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Abstract

This paper introduces a new mesh subdivision algorithm based on the vertex

label assignment scheme which makes the mesh generation processed in

parallel. By subdividing a quadrilateral into at most nine subquadrilaterals in

one step instead of four, any combination of labels at the vertices in permitted.

It is not necessary to �nd an admissible extension of a given label assignment.
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1 INTRODUCTION

Mesh generation is the process of generating �nite element models for simulated

structural analysis. As pointed out by Cheng et al.(1989) and Luo(1993), Since

the accuracy of the �nite element solution is dependent on the mesh layout,

and the cost of the analysis becomes prohibitively expensive if the number of

elements inthe mesh is too large, a good mesh generating method should let the

user generate a mesh that just �ne enough to give an adequate solution accuracy

with the conformity of the mesh.

There are several di�erent ways for mesh generation categorized as follows:

1. interpolation mesh generation,(Gordon and Hall,1973, Harber et al.,1981)

2. automatic triangulation,(Rivara,1987, Sadek,1980)

3. quadtree/octree approach,(Baehmann et al.,1987)
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4. mesh generation based on constructive solid geometry(CSG).(Lee,1984)

Among others, one of the problems in many of the algorithms in that the al-

gorithms often need to have some special checking steps(if not impossible) in

order to ensure the conformity of the meshes, to allow variable density and

independent local re�nement in the surface.

In this paper, we shall present an algorithm and to generate 2D meshes of

triangles based on vertex label assignment. The algorithm is using Divide-and-

conquer technique.

The beauty of this algorithm is shown on the following characteristics,

� Automatic conformity of the resultant meshes;

� Subdivision independence.

There is no need for special care on the conformity of the resultant meshes.

Local mesh re�nement can be carried out without changing the remaining part

of the surface so that parallel processing can be implemented.

2 DEFINITION OF THE PROBLEM

We obey almost the same de�nitions and notations used in Cheng et al.[?].

However, the problem we would like to solve is a little bit modi�ed as follows.

Given a regular quadrilateral network P and a subdivision mesh P

�

of P such

that

(R1) Each speci�ed face f of P is subdivided into at least 9

S(f)

subquadrilaterals.

(R2) The shape of faces generated in P

�

is regular, i.e. faces of P

�

are not too

long or too narrow.

(R3) The resultant subdivision mesh P

�

is amenable to local modi�cation, i.e.

changing the size or shape of some of the faces without a�ecting the re-

mainder.

(R4) The number of faces generated in P

�

is minimal over all subdivision meshes

of P satisfying the goal(R1).

In the next section, we will show a solution to this problem that meets all the

above goals (R1)-(R4).

3 PARALLELMESH SUBDIVISION ALGO-

RITHM

The algorithm is based on �ve types of elementary subdivision procedures. These

procedures will subdivide a given quadrilateral f = v

1

v

2

v

3

v

4

into several sub-

quadrilaterals.

1) one v:only one vertex is labeled 1 or more
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This procedure generates four subquadrilaterals f
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, and assigns a label to each of their vertices (see

Fig. 1).

The new vertices are de�ned as follows.
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Labels assigned to the new vertices are de�ned as follows.
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Figure 1: Only one vertex�1

2) two va:two adjacent vertices are labeled 1 or more

This procedure generates seven subquadrilaterals f
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as shown in Fig.2. The new vertices and their labels are de�ned as

follows.
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other new vertices are labeled 0.

Figure 2: Two vertices�1 (adjacent type)

3) two vd:two diagonal vertices are labeled 1 or more

This procedure generates seven subquadrilaterals shown in Fig.3. Similarly,
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other new vertices are labeled 0.
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Figure 3: Two vertices�1 (diagonal type)

4) three v:three vertices are labeled 1 or more

This procedure generates eight subquadrilaterals shown in Fig.4. Similarly,
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other new vertices are labeled 0.

5) four v:all vertices are labeled 1 or more

5



Figure 4: Three vertices�1

This procedure generates nine subquadrilaterals shown in Fig.5. Similarly,
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other new vertices are labeled 0. The overall structure of the algorithm is given

in Fig.6. A procedure, subdivide(g) in Phase 2 is de�ned in Fig.7.

6



Figure 5: All vertices�1

Algorithm PMS:Parallel Mesh Subdivision

finput:a regular quadrilateral network P and a subdivision level assignment S on

Pg

foutput:a subdivision mesh P

�

of Pg

Phase 1:[Construct the vertex label assignment L of P with respect to S.]

PARDO for each vertex v of P do

L(v):=maxfS(f)|f2F ,v is a vertex of fg

DOPAR

Phase 2:[Subdivide the faces of P in parallel.]

PARDO for each face g of P do

subdivide(g);

DOPAR

Figure 10: Parallel mesh subdivision

subdivide(g:quadrilateral);

begin

if(Lab(v) > 0 for only 1-v v of g)then

begin

one v(g; g

1

; g
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subdivide(g
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2
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4

);

end

else if(Lab(v) > 0 for 2-ad-v v of g)then

...

end;fsubdivideg

Figure 11: Procedure subdivide

See Fig.8-9 that illustrate the mesh generation for 2-D grids with di�erent num-

ber of faces and subdivision levels.
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Figure 8: Example No.1

Figure 9: Example No.2

4 CONCLUSIONS

This paper introduces a new mesh subdivision algorithm based on the vertex

label assignment scheme which makes the mesh generation processed in parallel.

By subdividing a quadrilateral into at most nine subquadrilaterals in one step

instead of four, any combination of labels at the vertices in permitted. It is not

necessary to �nd an admissible extension of a given label assignment. We have

implemented the algorithm on a parallel computer and veri�ed its e�ciency.
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