5. Transformations of Objects

- to develop techniques for working with affine transformations.

5.1 Affine Transformations

- Affine space: linear space with a coordinate frame

- Affine transformation: a linear function (transformation) from an affine space to another affine space

- a function \(f(\) \) from an affine space \(A \) to an affine space \(B \) is said to be a linear function if and only if, for any scalars \(\alpha \) and \(\beta \), and any entities \(E \) and \(F \) (vectors or points) of the domain space \(A \),

\[
f(\alpha E + \beta F) = \alpha f(E) + \beta f(F)
\]

and \(\alpha E + \beta F \), \(\alpha f(E) \) and \(\beta f(F) \) are well defined.
- An affine transformation maps a point to a point and a vector to a vector

- an affine transformation from an affine space A to an affine space B can always be written as

$$F = M \cdot E$$

where M is a square matrix, and E and F are homogeneous representations of two points or two vectors

Why?

Frame of A: $\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ Q_0 \end{bmatrix}$ \quad \rightarrow \quad Frame of B: $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix}$
Let

\[f(\mathbf{u}_1) = m_{11} \mathbf{v}_1 + m_{21} \mathbf{v}_2 + m_{31} \mathbf{v}_3 \]
\[f(\mathbf{u}_2) = m_{12} \mathbf{v}_1 + m_{22} \mathbf{v}_2 + m_{32} \mathbf{v}_3 \]
\[f(\mathbf{u}_3) = m_{13} \mathbf{v}_1 + m_{23} \mathbf{v}_2 + m_{33} \mathbf{v}_3 \]
\[f(Q_0) = m_{14} \mathbf{v}_1 + m_{24} \mathbf{v}_2 + m_{34} \mathbf{v}_3 + P_0 \]

i.e.,

\[
\begin{bmatrix}
 f(\mathbf{u}_1) \\
 f(\mathbf{u}_2) \\
 f(\mathbf{u}_3) \\
 f(Q_0)
\end{bmatrix} = M^t
\begin{bmatrix}
 \mathbf{v}_1 \\
 \mathbf{v}_2 \\
 \mathbf{v}_3 \\
 P_0
\end{bmatrix}
\]

where

\[
M^t = \begin{bmatrix}
 m_{11} & m_{21} & m_{31} & 0 \\
 m_{12} & m_{22} & m_{32} & 0 \\
 m_{13} & m_{23} & m_{33} & 0 \\
 m_{14} & m_{24} & m_{34} & 1
\end{bmatrix}
\]
If \(P = E^t \) is a point in the affine space \(A \) where \(E \) is the homogeneous representation of \(P \)

\[
E^t = \begin{bmatrix} P_x & P_y & P_z & 1 \end{bmatrix}
\]

and \(Q = f(P) = F^t \) is the image of \(P \) in the affine space \(B \) where \(F \) is the homogeneous representation of \(Q \)

\[
F^t = \begin{bmatrix} Q_x & Q_y & Q_z & 1 \end{bmatrix}
\]
then we have

\[
f (P) = f (E^t \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ Q_0 \end{bmatrix}) = f (P_x u_1 + P_y u_2 + P_z u_3 + Q_0)
\]

\[
= P_x f (u_1) + P_y f (u_2) + P_z f (u_3) + f (Q_0)
\]

\[
= E^t \begin{bmatrix} f (u_1) \\ f (u_2) \\ f (u_3) \\ f (Q_0) \end{bmatrix} = E^t M^t = F^t \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix}
\]

Hence, \(F = M \cdot E \)
• Affine transformations of vectors have 9 degrees of freedom

\[
\begin{bmatrix}
 v_x \\
v_y \\
v_z \\
0
\end{bmatrix} =
\begin{bmatrix}
 m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
u_x \\
u_y \\
u_z \\
0
\end{bmatrix}
\]

• Affine transformations of points have 12 degrees of freedom

\[
\begin{bmatrix}
 Q_x \\
Q_y \\
Q_z \\
1
\end{bmatrix} =
\begin{bmatrix}
 m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
P_x \\
P_y \\
P_z \\
1
\end{bmatrix}
\]
5.2 2D Examples of Affine Transformations

- Rotation, translation, scaling and shearing are all Affine transformations

(Rotation and Translation are called rigid-body motion)

Translation: \(Q = P + \Delta, \) \(\Delta: \) displacement

\[
\begin{bmatrix}
Q_x \\
Q_y \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \Delta_x \\
0 & 1 & \Delta_y \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
P_x \\
P_y \\
1
\end{bmatrix}
\]
Rotation:

\[
\begin{bmatrix}
Q_x \\
Q_y
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix} \begin{bmatrix}
P_x \\
P_y
\end{bmatrix}
\]
Scaling:

\[
\begin{bmatrix}
Q_x \\
Q_y
\end{bmatrix} =
\begin{bmatrix}
S_x & 0 \\
o & S_y
\end{bmatrix}
\begin{bmatrix}
P_x \\
P_y
\end{bmatrix}
\]

\(S_x, S_y\): scaling factors

(get **reflection** if negative scaling factors are used)
Shearing (in x direction):

\[
\begin{bmatrix}
Q_x \\
Q_y \\
1
\end{bmatrix} = \begin{bmatrix}
1 & h \\
0 & 1
\end{bmatrix} \begin{bmatrix}
P_x \\
P_y \\
1
\end{bmatrix}
\]

$h = \cot \theta$: shearing fraction in x direction
Advantage:

Using homogeneous coordinates, all affine transformations can be put in matrix form. Therefore, a sequence of consecutive transformations can be carried out with just one matrix-vector multiplication (by accumulating the corresponding matrices into a single matrix).

Remarks:

- Rotation about an arbitrary pivot point is different from rotation about the origin
- Scaling about an arbitrary pivot point is different from scaling about the origin
- Shearing about an arbitrary pivot point is different from shearing about the origin
Example: Rotation About Pivot Point V:

1. Translate V to origin
2. Perform rotation at origin
3. Translate back to V

Matrix:

$$
\begin{bmatrix}
1 & 0 & V_x \\
0 & 1 & V_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -V_x \\
0 & 1 & -V_y \\
0 & 0 & 1
\end{bmatrix}
$$
Example: Scaling About Pivot Point V:

Scaling about V

1. Translate V to origin

2. Perform scaling at origin

3. Translate back to V

Matrix:

\[
\begin{bmatrix}
1 & 0 & V_x \\
0 & 1 & V_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -V_x \\
0 & 1 & -V_y \\
0 & 0 & 1
\end{bmatrix}
\]
Example: Shearing About Pivot Point V:

1. Translate V to origin
2. Perform shearing at origin
3. Translate back to V

Matrix:

\[
\begin{bmatrix}
1 & 0 & V_x \\
0 & 1 & V_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & h & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -V_x \\
0 & 1 & -V_y \\
0 & 0 & 1
\end{bmatrix}
\]
5.3 Properties of Affine Transformations

- Affine transformations preserve lines and planes

\[
L(t) = (1-t)A + t B
\]

\[
Q(t) = (1-t)T(A) + t T(B)
\]

- Affine transformations preserve parallelism of lines and planes

\[
L_1(t) = A_1 + b t
\]

\[
L_2(t) = A_2 + b t
\]

\[
Q_1(t) = T(A_1) + T(b) t
\]

\[
Q_2(t) = T(A_2) + T(b) t
\]
The matrix columns of an affine transformation reveal the transformed coordinate frame

\[M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{m}_1 & \mathbf{m}_2 & \mathbf{m}_3 \end{bmatrix} \]

\[\mathbf{m}_1 = M \mathbf{i}, \quad \mathbf{m}_2 = M \mathbf{j}, \quad \mathbf{m}_3 = M \mathbf{Q} \]

Affine transformations preserve relative ratios
Effect of transformations on the areas of figures

\[
\frac{\text{area after transformation}}{\text{area before transformation}} = |\det M|
\]

Every affine transformation is composed of elementary operations

\[
\begin{bmatrix}
 a & c & e \\
 b & d & f \\
 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & e \\
 0 & 1 & f \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 a & c & 0 \\
 b & d & 0 \\
 0 & 0 & 1
\end{bmatrix} ;
\]

\[
\begin{bmatrix}
 a & c \\
 b & d
\end{bmatrix} = \begin{bmatrix}
 1 & 0 \\
 \frac{ac+bd}{R^2} & 1
\end{bmatrix} \begin{bmatrix}
 R & 0 & a/R \\
 0 & \frac{ad-bc}{R} & b/R
\end{bmatrix}
\]

where

\[
R = (a^2 + b^2)^{1/2}.
\]
5.4 3D Affine Transformations

Translation: \(Q = M \ P \)

\[
M = \begin{bmatrix}
1 & 0 & 0 & \Delta x \\
0 & 1 & 0 & \Delta y \\
0 & 0 & 1 & \Delta z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Scaling: \(Q = M \ P \)

\[
M = \begin{bmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Shearing: \[Q = M \ P \] (yz shear)

where

\[
M = \begin{bmatrix}
1 & \cot \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Rotation:

z-roll: (rotation about \(z \)-axis)

\[
R_z(\theta) = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

x-roll: (rotation about \(x \)-axis)

\[
R_x(\theta) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

y-roll: (rotation about \(y \)-axis)

\[
R_y(\theta) = \begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Why is the structure of a **y-roll** different from that of an **x-roll** or a **y-roll**?

Consider the following figure:

![Diagram showing projections of x-roll, z-roll, and y-roll](image)

and look at projections of **x-roll**, **z-roll** and **y-roll**:
Rotations about an arbitrary axis:

Given a unit vector \mathbf{u} and a point P, how would you find the matrix that represents the rotation of P about the axis defined by \mathbf{u} for β degree?

Method 1:

1. Rotate \mathbf{u} about y-axis for θ degree and then rotate about z-axis for $-\phi$ degree to align \mathbf{u} with x-axis
2. Perform rotation of P about x for β degree
3. Reverse step 1 to restore \mathbf{u} to its original direction
Method 2:

view it as a 2D rotation and use vector tools

1. Let \(\mathbf{p} \) be position vector of \(P \) and \(\mathbf{h} \) the position vector of \(O_1 \) where \(O_1 \) is the projection of \(P \) on \(\mathbf{u} \)

\[
\mathbf{h} = (\mathbf{p} \cdot \mathbf{u}) \mathbf{u}
\]

2. Define a 2D coordinate frame \((\mathbf{a}, \mathbf{b}, O_1)\) for the plane determined by \(P, Q \) and \(O_1 \)

\[
\mathbf{a} = \mathbf{p} - \mathbf{h}, \quad \mathbf{b} = \mathbf{u} \times \mathbf{a}
\]
3. Then Q is equal to

$$Q = h + (\cos \beta) \ a + (\sin \beta) \ b$$

$$= h + (\cos \beta) \ (p - h) + (\sin \beta) \ (u \times p)$$

$$= (\cos \beta) \ p + (1 - \cos \beta) \ h + (\sin \beta) \ (u \times p)$$

$$= (\cos \beta) \ p - (1 - \cos \beta)(p \cdot u) \ u + (\sin \beta) \ (u \times p)$$

$$= I(\cos \beta) \ P + (1 - \cos \beta) (u' u) \ P + (\sin \beta) \ Cross (u) \ P$$

$$= \cos \beta \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \ P$$

$$+ (1 - \cos \beta) \begin{bmatrix} u_x^2 & u_x u_y & u_x u_z \\ u_x u_y & u_y^2 & u_y u_z \\ u_x u_z & u_y u_z & u_z^2 \end{bmatrix} \ P$$
\[\sin \beta \begin{bmatrix} 1 & -u_y & u_z \\ -u_z & 0 & u_x \\ u_y & -u_x & 0 \end{bmatrix} P \]

Hence, the homogeneous matrix representation of the rotation is:

\[
R_u(\beta) = \begin{bmatrix}
 c + (1-c)u_x^2 & (1-c)u_xu_y - s u_z & (1-c)u_xu_z + s u_y & 0 \\
 (1-c)u_xu_y + s u_z & c + (1-c)u_y^2 & (1-c)u_zu_y - s u_x & 0 \\
 (1-c)u_xu_z - s u_y & (1-c)u_yu_z + s u_x & c + (1-c)u_z^2 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

where \(c = \cos \beta \) and \(s = \sin \beta \).
Interesting Application:

Given a rotation matrix, can you determine the axis and angle of the rotation?

\[
R_u(\beta) = \begin{bmatrix}
m_{11} & m_{12} & m_{13} & 0 \\
m_{21} & m_{22} & m_{23} & 0 \\
m_{31} & m_{32} & m_{33} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

The trace of \(R_u(\beta) \) equals \(1 + 2 \cos \beta \). Hence,

\[
\cos \beta = \frac{(m_{11} + m_{22} + m_{33} - 1)}{2}
\]

\((m_{32} - m_{23}) \) equals \(2 \sin(\beta) \, u_x \). Hence,

\[
u_x = \frac{(m_{32} - m_{23})}{2\sin\beta}
\]

Similarly,

\[
u_y = \frac{(m_{13} - m_{31})}{2\sin\beta}, \quad u_z = \frac{(m_{21} - m_{12})}{2\sin\beta}
\]
Changing Coordinate Systems

Theorem: Suppose coordinate system #2 is formed from coordinate system #1 by affine transformation M. Suppose $[P_x, P_y, 1]$ are the coordinates of a point P expressed in system #2. Then the coordinates of P expressed in system #1 are MP.

Proof. Let the coordinate frames of systems #1 and #2 be $(i', j', Q')^t$ and $(i, j, Q)^t$, respectively. Then

$$[P_x, P_y, 1] \begin{bmatrix} i' \\ j' \\ Q' \end{bmatrix} = P_x i' + P_y j' + Q'$$

$$= P_x (M i) + P_y (M j) + (M Q)$$

$$= M (P_x i + P_y j + Q)$$

$$= (M \begin{bmatrix} P_x \\ P_y \\ 1 \end{bmatrix})^t \begin{bmatrix} i \\ j \\ Q \end{bmatrix}$$
Application: Successive coordinate frame changes

Suppose coordinate system #1 is transformed to coordinate system #2 by affine transformation M_1 and coordinate system #2 is transformed to coordinate system #3 by affine transformation M_2. If $(e, f, 1)$ is the representation of a point P with respect to system #3, then what is the representation of P with respect to system #1?

\[
\begin{pmatrix}
 a \\
 b \\
 1
\end{pmatrix} = M_1 \cdot M_2
\begin{pmatrix}
 e \\
 f \\
 1
\end{pmatrix}
\]

In REVERSED ORDER. WHY?
IMPORTANT:

To transform points, current matrix is premultiplied by each new transformation

\[M = M_3 \times M_2 \times M_1 \]

To transform coordinate systems, current matrix is postmultiplied by each new transformation

\[M = M_1 \times M_2 \times M_3 \]

(This is how OpenGL operates.)
Why?

Every graphics item (point, line, polygon, ...) has to go through the following pipeline:

\[
M = (M_w \ M_p \ M_v) \ M_m
\]

\[
= M_1 \ M_m
\]

- \(M_m\): modeling transformation (modelview matrix)
- \(M_v\): viewing transformation
- \(M_p\): projection
- \(M_w\): window-to-viewport transformation
M_m is the accumulation of the transformations performed on the graphics item by the user in the modeling space.

If object A is transformed by a x-roll R_x, a translation T and a scaling S, i.e.,

$$M_m = S \ T \ R_x$$

then we need to multiply object A by the matrix

$$M = \begin{pmatrix} M_w & M_p & M_v \end{pmatrix} \begin{pmatrix} S & T & R_x \end{pmatrix}$$

$$= M_1 \begin{pmatrix} S & T & R_x \end{pmatrix}$$
But if object B only needs to be transformed by the translation T and the scaling S, not the x-roll R_x, i.e.,

$$M_m = S \ T$$

then we need to multiply object B by the matrix

$$M = \begin{pmatrix} M_w & M_p & M_v \end{pmatrix} (S \ T)$$

$$= M_1 (S \ T)$$

The question is: how would you construct the new M from the previous M?

(unless we keep a copy of M_1 and M_m in addition to M)
Alternative:

Use the following M to multiply object B first

$$M = (M_w M_p M_v) (S\ T)$$

$$= M_1 (S\ T)$$

Then use the following M to transform object A

$$M \leftarrow M \ R_x$$

Question: can this approach solve all the problems?
Using Affine Transformations in a Program

2D:

Set up world window;
Set up viewport;
Initialize modelview matrix;

Define transformation #n;
Define transformation #(n-1);
...
Define transformation #1;
Send the graphics object;
Examples:

```c
...  
glMatrixMode ( GL_MODELVIEW );  
glLoadIdentity( );  //set CT to identity  
house ( );  
glMatrixMode ( GL_MODELVIEW );  
glRotated ( -30.0, 0.0, 0.0, 1.0 );  //rotation about z  
glMatrixMode ( GL_MODELVIEW );  
glTranslated ( 32.0, 25.0, 0.0 );  //translation in xy plane  
house ( );
```
5.4 Saving the CT for Later Use

Consider the following example:

If object A is transformed by a x-roll R_x, a translation T and a scaling S, i.e.,

$$M_m = S \ T \ R_x$$

we need to multiply object A by the matrix

$$M = (\begin{bmatrix} M_w & M_p & M_v \end{bmatrix}) (S \ T \ R_x)$$

$$= M_1 (S \ T \ R_x)$$
Now, in addition to the x-roll R_x, the translation T and the scaling S, if object B also needs to be transformed by a y-roll R_y, i.e.,

$$M_m = R_y \ S \ T \ R_x$$

then we need to multiply object B by the matrix

$$M = (M_w \ M_p \ M_v) (R_y \ S \ T \ R_x)$$

$$= M_1 (R_y \ S \ T \ R_x)$$

But how should the new M be constructed?
Solution:

Push M_3;

Construct $M_4 (= M_3 S T R_x)$ for object A;

Remove (Pop) M_4;

Construct $M_5 (= M_3 R_y S T R_x)$ for object B;
Example: tiling based on a motif

```cpp
glPushMatrix();
glTranslated( W, H, 0 );
for (row = 0; row < 8; row++) {
    glPushMatrix();
    for (col = 0; col < 12; col++) {
        motif();
        glTranslated( L, 0.0, 0.0 ); // move to the right
    }
    glPopMatrix(); // back to the start
    glTranslated( 0.0, D, 0.0 ); // move up
}
glPopMatrix();
```
5.5 Drawing 3D Scenes with OpenGL

First, understand the OpenGL pipeline:

1. Position and aim the camera
2. Set the view volume shape
3. Define world window and viewport
Position and aim the camera

```c
glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y, up.z);
```
What does `gluLookAt()` do?

`n = eye − look`

`u = up × n`

`v = n × u`

gluLookAt then normalizes all three of these vectors, building the matrix

\[
M_v = \begin{bmatrix}
u_x & u_y & u_z & d_x \\
v_x & v_y & v_z & c_y \\
n_x & n_y & n_z & d_z \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

with \((d_x, d_y, d_z) = (−eye \cdot u, −eye \cdot v, −eye \cdot n)\) to convert world coordinates into eye coordinates.
Set the view volume shape

```c
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(left, right, bottom, top, near, far);
```
How 3D transformations are used in an OpenGL-based program?

Example:

```
glPushMatrix();

glTranslated ( 0, len/2, 0 );

glScaled (thick, len, thick );

 glutSolidCube ( 1.0 );

 glPopMatrix();
```

Read and test sample programs: `wireframe.cpp` and `shade.cpp`