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ABSTRACT 
 

In rapid prototyping, a hollowed prototype is preferred and significantly reduces the 
building time and material consumption in contrast to a solid model. Most rapid 
prototyping obtains solid thin shell by gradually adding or solidifying materials layer 
by layer. This is a non-trivial problem to offset a solid which involves finding all self-
intersections and filling gaps after raw offsetting. While Catmull-Clark subdivision 
(CCS) surfaces are widely used in solid modeling, the hollow solid/thin shell problems 
are not well addressed yet. In this paper, we explore earlier methods of obtaining thin 
shell CCS solid and present a new thin solid approach. With this new scheme, one can 
efficiently avoid creases and handle gaps.  

The new scheme is heuristic, but inner surface is parametric, so computation of 
the inner surface is simplified. And with offsetting Bezier crust applied, the inner 
surface maintains the mesh structure and continuity of the outer surface. The 
obtained thin shell solid is 𝐶2 continuous everywhere, except at extraordinary points, 
where it is 𝐶1 continuous. 

Keywords:  Rapid Prototyping, hollow out a solid, 3D surface offsetting, Bezier Crust, 
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1 INTRODUCTION 

Catmull-Clark subdivision (CCS) surfaces [1] have been widely used in computer graphics and 
animation. In contrast to traditional spline schemes, the CCS scheme can handle arbitrary topology and 
is easy to design and implement. In 3D modeling, building a hollowed prototype instead of a solid 
model is required to reduce the building time and material consumption. When we use CCS to generate 
a hollowed object, the intuitive way is to construct CCS meshes for both the outer and the inner 
surfaces. However, it is not effective and many issues arise during construction of the inner surface, 
e.g., surface collision, self-intersections. It is not an easy task to design a CCS control mesh to generate 
a thin-shell hollowed 3D object. 

In CAD/CAM, rapid prototyping (RP) builds a part layer by layer faster than traditional prototyping 
methods. The RP process involves slicing the CAD model perpendicular to the building direction 
sequentially and gradually adding or solidifying materials layer by layer. RP applications are used in 
the making of molds, manufacturing parts, and most recently 3D-printing. In RP, when each layer is 
solid, it not only consumes more materials, but also is time consuming. To reduce the building time 
and material consumption, the method of hollowing out the 3D solids is applied to reduce the cross-
sectional area to be traced. 
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Some spatial enumerations have been used to obtain hollow solids, such as a sub-boundary octree 
[2] located inside the original solid, voxel model [3] featuring one-dimensional Boolean operations 
between the ray representation and voxel elements. The main problem with enumeration techniques is 
the staircase effect, which make offsetting surface not attractive. 

Another method developed is constructive solid geometry (CSG) [4]. CSG works by subtracting the 
original solid from its offset counterpart. This method is known to perform well on simple primitives, 
such as cylinder, spheres and boxes. However it is difficult to offset a free-form surface like CCSS. 

2D curve offsetting method [5] slices the original solid sequentially and obtains internal cross-
sectional curves by offsetting external cross-sectional curves of each slice. This method is simple and 
easy to implement, but it is hard to achieve uniform wall thickness. A further work [6] achieves more 
uniform wall thickness and proposed a new algorithm that computes internal contour without 
computing the offset model. 

There are also some surface offsetting methods. Non-uniform offsetting method [7] employs a 
vertex offsetting approach which is based on an averaged surface normal method. Main issue with this 
method is the existing of many self-intersections and invalid triangles. Computing the correct offset 
model of a STL model is a non-trivial task [8]. 

Several isocurve-based methods are developed to offset free-form surfaces. These methods are 
based on 3D curve offsetting [9]. In methods of tool-path generation [10] and adaptive isocurve-based 
rendering [11], a set of parallel curves called iso-distance curves are obtained by trimming iso-
parametrics situated at fixed distances from the original curves. An iterative method of interference-
free 3D offset contours [12] is proposed to offset parametric surfaces. 

Given a free-form parametric surface like CCSS, if we apply above methods, although 3D offset 
surface generated will maintain uniform wall thickness, but the surface quality will not be satisfactory. 
None of above can generate an 𝐶2 offset surface. It will be acceptable if there is no surface quality 
requirement for the offset surface. However, when the model is used to make mold, it is generally 
required the 3D offset surface is also smooth.  
 

 
Fig. 1: an example of hollowed solid with our new offsetting scheme: a) CCS mesh, b) CCS limit surface, 

c) our offsetting surface, d) cross-section view, e) enlarged detail from cross-section. 
 

In this paper, we present an 𝐶2 offsetting scheme on CCS surfaces. With this new scheme, one can 
generate hollow 3D solids efficiently with one layer of CCS control mesh and maintain the curvature 
continuity of CCS scheme. Due to the parametric properties of CCS, in our new scheme, we use a new 
surface offsetting approach, which offsets the limit surface directly by adding a thin layer of bi-quintic 
Bezier surface. Fig. 1 shows a hollowed solid after applying our new scheme, from Fig 1(c) and (e) we 
see that the offsetting surface is smooth and the wall thickness is visually uniform.  

The remainder of the paper is organized as follows. Section 2 discusses earlier works, section 3 
presents our new offsetting scheme with Bezier crust, and section 4 shows behavior of our new scheme 
with illustrative examples. Finally, concluding remarks are made in section 5. 

2 EARLIER WORKS 

A Catmull-Clark subdivision (CCS) surface is the limit surface of a sequence of subdivision steps 
performed on a given control mesh. At each step, new vertices are added and old vertices are updated. 
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The valence of a vertex is the number of edges meeting at the vertex. A vertex with valence four is 
called a regular vertex, otherwise an extraordinary vertex. A mesh face is regular if all vertices are 
regular, otherwise, it is called extraordinary face. CCS vertices are classified into three categories: 
vertex points, edge points, and face points. A popular way to index the control vertices is shown on the 
left side of Fig. 2 for a regular face and the right side for an extraordinary face, where 𝑉 is a vertex 
point, 𝐸𝑖’s are edge points, 𝐹𝑖’s are face points, and 𝐼𝑖,𝑗’s are inner ring control vertices. New vertices 
within each subdivision step are generated as follows: 

𝑉′ = 𝛼𝑁𝑉 + 𝛽𝑁�
𝐸𝑖
𝑁 +

𝑁

𝑖=1

𝛾𝑁�
𝐹𝑖
𝑁

𝑁

𝑖=1

 

𝐸𝑖′ =
3
8

(𝑉 + 𝐸𝑖) +
1

16
(𝐸𝑖+1 + 𝐸𝑖−1 + 𝐹𝑖 + 𝐹𝑖−1) 

                                                                                      𝐹𝑖′ = 1
4

(𝑉 + 𝐸𝑖 + 𝐸𝑖+1 + 𝐹𝑖)                           (2.1) 

 
Where N is the valence of vertex V, with 𝛼𝑁 = 1 − 7

4𝑁
, 𝛽𝑁 = 3

2𝑁
, 𝛾𝑁 = 1

4𝑁
.    

 

 
Fig. 2: mesh structure of CCS, (a) regular face, (b) extraordinary face 

 

The CCS limit surface obtained by performing (2.1) sequentially can be parameterized [13]. We 
define 𝑆(𝑢, 𝑣) as the CCS limit surface with parametric values (𝑢, 𝑣), 𝑢, 𝑣 ∈ [0,1], such that the CCS 
limit/data point 𝑆(0,0) of vertex point 𝑉 is  

                                 𝑆(0,0) =
5𝑉 + (12𝛽𝑁 + 8𝛾𝑁)𝐸 + (2𝛽𝑁 + 8𝛾𝑁)𝐹

5 + 14𝛽𝑁 + 16𝛾𝑁
                (2.2) 

Where 𝐸 = (∑ 𝐸𝑖)/𝑁𝑁
𝑖=1 , 𝐹 = (∑ 𝐹𝑖)/𝑁𝑁

𝑖=1 .  

The unit normal 𝑛�⃗ 𝑆(𝑢,𝑣) on each data point 𝑆(𝑢,𝑣) of CCS limit surface can be explicitly calculated 

with its first order partial derivatives 
𝜕𝑆(𝑢,𝑣)
𝜕𝑢

 and 
𝜕𝑆(𝑢,𝑣)
𝜕𝑣

,  

                                         𝑛�⃗ 𝑆(𝑢,𝑣) =
𝜕𝑆(𝑢, 𝑣)
𝜕𝑢  ×  𝜕𝑆(𝑢, 𝑣)

𝜕𝑣
�𝜕𝑆(𝑢, 𝑣)

𝜕𝑢  ×  𝜕𝑆(𝑢, 𝑣)
𝜕𝑣 �

.                                        (2.3) 

Given an offset thickness d, the simplest solution of constructing an offset surface 𝑆̅(𝑢, 𝑣) is to 
subtract from each data point 𝑆(𝑢,𝑣) a vector of size d along the direction of unit normal, 
                                           𝑆̅(𝑢, 𝑣) = 𝑆(𝑢, 𝑣) − 𝑑 ∙ 𝑛�⃗ 𝑆(𝑢,𝑣)                                           (2.4) 
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Fig. 3: (a) a CCS control mesh and limit face; (b) the two neighboring offsetting data points crease; (c) 
solve creasing issue by decreasing the number of data points; (d) solve creasing issue by a shorter |𝑑|. 

This scheme works fine when the limit surface is concave or flat, but it will possibly generate a 
creased surface when the limit surface is convex. The creases (self intersections) (Fig. 3 (b)) are caused 
by intersection of 𝑛�⃗ 𝑆(𝑢,𝑣) ’s of neighboring data points along the surface, which can only be reduced by 
decreasing the number of data points on each face (Fig. 3 (c)) or shortening the offset thickness d (Fig. 
3 (d)). However, since less number of data points means more roughness of limit surface and the 
reduction of thickness d is usually unwanted, the creases cannot be effectively removed. 

In [14], a Bezier crust scheme is applied to CCS limit surface to obtain a parametric interpolating 
surface, the bi-quintic Bezier crusts added will maintain the curvature continuity of underlying CCS 
parametric surfaces. This is consistent with research of [15]. The scheme of Bezier crust works on 
difference vectors between control points and their corresponding data points.  

 

 

  
Fig. 4:  difference vectors of  𝚫𝑷𝟎, 𝚫𝑷𝟏,𝚫𝑷𝟐 𝒂𝒏𝒅 𝚫𝑷𝟑 on (a) a regular face and (b) an extraordinary 

face. 

 

In the Bezier crust scheme, given a quad control mesh M, the CCS scheme generates a limit surface 
that approximates the control mesh. The limit surface of each face f of M (regular or extraordinary) can 
be represented in parametric form 𝑆(𝑢, 𝑣). For each f, Δ𝑃0,Δ𝑃1,Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3 are defined as the difference 
vectors between the corner control points and their corresponding CCS data points, respectively. In 
order to interpolate the control points, a bi-quintic Bezier crust  ∆𝑝(𝑢, 𝑣) is defined as follows, 

Δ𝑝(𝑢, 𝑣) = � � bi,5(u)5
𝑗=0

5

𝑖=0
bj,5(v)Δ𝑃𝑖,𝑗               (2.5). 

With Δ𝑃𝑖,𝑗 takes value of Δ𝑃0, Δ𝑃1,Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3.   Δ𝑃𝑖,𝑗 = Δ𝑃0 if ∈ [0,2] & 𝑗 ∈ [0,2] ;   Δ𝑃𝑖,𝑗 = Δ𝑃1 if 𝑖 ∈
[0,2] & 𝑗 ∈ [3,5] ; Δ𝑃𝑖,𝑗 = Δ𝑃2 if 𝑖 ∈ [3,5] & 𝑗 ∈ [0,2] ; Δ𝑃𝑖,𝑗 = Δ𝑃3 if 𝑖 ∈ [3,5] & 𝑗 ∈ [3,5] .  Δ𝑃0, Δ𝑃1,Δ𝑃2 𝑎𝑛𝑑 Δ𝑃3 are 
the difference vectors at four corners of a CCS face (Fig. 4).  
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Fig. 5: two examples of constructed interpolating surfaces with Bezier Crust on CCSS 

 

An interpolating surface constructed by appending a bi-quintic Bezier crust on CCSS ( shown in 
(2.5) ) has the following properties: 

• It interpolates exactly the corner control points 

• It maintains the CCSS 1st and 2nd order derivatives at the corner control points 

• It is 𝐶2 continuous everywhere, except at extraordinary points, where it is 𝐶1 continuous 

Fig. 5 shows that the interpolating surface is smooth and appropriate for most engineering/CAD 
usage. This inspired our interest to apply Bezier crust on CCSS to obtain a hollowed solid, such that a 
smooth offsetting surface can be constructed similar to CCSS, while maintains the curvature continuity 
of original CCS surfaces. 

3 OFFSETTING SURFACE ON CCSS WITH BEZIER CRUST 

 
In previous section, we introduced an interpolating scheme with Bezier crust on CCSS. In this section, 
we show how this scheme can be applied to construct a smooth offsetting surface on CCS surfaces. 

Given a CCS control mesh 𝑀, on an arbitrary face 𝑓, we define 𝑓 with a set of 2𝑁 + 8 control points 
𝑉,𝐸1, … ,𝐸𝑁,𝐹1, … ,𝐹𝑁, 𝐼1, … , 𝐼7, 𝑖 = 1, . .𝑁 (shown in Fig. 2). With parametric form 𝑆(𝑢, 𝑣) of CCS, we define the 
data points at four corners of CCS limit surface as 𝑝0 = 𝑆(0,0), 𝑝1 = 𝑆(1,0),𝑝2 = 𝑆(1,1),∧ 𝑝3 = 𝑆(0,1), and 
their unit normal as 𝑛𝚤���⃗  (Fig. 6).  

If we set the desired thin-shell thickness as 𝑑, then we can define a set of difference vectors of ∆𝑝𝑖 
on their corresponding data point 𝑝𝑖,  then (𝑝𝑖 − ∆𝑝𝑖) will be the desired corner data points on the 
offsetting surface. When we apply Bezier crust on these difference vectors at four corners of a CCS 
face, we can obtain a parametric offsetting surface having uniform distance of 𝑑 at all corners of each 
CCS face with its corresponding CCS corner points, while CCS continuity will be kept after offsetting. 
Our scheme select ∆𝑝𝑖 with 

              ∆𝑝𝑖 = 𝑑 ∙ 𝑛𝚤���⃗                                    (3.1). 

 
Fig. 6: CCS control mesh and its corner data points and normals: (a) regular face, (b) extraordinary 

face 
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The computation of the four corner points on the new offsetting surface is consistent with the 
method used in method of 3D surface offsetting in [7]. 

With (3.1), we now define the offsetting Bezier crust ∆𝑆(𝑢, 𝑣)  on difference vectors of ∆𝑝𝑖  (𝑖 =
1, … ,4), with expression of  

∆𝑆(𝑢, 𝑣) = � � bi,5(u)5
𝑗=0

5

𝑖=0
bj,5(v)∆𝑃𝑖,𝑗               (3.2). 

With ∆𝑃𝑖,𝑗 takes value of ∆𝑝0, ∆𝑝1,∆𝑝2 𝑎𝑛𝑑 ∆𝑝3.   ∆𝑃𝑖,𝑗 = ∆𝑝0 if ∈ [0,2] & 𝑗 ∈ [0,2] ;   ∆𝑃𝑖,𝑗 = ∆𝑝3 if 𝑖 ∈
[0,2] & 𝑗 ∈ [3,5] ; ∆𝑃𝑖,𝑗 = ∆𝑝1 if 𝑖 ∈ [3,5] & 𝑗 ∈ [0,2] ; ∆𝑃𝑖,𝑗 = ∆𝑝2 if 𝑖 ∈ [3,5] & 𝑗 ∈ [3,5] .  ∆𝑝0, ∆𝑝1,∆𝑝2 𝑎𝑛𝑑 ∆𝑝3 are 
the offsetting difference vectors at four corners of a CCS face, as shown in Fig. 7.  

With offsetting Bezier crust ∆𝑆(𝑢, 𝑣) defined, the offsetting parametric surface 𝑆̅(𝑢, 𝑣)  can be 
expressed as follows: 

𝑆̅(𝑢, 𝑣) = 𝑆(𝑢, 𝑣) − ∆𝑆(𝑢, 𝑣)                                  (3.3). 

In the above, the construction of an offsetting parametric surface for a CCSS is shown. Next, we 
will analyze the behavior of this new scheme and show some properties of this offsetting surface. 

 
 

Fig. 7:  offsetting surface (blue) obtained after subtracting offsetting Bezier crust from the CCS 
limit surface: (a) regular face (b) extraordinary face. 

 

4 BEHAVIOR OF THE NEW OFFSETTING SURFACE AND DISCUSSION 

 
In this section, we discuss the behavior of our new offsetting surface. 
 

THEOREM 1: the new offsetting parametric surface �́�(𝑢, 𝑣) is  𝐶2 continuous everywhere, except at 
extraordinary points, where it is 𝐶1 continuous. 

PROOF: Our new offsetting parametric surface is constructed by subtracting an offsetting Bezier 
crust from the CCS limit surface. CCS limit surface is  𝐶2 continuous everywhere, except at 
extraordinary points, where it is 𝐶1 continuous. And by Wang and Cheng [14], the bi-quintic Bezier 
crust is  𝐶2 continuous everywhere except at corner control points and across the face boundaries, 
where its derivatives vanish up to the 2nd order. Computing 1st and 2nd order derivatives on  (3.3), it will 
show that �́�(𝑢, 𝑣) will maintain the curvature continuity of CCS limit surface 𝑆(𝑢, 𝑣). QED 

 

One of the benefits to subtract an offsetting Bezier crust from CCS limit surface is that the 
offsetting Bezier crust has the same behavior to handle both regular face and extraordinary face. This 
derives from the fact that, given the required thickness of d, the offsetting Bezier crust works on 
difference vectors of size d and with the direction of the unit normal of corner data points. Given a 
regular or extraordinary face of degree N, computation of the offsetting Bezier crust is independent of 
N. 
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With Eigen-decomposition, each individual data point on the CCS limit surface can be computed in 
𝑂(1). Calculating an arbitrary point on offsetting Bezier crust by (3.2) is also 𝑂(1).  Such that 
computation of each individual limit point on offsetting surface is 𝑂(1).  It is apparently more efficient 
in comparison with constructing offsetting surface layer by layer by slicing. 

 
Fig. 8: Three examples: (a) CCS control mesh;  (b) new offsetting surface (without the CCS surface);  

(c) cross-sectional view - yellow is outer CCS surface, gray is the offsetting surface. 

Given a CCS face, when it is flat, the difference vectors on all four corners are equal, with (3.3), 
each limit point on obtained offsetting face has exactly the same geodesic distance 𝑑 to original limit 
surface. When the face is concave or convex, then a limit point of �́�(𝑢, 𝑣) on parametric surface is the 
sum of the limit point 𝑆(𝑢, 𝑣) and affine combination of four difference vectors ∆𝑝𝑖 = 𝑑 ∙ 𝑛𝚤���⃗ , 𝑖 = 1,2,3,4. 
We derive that  

|∆𝑆(𝑢, 𝑣)| ≤ �𝑑 ∙ 𝑛�⃗ 𝑆(𝑢,𝑣)�                              (4.1), 
where | ∙ | is the size of the enclosed vector. 

With (4.1), we can further derive that 

||𝑆̅(𝑢, 𝑣) − 𝑆(𝑢′, 𝑣′)|| = 𝑑 − 𝜀                   (4.2), 
where || . || represents the shortest distance between the offsetting surface �́� and the original CCS 

surface 𝑆. 𝜀 is the maximum error. 

Further, we can also show that our new offsetting surface is enclosed in the original CCS surface 
and the conventional offsetting surface defined in (3.1). 

Since ∆𝑆(𝑢, 𝑣) is affine combination of difference vectors at 4 corners. To reduce 𝜀, we can perform 
more CCS subdivisions on original CCS control mesh. If we define 𝑀𝑛 as the CCS control mesh after 
nth subdivision, we can derive that  

                                              when 𝑛 →  ∞, |∆𝑆(𝑢, 𝑣)| ≈ �𝑑 ∙ 𝑛�⃗ 𝑆(𝑢,𝑣)�     (4.3), 
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which is exactly the representation of the conventional way of surface offsetting shown in (2.4) 
with 𝜀 ≈ 0.  Note the surface generated by (2.4) is generally not a smooth surface. Fig. 9 shows how the 
subdivisions impact the surface quality of the offsetting surface. In the center where curvature is high, 
the offsetting surface shows increasing creases after three times subdivision, whereas original one is 
smooth. This is consistent with our analysis shown in Fig. 3 of section 2.  

Since in general cases 𝜀 is small and we do want to avoid the offsetting surface obtained from (2.4) 
(many creases and self-intersection when outer surface is convex), so it will not be necessary to 
perform further subdivision if 𝜀 is within the tolerance.  

 
Fig. 9: Comparison of offsetting surface after 3 recursive subdivisions on CCS mesh: (a) CCS 

control mesh, (b) generated offsetting surface, (c) enlarged central part of the offsetting surface. 

Our scheme is based on the assumption that all corner CCS data points have non-zero unit 
normal, we will also include discussion of scenario when unit normal does not exist (control mesh 
collapses). Prerequisite of (3.3) is that on each corner data point of the CCS limit surface its unit 
normal exists. In most cases, it is true, however there are some special cases where unit normal does 
not exist (1st order derivative along one parametric direction is 0, due to control vertices coinciding). In 
such rare cases, we propose to add the unit normal to such corner data point with the average of the 
unit normal’s on its neighboring data point. The algorithm is as follows, 

a. If all CCS corner data points have unit normal then go to (c), otherwise pick up a data 
point where unit normal does not exist, go to (b). 

b. For this data point, we put average of its neighboring unit normal as its unit normal. 
Go back to (a).  

c. End of the algorithm, start to construct the offsetting surfaces.  

Above algorithm is heuristic, since it defines the unit normal on some collapsed control vertex as 
the average of its neighboring unit normal’s when its unit normal does not exist. Further research 
needs to be made to handle such special cases.   

Implementation results in Fig. 1 and Fig. 8 show that a smooth thin offsetting surface can be 
generated by applying our new scheme. The offsetting surface keeps a quasi-uniform thickness with 
CCS limit surfaces, which formed a nice hollowed 3D solid appropriate for common CAD usage.  

5 CONCLUSION 

In this paper, we introduce a new thin shell hollowing model on 3D objects represented by Catmull-
Clark subdivision surfaces. Our new method for inward offsetting works by subtracting a thin layer of 
bi-quintic Bezier crust from the original CCS surface.  
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The new offsetting surface generated is visually smooth and has the same continuity as the 
original CCS limit surface, i.e. 𝐶2 continuous everywhere, except at extraordinary points, where it is 𝐶1 
continuous. The properties of new offsetting surface are also discussed in this paper.  

Implementation results show that the offsetting surface generated is free from creases, and filling 
the gaps is trivial due to the fact that the offsetting surface is the sum of the original CCS parametric 
surface and a Bezier crust on difference vectors of size d on each face. Since a bi-quintic Bezier crust 
does not change the curvature at a corner data point of the CCS limit surface, one would not get gaps 
at connections of offsetting faces commonly found in earlier methods. 

Our next step is to explore current solutions of removing unwanted loops, and apply them to our 
new scheme to generate a smooth 3D offsetting surface without creases, loops and self-intersections. 
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