−5

144n , 1 < k < n

t = 48(8γn − 1); ĥ = (11− 24βn + 8γn)/(3tn); h̄ = (−5 + 24βn − 32γn)/(3tn).

Then for b = 1, 2 and 3 we have

Mb,n+2[7] = [−1/t, ĥ + ŷ1, ĥ + ŷ2, · · · , ĥ + ŷn, h̄ + ȳ1, h̄ + ȳ2, · · · , h̄ + ȳn, 1
288

, 1
72

, 1
288

, 0, 0, 0, 0];

Mb,n+2[10] = [−1/t, ĥ + ŷn, ĥ + ŷ1, · · · , ĥ + ŷn−1, h̄ + ȳn, h̄ + ȳ1, · · · , h̄ + ȳn−1, 0, 0, 0, 0, 1
288

, 1
72

, 1
288

]

and all the other rows are zero.

6. Mb,n+3 (corresponding to eigenvalue= 1/16): set

ŷk =
∑n

ω=0
7·f(k,ω,0,1,0,−1,0)

64n(2cω−7)
; ȳk =

∑n
ω=0

f(k,ω,−5,−23,23,5,0)
192n(2cω−7)

,

where 1 ≤ k ≤ n. Then for b = 1, 2 and 3 we have

Mb,n+3[11] = [0, ŷ1, ŷ2, · · · , ŷn, ȳ1, ȳ2, · · · , ȳn,− 1
192

, 0, 1
192

, 0, 0, 0, 0];
Mb,n+3[13] = [0,−ŷn,−ŷ1, · · · ,−ŷn−1,−ȳn,−ȳ1, · · · ,−ȳn−1, 0, 0, 0, 0, 1

192
, 0,− 1

192
]

and all the other rows are zero.

7. Mb,n+4 (corresponding to eigenvalue= 1/32): set

ŷk =
∑n

ω=0
−f(k,ω,0,41,180,41,0)

384n(4cω−45)
, ȳk =

∑n
ω=0

f(k,ω,10,100,100,10,0)
384n(4cω−45)

,

t = 32(−41 + 96βn − 32γn); ĥ = (−131 + 192βn + 160γn)/(6tn); h̄ = (55− 96βn − 80γn)/(3tn),

1 ≤ k ≤ n. Then for b = 1, 2 and 3, we have

Mb,n+4[14] = [7/(2t), ĥ + ŷ1, ĥ + ŷ2, · · · , ĥ + ŷn, h̄ + ȳ1, h̄ + ȳ2, · · · , h̄ + ȳn, 1
384

,− 1
192

, 1
384

, 0, 0, 0, 0];

Mb,n+4[15] = [7/(2t), ĥ + ŷn, ĥ + ŷ1, · · · , ĥ + ŷn−1, h̄ + ȳn, h̄ + ȳ1, · · · , h̄ + ȳn−1, 0, 0, 0, 0, 1
384

,− 1
192

, 1
384

]

and all the other rows are zero.

8. Mb,n+5 (corresponding to eigenvalue= 1/64): set

ŷk =
∑n

ω=0
f(k,ω,0,27,461,461,27)

768n(8cω−217)
; ȳk =

∑n
ω=0

−f(k,ω,10,229,888,229,10)
1152n(8cω−217)

;

t = −209 + 448βn − 64γn; ĥ = (61− 92βn − 64γn)/(48tn); h̄ = (−683 + 1216βn + 752γn)/(576tn),

1 ≤ k ≤ n. Then for b = 1, 2 and 3, we have

Mb,n+5[16] = [−45/(256t), ĥ + ŷ1, · · · , ĥ + ŷn, h̄ + ȳ1, · · · , h̄ + ȳn,
−1

2304
,

1

768
,
−1

768
,

1

2304
,
−1

768
,

1

768
,
−1

2304
]

and all the other rows are zero.
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