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SUMMARY

In this article a new mesh generation algorithm is presented. The algorithm is based on a new approach
called the vertex label assignment scheme to provide the information for the mesh generation so that parallel
processing becomes possible. The algorithm generates 2D meshes of quadrilaterals on the basis of individual
faces; conformity and smoothness of the resultant mesh are automatically assured. Local and selective mesh-
refinements are also supported. A regular quadrilateral network which defines the geometry of the problem
and an associated subdivision level assignment which specifies mesh density data on the network are the
only input information.

I. INTRODUCTION

Mesh generation is the process of generating finite element (FE) models for simulated structural
analysis. Since the accuracy of the FE solution is dependent on the element mesh layout, and the
cost of the analysis becomes prohibitively expensive if the number of elements in the mesh is too
large, a good mesh generating method should let the user generate a mesh that is just fine enough
to give an adequate solution accuracy. Quadrilateral elements are generally preferred over
triangles for reasons of accuracy and efficiency. The conformity of the mesh should also be assured
to avoid gaps in the structure, i.e. the intersection of two non-disjoint, non-identical elements
consists of a common vertex or a common edge.!’
Current mesh generating techniques can be classified into the following categories:

(i) interpolation mesh generation? 7% 10:11.23
(ii) automatic triangulation,#:8-12.15.16.18,20,21
(iti) quadtree/octree approach,
(iv) mesh generation based on constructive solid geometry (CSG).

1,17,22
13,14

The interpolation mesh generation approach partitions the structure into simpler subregions
first and then meshes each subregion individually, Though this technique is quite popular because
of its ability to produce well-conditioned meshes, it is relatively difficult to carry out local mesh
refinement because of the need to fit together in a consistent manner the individual meshes
defined on each subregion of the structure.’
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Automatic triangulation has been a popular method used in 2D mesh generation. However,
this technique occasionally produces ill-conditioned meshes and requires extensive checking to
ensure that newly formed elements do not pierce or intersect any already defined. Two recently
proposed results have been able to overcome these problems with different degrees of success and
make this technique more promising.> !5 '

The third approach is based on quadtree encoding of the object in two dimensions and octree
encoding in three dimensions.! 1722 The object! 722 or the domain of the object’ is enclosed in a
square universe, which is then recursively subdivided into quadrants. The quadrants that are
inside the object!”22 or the domain of the object! are retained and contribute to the elements of
the mesh, those outside are discarded, and those intersecting the boundary are further subdivided.
The subdivision repeats until a preselected resolution is reached. The quadrants at'the last level of
subdivision and intersecting the boundary are cut with respect to the boundary, and selective
actions are taken to ensure that the result is a set of valid triangular elements. All the ‘in’
quadrants are also split into elements while ensuring that a valid mesh is maintained.

Mesh generation based on CSG generates meshes for objects which can be represented by a
CSG tree. It uses the CSG tree to construct a set of ‘well distributed’ points within the space of the
CSG object and then uses a decision-making process to construct a mesh over this set of points.**
Point membership classification'? is extensively used in the point generation algorithm. The
efficiency of the mesh construction algorithm depends on the size of the decision tree. This
approach can generate a ‘good mesh’ for a CSG object with constant mesh density throughout
the object. However, extension of this approach to generate meshes of variable density needs
special care. ‘ '

In this paper we shall present an algorithm to generate 2D meshes of quadrilaterals in a
different fashion. This algorithm uses a vertex label assignment scheme to provide the informa-
tion for mesh generation so that parallel mesh generation on the basis of individual faces becomes
possible. No checking on the conformity of the resultant mesh is required; the conformity of the
resultant mesh is automatically assured. The algorithm allows both global and selective mesh-
refinement. Complexity and optimality issues are discussed; the number of quadrilaterals gener-
ated by the algorithm in the output mesh is small and the performance of the algorithm is
extremely efficient. The geometry of the object and mesh density data are the only inputs.
Although we present only the algorithm for networks of quadrilaterals, the method can also be
used to generate meshes of quadrilaterals for parametrically defined piecewise polynomial
surfaces (such as B-spline surfaces or composite Bézier surfaces).

The remainder of this paper is organized as follows. In Section 2 we shall formally define the
problem and give definitions of related terms and concepts used in this paper. The main algorithm
is presented in Section 3. The construction of an admissible vertex label assignment is shown in
Section 4. Correctness of the algorithm is shown in Section 5. In Section 6 we present the time
complexity and the size of the resulting mesh. Finally, in Section 7, we shall make concluding
remarks, discuss implementation issues and present a potential direction of future research. Some
figures demonstrating the output produced by our algorithm are included in the paper.

2. DEFINITIONS AND NOTATIONS

In this section basic definitions, notions, and notations will be presented. We will start with a
standard definition of polyhedral networks.

~ Consider a surface in 3 dimensional space. A network on the surface is a finite set of points
(called nodes) and curve segments such that
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(i) each node is an endpoint of a curve segment,
(ii) each endpoint of a curve segment is a node,
(iii) two curve segments intersect only at their endpoints.

A network divides the surface into regions; each region is bounded by curve segments. If the
curve segments are segments of straight lines then the corresponding network is called a
polyhedral network; note that a surface of a polyhedron in R* can be naturally associated with
such a network. Polyhedral networks can be represented in a plane by planar graphs. A straight,
line segments embedding of a polyhedral network into a plane will also be called a polyhedral
network. A standard graph terminology (such as vertices, faces, edges) will be used to refer to
objects of polyhedral networks. If all of the bounded faces of a polyhedral network are convex
quadrilaterals then the network is referred to as a quadrilateral network. In addition, such a
network is called a regular quadrilateral network if the degree of each vertex (in the corresponding
planar graph) belonging only to bounded regions is equal to four. An example of a regular
quadrilateral network is shown in Figure 1. Two faces f; and f, are said to be adjacent to each
other if they share a common edge.

Let F be the set of all faces of a regular quadrilateral network P. A subdivision level assignment
S of P is a function defined on F, S: F - N u {0}, where N is the set of all positive integers. S(f)
is called the subdivision level of f for fe F. For a given subdivision level assignment S, a face
fis called a specified face with respect to S if S(f) > 0.Otherwise, it is called a transitioning face
with respect to S.

Given a regular quadrilateral network P, a quadrilateral network P* is called a subdivision
mesh of P if each face of P* is a subset of a face of P and each face of P is the union of finite faces of
P*, The problem we will study can be formulated as follows.

Given a regular quadrilateral network P and a subdivision level assignment S on P, generate a
subdivision mesh P* of P such that:

~ (R1) Each specified face f of P is subdivided into at least 45 subquadrilaterals.
(R2) The shape of faces generated.in P* is regular, ie. faces of P* are not too long or too
narrow.

!

Figure 1. A regular quadrilateral network and a subdivision mesh
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(R3) The resultant subdivision mesh P* is amenable to local modification, i.e. changing the size
or shape of some of the faces without affecting the remainder.

(R4) The number of faces generated in P* is minimal over all subdivision meshes of P satisfying
the goal (R1).

In the next section we will present a solution to this problem that meets the goals (R 1)«(R3) for
a broad class of subdivision level assignments. An efficient algorithm approximating the optimal
solution satisfying (R4) will be given also.

3. PARALLEL MESH SUBDIVISION ALGORITHM
The main algorithm of this paper is based on some new concepts listed below:

e vertex label assignment scheme
e admissible label assignment

e balanced subdivision

e unbalanced subdivision

These concepts will be defined in sequence.

Vertex label assignment scheme

The vertex label assignment scheme is the key idea in making parallel mesh generation possible;
it allows us to carry out the process of mesh generation by controlling the labels assigned to
vertices rather than the subdivision levels assigned to [aces of a regular quadrilateral mesh.
Therefore, mesh generation can be performed on the basis of individual faces without the danger
of violating the conformity requirement.

Let P be a regular quadrilateral mesh, and ¥ and F be the sets of vertices and faces of P,
respectively. Consider a subdivision level assignment, S, of P. A vertex label assignment, L, of
P with respect to S is a function, L: ¥ — N U {0}, such that L(v) = max{S(f)|feF and v is a
vertex of f}.

Figure 2 shows a subdivision level assignment and the corresponding vertex label assignment,
L(v) is called the label of v with respect to L. A vertex vis called a supporting vertex of L if L(v) = 0.

Admissible label assignment

Owing to some geometric and algorithmic constraints, which will be discussed in Section 4, the
algorithm solving the mesh generation problem will construct a subdivision mesh of P starting

Figure 2. Example of subdivision level assignment and vertex label assignment
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from a special type of vertex label assignment, called the admissible label assignment. This type of
vertex label assignment is defined as follows.

Let L and G be vertex label assignments on the vertices of P. G is called an extension of L if the
values of G on the complement of the supporting vertices of L are the same as those of L, ie.
G(v) = L(v)if L(v) > 0. Therefore, if G is an extension of L then G(v) > L(v) for each vertex v of P.
An extension G of L is called an admissible label assignment if the following condition holds for
every face fof P: if the values of G at two adjacent vertices of f are non-zero then at least one of its
values at the two remaining vertices must be non-zero. The problem of constructing the
admissible label assignments will be discussed in Section 4.

Balanced and unbalanced subdivisions

The main algorithm will be based on two elementary subdivision procedures.

The procedure balanced-sub (1, f;, 3, f+ /2 ) will perform a so-called balanced subdivision on the
quadrilateral f= v, v,v;0, having at least two non-zero labels assigned to its vertices. This
procedure generates four subquadrilaterals f; = g,q,q3q4, o = r 1727374, 3 = 5,5,5354 and
fi =L tytaty, and assigns a label to each of their vertices (see Figure 3).

The new vertices are defined in the following fashion.

gy =10y, Ty=10;, S3=V3, [4="04
q=r;=+0)/2, s3=r3=(v,+03)/2
ty=5,= (03 +04)/2, t;=¢qs=(vy+04)/2
Gy=rs=5,=1 = (0 + 0, + 3 +0,)/4
Labels assigned to the new vertices are defined as follows.

LABEL(q,) = max {0, LABEL(v,) — !}

LABEL (r,)= max {0, LABEL(p,)— 1}

LABEL(s3)= max {0, LABEL (v3) — 1}

LABEL(t,)= max {0, LABEL(v,) — 1}

LABEL(q,)= LABEL(r,) = min {LABEL(q,), LABEL(r,)}
)= LABEL(s,) = min {LABEL(r,), LABEL(s3)}

LABEL(r,
LABEL(s,)= LABEL (t,) = min {LABEL(s;), LABEL(t,)}
LABEL(t,)= LABEL(q,) = min {LABEL(z,), LABEL(q,)}
LABEL (¢;)= LABEL(r,) = LABEL(s,) = LABEL(t,)

_JO ifqa, s, 84 and t, are assigned zero label
"~ | min {LABEL(v)]ve {q;, I3, S4, t; }, LABEL(v) > 0} otherwise

For a quadrilateral f = v, v,v,v, with exactly one non-zero label, the procedure unbalanced.
sub (f, f;, /2,3 ) petforms a so-called unbalanced subdivision with respect to the vertex whose label
is non-zero to create three quadrilaterals f; = q,q2q3qa4, f =7 r2r3rs and f3 = 5,5,5354, and
assign labels to their vertices. For instance, if v, is the vertex with a non-zero label then the
vertices and their labels are defined in the following way (see Figure 4). Other cases can be defined
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v4 vl t4 t3 |sd 53

t1 t2 sl 52
q4 q3|rd r3

vl v2 ql q2|rl T2

Figure 3. Balancéd subdivision

vd v3 s4 s
r3
1
— = >4
qd q3
vl v2 ql q2|rl Cx2

Figure 4. Unbalanced subdivision

similarly.

G =10y, Ty=Uy, F3=353=10Us, S4=104

Ga=ri= (v, +0,)/2, 5y =qs= (v, +04)2

;7= Gy =1y = (Vg + 0y + 03 +04)/4
LABEL(q,) = LABEL(v;) — !
LABEL(q)=0, i=2, 3,4
LABEL(r)=0, j=1,2,34
LABEL(s,)=0, k=1,2 34

The main algorithm

The parallel mesh generation algorithm is presented in this subsection. The algorithm uses two
types of subdivision scheme defined in the previous section to subdivide the given regular
quadrilateral network into a subdivision mesh. The sub-division process is entirely driven by the
values of labels assigned to the vertices of the input network. After two preprocessing phases,
which are responsible for the construction of an admissible label assignment, the algorithm
performs the subdivision for all the faces simultaneously; one processor for one face. Each face of
the network represents the root of a quadtree, and is subdivided into three or four quadrilaterals,
depending on the labels of its vertices. New labels are assigned to the vertices of the quadrilaterals.
These quadrilaterals are then recursively subdivided into subquadrilaterals and labels are also
assigned to the vertices of these subquadrilaterals. This process is continued for each quadri-
lateral until all labels are equal to zero. :

The overall structure of the parallel algorithm is given in Figure 5, parallel mesh geneation. In
this algorithm and herealter, a block of instructions will be called a paralell step if it is enclosed by
the keywords PARDO and DOPAR. Any instructions contained in a parallel step are supposed
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Algorithm PMG: Parallel mesh generation
{input: a regular quadrilateral network P and a subdivision level assignment S on P}
{output: a subdivision mesh P* of P}

Phase 1: [Construct the vertex label assignment L ol P with respect to S

PARDO for each vertex v of P do
L(v):=max {S(/)|fe F, vis a vertex of [’}
DOPAR . : -

Phase 2: [Construct an admissible extension G of L and define the LABEL for each vertex v of P}

Construct the admissible extension G of L; {see Section 4}
PARDO for each vertex v of P do

LABEL (v):= G(v)
DOPAR

Phase 3: [Subdivide the faces of P in parallel]
PARDO for each face fof P do
push (f, ST(/ I
while not empty (ST([)) do
begin ’
g:=pop(ST(S));
subdivide(g);
end;
DOPAR

Figure 5. Parallel mesh generation

to be executed in parallel for all faces or vertices of the input regular quadrilateral network.
Instructions not enclosed by the keywords PARDO and DOPAR are assumed to be executed in
sequential order. push (f, ST(f)) is a procedure which puts the face f on top of the stack ST(f)
defined for the face /3 pop(ST(f)) is a function which returns the quadrilateral on top of the stack
ST(f). subdivide(g), a procedure which performs a balanced or unbalanced subdivision on the
input quadrilateral g depending on the LABELSs of its vertices, is defined in Figure 6, subdivide
procedure,

Phase 3 of the parallel mesh generation algorithm can also be stated in a recursive [ashion,
which is more suitable for space and time complexity analysis. The recursive version is given

below.

PARDO for each face g of P do
subdividel (g);
DOPAR

where subdividel(g) is defined in Figure 7, procedure subdividel.
The construction of the admissible extension G of the vertex label assignment L will be shown

in Section 4.

4, THE CONSTRUCTION OF AN ADMISSIBLE EXTENSION

The fact that the construction of the subdivision mesh in algorithm PMG should be based on the
admissible label assignment is implied by the conformity requirement for the resultant mesh (see
Section 1) and the desire to organize the subdivision process so that it is driven solely by labels
assigned to the vertices of the quadrilateral network. To see this, consider the .subnetwork
depicted in Figure 8(a) where labels of the vertices form a non-admissible label assignment, The
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subdivide (g:quadrilateral);

begin
if(LABEL(v) > 0 for more than one vertex v of g) then
begin
balanced-sub(g, g1, 92, 93, Y4 )i
push (g, g2, 93, ar ST/,
end
else if (LABEL(v) > 0 for only one vertex v of g) then
begin

unhalanced-sub(g, gy, 42, 93
push(g,, g2, g3, ST());
end;

end {subdivide};

Figure 6. Subdivide procedure

subdividel(g: quadrilateral);
begin
if (LABEL (v) > O for more than one vertex v of g) then
begin
balanced-sub(g. 9., 92, 93: 94);
subdividel(g,);
subdividel(g,);
subdivide!(g,);
subdividel(g,);
end
else if (LABEL(v) > 0 for only one vertex v of g) then
begin ‘
unbalanced-sub(g, 9,, 91, 93);
subdividel (g, );
subdividel(g,);
subdivide!(g,);
end
end; {subdivide/}

Figure 7. Procedure subdividel

0 t
/8

27 N FZ 3 NN

0 0 /51 1

(a) (b)

Figure 8

application of the procedure subdivide( f) to the faces f;, i=2, 3, 4, 5 would generate three extra
vertices on the boundaries of face f; (Figure 8(b)). Under this circumstance, it is not possible to
subdivide face g, into subquadrilaterals without violating the conformity requirement. Assume,
for example, that f, was subdivided into S quadrilaterals. Since each subquadrilateral has four
edges and each edge, except the seven edges on the boundary of f;, is shared by two
subquadrilaterals, there should be E = (4S +7)/2 edges in the subdivision mesh off,. Thisleads to a
contradiction because the number of edges should clearly be an integer.



MESH GENERATION ALGORITHM 1437

A label assignment is non-admissible if it contains one of the four cases shown in Figure 9. The
preprocessing phase of our algorithm is responsible [or removing such cases {called illegal cases).
This can always be achieved by changing some 0 labels to strictly positive labels. Note, however,
that the space complexity (and, consequently, the time complexity) of the subdivision procedure
depends on current values of the labels. In fact, the overall cost of the algorithm depends on two
factors: where the 0 labels are located and how many of them are to be changed.

It turns out that the admissible extension construction is relatively difficult owing to its global
character; the modification of labels of vertices directly related to the illegal case can create new
illegal cases. ‘ :

In this section we will study the problem of constructing admissible extensions effectively. We
will limit our attention to minimizing the number of 0 labels to be changed in order to remove all
forbidden situations in a given vertex label assignment. In fact, we will develop a simple theory of
admissible extensions which will enable us to design an efficient algorithm in that direction.

Let us assume, without loss of generality, that the label assignments considered hereafter
are defined on a regular quadrilateral network whose vertices form an m x n rectangular grid
V={v |l <i<m, | <j<n} Infact, i the vertices of the given quadrilateral network do not
form a rectangular grid then we can simply add some extra vertices to make one and set labels of
these vertices to zero; these vertices will eventually be deleted.

Let us introduce some definitions. A face f; ; is defined by four vertices vy ;, 0,1 ¢ ;s 04, ;4 and
v;,j+1 Where I <i<m-—1and | <j<n-1 For any vertex v; ; of the given network, v;,, ;,
Ui j+1, Vi-1,; and v; ;_y (if they exist) are called the adjacent vertices of v; ;. The pairs of vertices,
(Vi Vig s j+1) @and (034 j, i 541), are called opposite vertices of f; ;.

Let L be a label assignment on ¥, i.e. L: ¥ — N U {0}. Furthermore, let L(v; ;) denote the label
of v; ;. The supporting set of L, denoted by V§, is the set of all vertices v;; in ¥ such that L(v;;) = 0.
The complement of V5in V, V — V5§, is referred to as V%, According to our definition, L is an
admissible label assignment of V' if and only if the following condition is satisfied: for any face f; ;, if
the value of L is equal to zero for exactly two vertices then these vertices are the opposite vertices

of £ ;.
Now, formally, an admissible label assignment G on V is called an admissible extension of L il
L(v), ve vt
G =3
(©) {O orl, eV}

Note that the extension G of L such that G(v) = [ for all ve ¥} is an admissible extension of L. G is
called a direct admissible extension (or DAE, for short) of L if there is no admissible extension H of
L such that ¥§ < V{ < V§.

Ideally, given a label assignment L of ¥ we would like to find an admissible extension G of L
such that |¥§| = VY| [or each admissible extension H of L. Note that such an extension is
necessarily direct and always exists (the set of admissible extensions of a label assignment L is
non-empty and finite). Unfortunately, we are not in a position to find such an extension

0 0 0 i 0 j

Figure 9. Tllegal vertex label assignments
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efficiently. We will present, instead, a simple approximation algorithm running in linear time with
respect to the number of vertices; the admissible extension constructed by this algorithm will
approximate the optimal solution by a factor of two. More precisely, if opt is the optimal direct
admissible extension of a given label assignment-L and G is the admissible extension constructed
by our algorithm then |V§| > 1| V).

Toward this end, an operation @ on label assignments is required. For technical reasons we
shall allow hereafter 4 to be a value of label assignments.

Let two label assignments F and G be defined on ¥ such that F(v;;) and G(v;;) are either 0, § or
any positive integer. The @-product of F and G, F® G:V — N u {0, %}, is defined as follows:

F @ G(v;;) = max {F(v;;), G(v;;)}, vy eV

Two special label assignments L, and L, are defisied as {ollows:

Loili+jisodd
L(p)=42 .
o(015) {O if i +jis even
L ifi+]is even
L.(v;)=142
() {o if i+ is odd

Note that L, and L, are both admisssible label assignments and L, ®L and L, ® L are
admissible extensions of L.

Now we are ready for the approximation algorithm which is presented in Figure 10, algorithm
AEC.

Algorithm AEC: Admissible extension construction
{input: a label assignment L on V}
{output: an admissible extension G of P}

[. [Construct G, ]}
LI [Set G, =L® L]
PARDO for each vertex v;; of P do
G (vi))= L@ L.(v)
DOPAR
1.2. PARDO for each v;; such that G,(y;,) =4 do
if G.(v) > 1/2 for at least one adjacent vertex v of v;;
then G, (v;)):= 1 :
else G (v;;):= 0
DOPAR

2. [Construct G,]
2.1 [Set Gy=L@®L,]
PARDO for each vertex v;; of P do
Go(vl]) = L @ Lo(vij)
PAR .

2.2. PARDO for each v;; such that G,(v;;) = 1/2 do
if G, (v) > 1/2 for at least one adjacent vertex v of v,
then G, (v;;):= 1
else G,(v;;):=0;
DOPAR

3. {Construct G}
if{Vgel > Ve
then return G:= G,
else return G:= G,

Figure 10. Algorithm AEC
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The time complexity of algorithm AEC is proportional to the number of vertices in the input
network because Step 3 requires a linear scan of the vertices. The correctness of the algorithm, i.e.
it finds an admissible (although not necessarily dlrect) extension of the input label assignment, is
proved in the following theorem.

Theorem 4.1
The label assignment G returned by algorithm AEC is an admissible extension of the input

label assignment L.

Proof. It is easy to see that the label assignment G, constructed in Step 1.1 is an admissible
extension of L. Then in Step 1.2 the value of G, at a vertex v;; is changed from 4 to zero only if .
G,(v) = 0forall adjacent vertices v of v;;; it does not affect the admissibility of G,. Therefore, after
Step 1.2, G, is again an admissible extension of L. A similar argument shows that G, is an
admissible extension of L as well. Hence, the returned label assignment is an admissible extension
of L. (O

The significance of algorithm AEC follows from the following fact.

Theorem 4.2
IVl =31Vl

Proof. Let L be the given label assignment. Observe that V§®tey V§®Lle =Vl and
VE®Le n VE®Lo = ¢ Hence, at least one of ¥§®L< and V5®Le covers one half of V5. Conse-
quently, G returned by the algorithm satisfies the theorem. []

The above theorem says that not ‘too many’ O's are changed to 1’s by algorlthm AEC,
Specifically, at most half of them. It should be pointed out, however, that the label assignment
returned by algorithm AEC is not guaranteed to be a direct admissible extension of the input
label assignment; thus, the returned extension is not necessarily optimal. The following corollary
is an immediate consequence of Theorem 4.2 and the inequality | 5| > |V%|.

Corollary 4.3

An admissible extension G of L such that |V&|/IV§| < 2, where opt is an optimal direct
admissible extension of L, can be constructed in linear time with respect to the number of vertices.

5. CORRECTNESS OF THE ALGORITHM

Note first that each step of the parallel mesh generation algorithm decreases at least one label,
Hence, in finite number of steps all the labels become zero and the algorithm halls.

In order to prove that the resultant mesh is a subdivision mesh in our sense we need to show
that the conformity condition is satisfied, i.e. no element of the generated mesh has more than four
vertices on its boundary. It follows from the following observations.

Lemma 5.1

The condition that no two adjacent vertices of a quadrilateral are labelled with 0 while the
remaining two vertices have positive labels is an invariant of the algorithmii.e. it is satisfied in
each step of the algorithm.
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Proof. The second phase of the algorithm generates an admissible label assignment; therefore
no label assignment violating the condition may occur on the faces of the input network. The
lemma will be proved if we can show that none of the illegal cases shown in Figure 9 can occur in
Phase 3. Assume, for example, that the case shown in Figure 9(a) occurred. Then it must be a
subquadrilateral of one of the quadrilaterals shown in Figure 11 (the hatched ones). However, it is
not possible because of the following arguments:

(i) thelabel of the midpoint of a boundary (if it is split after a subdivision) is less than or equal
to the new labels of its endpoints and this excludes, therefore, cases (a), (d), (e), (), (g) and (h);

(ii) the label of the inner vertex generated after a balanced subdivision is equal to the minimum
of the non-zero labels of the four midpoints, and will equal zero only if the labels of the
midpoints are all zero; therefore, cases (b) and (c) can not happen either.

Other cases in Figure 9 can be proved in a similar way, [J

Now consider an edge e of some quadrilateral; the labels of the endpoints of e are i and j,
respectively. Let ¥ (i, j) denote the number of vertices created by the algorithm between these
endpoints. It turns out that this number depends on i and j only.

Theorem 5.1
Ifj>ithen V(i,j)=2"+j—i—1.

Proof. The proof is carried out by induction on i and j. For i =j = 0 by virtue of Lemma 5.1
either no subdivision or an unbalanced subdivision with respect to one of the remaining vertices is
performed; the edge will not be subdivided, and therefore the number of the generated vertices
is 0. Assume that V(0, )} =j for some j > 0. When the endpoints of the edge are labelled by 0
and j+ 1 the algorithm performs a (balanced or unbalanced) subdivision and creates a new
vertex, in the middle of the edge, labelled by 0. .The label j+1 is decreased by 1. Hence,
by induction hypothesis, V(0,j+1)=1+V(0,0)+V(0,j)=j+1. Assume now that
V(i',j') = 2"+ j —i' — 1 for all of the pairs (i, j'), where 0 < i <j' < j for some j > 0. Consider
an edge labelled by i andj + ! with i < j + 1. The first application of the (balanced or unbalanced)
subdivision to this edge creates a new vertex, in the middle of the edge, labelled by max {0, i — 1}.
The new labels of the endpoints are max {0, i — 1} and j, respectively. Denote max {0, i — 1} by r.

o |7

O/ 0 0 O/ 0
. ol | .
2 7

0 i j 0 0 i )
() (fs () )

Figure 11. Quadrilaterals which might contain a subquadrilateral of the type shown in Figure 9(a)
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Then by induction hypothesis ¥V(i,j + 1) = 1 + V(r,r)+ V(r,j) = 2"+ (j + 1) —i — 1. Note also
that the distribution of the created vertices depends on . the labels of the endpoints only.
This ends the proof.

The above theorem shows that the number and the distribution of the vertices generated by
algorithm PMG between the endpoints of an edge depend only on the labels of the endpoints.
Consequently, the conformity of the mesh generated by the algorithm follows.

The subdivision mesh generated by algorithm PMG satisfies requirements (R 1), (R2) and (R3).
This can be shown as follows. .

Let f be a specified face with respect to the given subd1v1snon level assignment S, i.e. S(f) > 0.
According to the definitions of L (Section 3) and the construction of G (Section 4), the minimal
label of the vertices of f assigned by G is greater than or equal to S(f). Hence, a balanced
subdivision will be performed on f. On the other hand, the minimal label of each subquadrilateral
of this face generated aflter the balanced subdivision is greater than or equal to S(f) — 1, and each
of these subquadrilaterals will again be subdivided using the balanced subdivision if S(f) —~ 1 > 0.
This process also applies to the subquadrilaterals generated subsequently and will repeat S(f)
times. After this point, further subdivision might be needed for some of the newly generated
subquadrilaterals. However, by that time, 45¢/) subquadrilaterals have already been generated.
Consequently, if fis a specified face with respect to S then it will be subdivided into at least 45/
subquadrilaterals and requirement (R1) is satisfied.

The satisfiability of requirement (R2) follows from the observation that the nature of the
subdivision scheme and label assignment scheme used in Phase 3 forbids any further subdivision
of any quadrilaterals generated after an unbalanced subdivision whose labels are all zero. Since
this is the only occasion when the aspect ratios and sizes of interior angles of the subquadrilaterals
would be changed by a factor of approximately 2 (otherwise, they would be approximately the
same), it guarantees that no subquadrilaterals which are too long or too narrow will be generated
by algorithm PMG.

Furthermore, note that changing the subd1v1310n level of a face or changing the label of a vertex
affects the mesh layout on a small area of the mesh only, i.e. the neighbouring faces. Therefore,
requirement (R3) is satisfied as well.

As far as requirement (R4) is concerned since the admissible extension G of the label
assignment L constructed in Phase 2 is not guaranteed to be optimal, the number of quadrilate-
rals generated in the subdivision mesh usually is not minimal over all subdivision meshes of the
input quadrilateral network which satis{y requirement (R1). Note that an optimal direct admiss-
ible extension would not guarantee the corresponding subdivision mesh to be optimal either,
However, since the corresponding subdivision mesh of an optimal direct admissible extension is
asymptotically the optimal subdivision mesh for the input subdivision level assignment and the
admissible extension G constructed in Phase 2 differs from the optimal direct admissible
extension by a factor of at most 2 with respect to the number of supporting vertices of L, the
subdivision mesh generated by our algorithm is actually a good approximation to the optimal
subdivision mesh of the input regular network. This is especially true when the number of
supporting vertices is small or when the values of the subdivision levels are relatively large.

6. COMPLEXITY ANALYSIS OF THE ALGORITHM

This section discusses the space and time complexity issues ol algorithm PMG. Note that, since
the construction of the label assignment L of the input regular quadrilateral network can be done
simultaneously for all the vertices, the time complexity of Phase 1 is constant. On the other hand,
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although Step 1 and Step 2 of algorithm AEC would each require only constant time to construct
G, and G,, respectively, since the testing of the condition in Step 3 requires the scanning of all the
vertices in sequential order, the time complexity of Phase 2 is O(]V]) where V is the set of vertices
of the input regular quadrilateral network.

The time complexity of Phase 3 dépends on the number of subquadrilaterals to be generated
and on the number of processors. With a full parallelization (i.e. one processor per face) the face
with the largest time complexity determines the complexity of Phase 3.

The construction of the subdivision mesh of an individual face can be viewed as the traversal of

a quadtree: the root of the tree represents the given face, each other node of the tree represents a
subquadrilateral generated after a balanced or an unbalanced subdivision. The number of leaves
in this tree represents the number of subquadrilaterals generated in the resultant subdivision
mesh and the number of nodes in the tree represents the number of iterations of the procedure
subdivide( f'). Therefore, studying the time and space complexity of Phase 3 is equivalent to
finding the numbers of leaves and nodes in the quadtree for each face of the given regular
quadrilateral network.
. Letv,, v,, v; and v, be the vertices of a given quadrilateral (in the counterclockwise direction)
with labels i, j, k and- I, respectively. Without loss of generality we shall assume that
I=min{i,j, k I}. Let N(i,j, k1) denote the number of subquadrilaterls generated in the
subdivision mesh of this quadrilateral and T(i,}, k, /) denote the number of iterations of the
procedure subdivide(f) in the construction of the mesh. Using recursive relations explicit
expressions can be found for both N(i, j, k, 1) and T(i, j, k, ). In the following, however, we shall
present the main results for the most interesting cases only. Details and proofs can be found in the
technical report.® :

Remark: Note that, as long as the labels i, j, k and [ are listed in the counterclockwise direction,
it does not matter which one is used as the leading parameter in N and T (ie. N and T
are cyclosymmetric). For instance, it should be understood that N(i,j, k, I) = N(j, k, 1, i) and
T(i,j, k, 1) = T(k,1,i,j). Furthermore, due to the fact that the values of N and T depend on
the relative order of its labels, but do not depend on the direction these labels are listed, it should
also be clear that N(i,j, k, I} = N(I, k, j, i) and T(i, j, k, [) = T(L, k, J, i).

Theorem 6.1

If all of the labels are positive, i.e. I > 0, then we have the following results.

1. i = max{i,j, k}
1.LI.Ifizj2k>1then

. i’ 4i=1
Niiyjok 1) = 4 =203 £ TQI1 4 267 1) ghot gl h oS g
4k—l 4j ) ) .
+ T + S +2(i—j—k+1)+7
. (1)
. 41+1 . 1 4k 4j 4]+1 4k—l+l 4}—l+l
T(,j, k1) = +502%+2/) + §<2H tomr 2,+k> 3 3

17

‘ 29
——3—(2"”’“ + 2N 3 —j—k+ 1)+ 3
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1.2. fi=k>j>1then

. 41
Nk ) =4' =22 £ 7@/ =277 o S5 4 2+ k=3 + D) + 7

. 2
417 . 14/*1
T, j, k)= ——— 2" 4 507 =277y 4 o — +3(i+k—3j+1)+2'2
3 3 3 2 3
2. j=max{i,j, k}
21. fj=2i>k>1then
N(i)j: k> 1)=4l—2‘l+3+7(2i_1+2k_1)+4k_l*—4i‘l—2k_l+3
4i—1 4k—-l 41’ ) )
+21—1+21—1+21+k+2(1—’_k+l)+7
4l+1 2 4k 4i 4i—l+1 17 (3)
T, j, k, I)= 3 + 5(2% + 21)+§<?+Ei+2k—~lﬁ'>—?(2¥+l+2k—lﬂ)
gr-t+1 gimthy o 29
L e +3(j—i—k+1)+ 3
2
I 2
2
3 3
2
2
2 2
/- 3 3
2 ' -
3 2
3 2
3 2
3.3 |
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Figure 12(a), Regular quadrilateral nelwork corresponding to a disc and the associated subdivision level assignment;
blank faces indicate zero level
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22 jzkzizl
Simply exchange i and k in (3) to get the corresponding expressions for N(i, j, k, ) and
TG j, k1. :
3. k=max{i,j, k}
Similar to case 1. Simply exchange i and k in the corresponding expressions (1) and (2),

The proof of these results uses recursive relations induced by the recursive nature of the
algorithm.® On the basis of the equations given above it can be shown that if [ >0 then
N(i,j, k, 1) = 4'. 1t provides another justification for the satisfiability of the requirement (R1).

7. CONCLUSIONS

A parallel mesh generation algorithm based on the vertex label assignment scheme has been
presented. For a given regular quadrilateral network and an associated subdivision level
assignment, the algorithm first constructs an admissible label assignment based on the given
subdivision level assignment, and then simultaneously subdivides all the faces of the network,
according to the labels of their vertices, into subquadrilaterals and repeats the same process

-

|
L

- ]

Figure 12(b). Subdivision mesh for the regular quadrilateral network and the associaled subdivision level assignment
shown in Figure 12(a)
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recursively to all the subquadrilaterals until the labels of the vertices of the subquadrilaterals are
all zero. No checking on the conformity of the resultant mesh is required; the conformity of the
resultant mesh is automatically assured. Since changing the subdivision level of a face or the label
of a vertex would only affect the mesh layout on a small area of the network, this algorithm allows
local and selective mesh refinement.

Note that, since the mesh generation algorithm is based on an abstract geometric model,
namely, a regular quadrilateral network, it can easily be modified to generate quadrilateral
meshes on piecewise polynomial surfaces such as B-spline surfaces or composite Bézier surfaces as”
long as appropriate subdivision algorithms are used; simply take each patch of the piecewise
surface as a face of the regular quadrilateral network and each joint of the piecewise surface as a
vertex of the regular quadsilateral network. Therefore, if an appropriate surface interpolation

i
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Figure 13(a). Regular quadrilateral network correspond- Figure 13(b). Subdivision mesh {or the regular quadrilate-
ing to a disc arm and Lhe associated subdivision level ral network and the associated subdivision level assign-

assignment. Blank faces indicate zero level. ‘ment shown in Figure 13(a)
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technique is used, our technique can actually be used to generate quadrilateral meshes on any
surfaces. Note that the algorithm can easily be modified to generate meshes of. triangles also;
sithply divide each quadrilateral by adding a diagonal.

This algorithm has been implemented in Pascal on a Sequent Balance 21000 computer with 26
processors. Quadtree is used as a main data structure to support the parallel mesh generation
algorithm. The given regular quadrilateral network is represented in an array structure easy to be
accessed for the information related to vertices, labels and faces. For each face of the quadrilateral
network, a quadtree, called a mesh tree, is created to store the information of the subdivision mesh
for this face: the given face represents the root of the tree, each other node of the tree represents a
subquadrilateral generated after a balanced or unbalanced subdivision. Several tests have been
performed; some of them are shown in Figures 12 and 13. The comparison between the parallel
version and the sequential version is shown in Figure 14, The execution time collected for the

.
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Figure 14. Performance comparison belween the paraltel version and the sequential version of ajgorithm PMG
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parallel version and the sequential version is shown in squares and crosses, respectively. The
curves are generated using the least squares approximation. For a regular quadrilateral network
of m % n faces with randomly assigned subdivision levels (maximum subdivision level = 3), the
sequential version is implemented using one processor only, the parallel version is implemented
using m x n processors; one processor per face, According to the data we have collected, the
parallel version appears well suited to the mesh generation process.

As we have pointed out in Section 4, the algorithm AEC was designed to approximate the
solution to the optimal direct admissible extension only. It is still an open question whether an
exact solution to the problem can be found efficiently, A more interesting problem is to construct
an algorithm that minimizes the number of quadrilaterals generated in the subdivision mesh [or a
given subdivision level assignment. Several other interesting problems remain open. In particular,
it is interesting whether the proposed algorithm can be extended to 3-D problems.
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