Unix Administration Tools on
Windows NT: Sat, Pulsar, and Rdist

Christopher R. Dotson
University of Kentucky

Introduction

I adapted a suite of Unix system-administration tools to operate on the Microsoft Windows NT 4.0 operating system. The tools involved are Sat [Finkel 1999], a system-administration tool written in C that uses a distributed database system; Pulsar [Finkel 1997], a Tcl/Tk-based tool for monitoring Unix hosts; and rdist, a tool for distributing files to remote hosts. With these tools administrators can use existing Unix tools to administer Windows NT machines, including creating and deleting accounts, viewing performance statistics and error conditions, and distributing files among the computers.

Background: Differences between Windows NT and Unix

At first glance, Windows NT looks staggeringly different from any flavor of Unix. The background and intended purpose of each OS is very different. The original Windows was developed for personal computers, where many people once considered multitasking and multi-user capabilities completely unnecessary. In fact, Windows was originally only an "operating environment" that made DOS (itself only very loosely an "operating system") easier to use. Over time, Microsoft added more capabilities to Windows, such as multitasking and the ability to take advantage of features incorporated in newer PC micro-processors such as memory protection. However, the original Windows family (Windows 1.x, 2.x, 3.x, 95, and 98) is still, strictly speaking, an operating environment built on top of DOS. Windows NT is a completely different operating system, but it shares some of the heritage (and drawbacks) of Windows, since it was also designed for personal computers. It bears little resemblance internally to any previous version of Windows except for the user interface and the name.

The beginnings of Windows NT were in 1987 with an alliance between IBM and Microsoft. The purpose was to develop a new 32-bit operating system for personal computers with memory protection, preemptive multitasking, and many other features that minicomputer and mainframe users had enjoyed for years. The new operating system was named OS/2. However, the Microsoft/IBM partnership ended badly. IBM retained the rights to OS/2, and Microsoft instead began work on Windows NT in 1988
. David Cutler, who played a key role in developing Digital's VMS operating system, was also a primary force behind Windows NT
. In 1993, Windows NT 3.1 was released. Windows NT 3.1 is a microkernel OS built on top of a Hardware Abstraction Layer (HAL) that makes the OS easily portable among different hardware platforms. As of version 4.0, Windows NT is no longer technically a microkernel OS, since the window manager, graphics device interface, and display drivers are all incorporated into the Windows Executive (kernel) and run in kernel mode for performance reasons. NT runs on a few different architectures, although Microsoft has been reducing the number of supported architectures with each new version. The newest version of Windows NT, Windows 2000, is only supported on the Intel x86 platform at the present time, although support for the forthcoming Intel IA64 platform is planned.

It isn't surprising that there are many differences between NT and Unix-like operating systems; the operating systems have completely different backgrounds. The most notable difference is that almost all interaction with Windows NT is via a graphical interface; although one can of course bring up a command prompt in a window, a text-only interface is not offered. In fact, Microsoft does not even ship any diskettes or CDs that allow an administrator to boot up a command-line version of Windows NT, which makes fixing fatal configuration problems on NT more difficult than on Unix. Windows 2000 fixes this limitation by allowing an administrator to boot a tiny command-line version of NT from floppies, CD-ROM, or a directory on the hard disk. (Other companies sell command-line boot disks for Windows NT 4.0. The official Microsoft solution is to install a separate minimal "maintenance" installation of NT 4.0 for the cases where NT simply does not boot and the provided recovery mechanisms do not work.) These differences can be very annoying to system administrators with a Unix background.

 The design choice to use graphical tools almost exclusively in Windows NT puts NT at a disadvantage for automated remote administration. Even though there are many solutions for remotely controlling the mouse and keyboard of a Windows NT machine (Microsoft Netmeeting, Symantec PCAnywhere, IBM Netfinity Remote Workstation Control, and the freeware VNC, to name a few), this type of interaction cannot be scripted easily and applied to many machines. The types of remote administration that may be scripted on Windows NT (remote registry editing, copying files via administrative shares, etc.) are less mature than their Unix counterparts and are often not supported by applications.

Other major differences between NT and Unix are in system configuration, logging, and performance testing. Most configuration in Unix is done with a different plain-text file for each application. In Windows, most configuration information is stored in the registry, a binary database. Although most registry updates are done by programs, the regedit tool allows an administrator to directly modify a local or remote registry. The registry also contains dynamic performance data (performance counters) that may be read as if they were stored in the registry, although they are actually updated continuously by the kernel. In addition to the performance counters included with the operating system, applications may install their own performance counters for the kernel to update. The perfmon tool that comes with Windows NT allows charting, logging, and alerting based on local and remote performance counters.

Unix programs usually log to plain-text files; event logs in NT are in binary format. An NT application stores a message number and insertion strings into the event log; the application may have different message files for each locale, and NT displays the appropriate message text for the locale. The eventvwr tool allows an administrator to read local or remote event logs. To access the registry, performance counters, or the event logs, a programmer must use the published APIs. These APIs allow a program to read any of this information either remotely or locally (if it has the necessary privileges, of course). Unfortunately, these APIs aren't available in all languages, especially languages with a Unix heritage (direct ports of Perl and Tcl, for example).

Underneath the vastly different heritage and design objectives, however, Windows NT does share some traits with Unix. Like all varieties of Unix, Windows NT is a preemptive multitasking OS. It is also multi-user, but only in a limited sense; as shipped, only one user may log into the computer at a time. Windows NT can run scheduled tasks for one user while a different user is logged in, however, and several companies make telnet daemons that allow multiple users to log in remotely. (Microsoft also makes a "Terminal Server Edition" of Windows NT, which allows many "dumb" clients, akin to X terminals, to connect and run graphical programs on separate desktops as if they were logged into the console.) Windows NT has processes, threads, virtual memory, and other features one expects of a modern operating system. In addition, the cmd.exe shell in Windows NT 4.0 contains a lot of bash-style extensions, including && and ||, for, pushd and popd, and filename completion (which is turned off by default). One of the differences between NT and Unix that annoys me the most is the use of the backslash instead of the slash as a path delimiter.

Product and Use

Sat is a System-Administration Tool. Sat uses a distributed database to store information about a collection of computers; this database may only be modified at a host designated as a model host. These changes are then distributed to the other hosts [Finkel 1989]. As used at the University of Kentucky, Sat stores information about Users, Hosts, Printers, Motd (messages of the day), Sudo (users allowed special privilege), and Mounts (shared filesystems). A report program run on each host when the data change uses this stored information to perform many different tasks, such as set the host's TCP/IP address and add or delete users from the host.

Pulsar is a tool for viewing the status of many hosts from a central console called a presenter. Separate pulse-monitor processes collect a variety of information about a host, from identification/version information to how much disk space is available, and send it to the presenter for display. An administrator can quickly see via color coding on the presenter which hosts have conditions that the monitors flag as possible problems. In addition, other administrators may start up secondary presenters, which display the same information as the primary presenter.

In spite of the major differences between NT and Unix, my new Windows NT and the old Unix versions of Sat and Pulsar have the same look and feel. The Sat program has no graphical component, so the new Windows NT version is almost indistinguishable from the Unix version. Tabread, tabedit, tabmod, relmod, and other Sat commands all work exactly the same; one may even set a graphical Windows editor as the editor to use for commands like tabedit and schedit, with a few caveats as noted in the Implementation section.

I modified the Sat schemata specific to the University of Kentucky. The Hosts, Motd, and Users relations have analogues under Windows; the Printers, Mounts, and Sudo relations do not, and the new reports for these relations exit cleanly. The new Hosts report modifies the following files: the hosts file (found in %SYSTEMROOT%\SYSTEM32\DRIVERS\ETC\ on Windows), the /etc/hostinfo file (used by the hostinfo program elsewhere in Sat), the distalias file (used by Sat to distribute changes), and the netgroup and ethers files (useful for reference, although no Windows programs use them). The rest of the files are used for Unix-style access control and are not used on Windows NT (.rhosts, hosts.equiv, hosts.lpd, etc.) or are for services that Windows machines don't usually provide in the same way (named, fingerd, etc.) These files are not created on Windows NT. In addition to these configuration files, I also wrote a small command-line Tcl utility, ifconfig.tcl, to change the host's TCP/IP address through a script.

The Motd report correctly modifies /etc/motd; one could place a program to display this text file into the All Users Startup folder, so that everyone would see the message of the day upon logging into Windows.

The Users report correctly modifies /etc/passwd, /etc/group, and useraliasfile (used for Sat permissions). The rest of the files (shadow, amd.users.conf, ftpusers, shells) do not apply to Windows NT and are not created. The report then adds or deletes users from the Windows user database as appropriate, since Windows does not use the /etc/passwd or /etc/group files for authentication. The report does not add Unix-specific accounts (root, other, bin, sys, etc.) nor does it delete NT-specific accounts (Administrator, Guest). Unfortunately, since Unix passwords are one-way encrypted before being stored in Sat, and since Windows NT does not authenticate against this one-way encryption, passwords for Unix users can not be set locally on the Windows NT hosts. The only workarounds when using the local-user database are to store the passwords in clear text (or encrypted via a reversible algorithm) in the Sat database, or to extend the Windows NT authentication to use an /etc/passwd or /etc/shadow file that employs the crypt() algorithm (a very difficult task). For this reason, the report assigns newly created Windows users a password; they may may later change it to be the same as their Unix password if they want. Another method successfully used at the Computer Science Department at the University of Kentucky is to forego local user authentication altogether and instead use domain authentication. Instead of a Windows NT domain controller, UK uses a Linux host running the Samba package [Blair 1998], which passes the NT requests for authentication through to the local Unix authentication using the /etc/passwd file.

Pulsar on Windows NT is very nearly identical to its Unix counterpart, except that the "window manager" is the Windows desktop. The invocation of the presenter, the secondary presenter, and the pulse monitors is identical to Unix with an NT shell that understands the #! shell syntax, such as bash for NT. The invocation is slightly different with the default cmd.exe shell in Windows NT; one must specify the executable (e.g., cygtclsh80 filename) or create an association that tells Windows to use cygtclsh80 for files whose names end in .tcl. For example, this command associates .tcl files with the cgytclsh80 program:

assoc .tcl=tclscript && ftype tclscript=cygtclsh80 %1 %2 %3

The base presenter.tk package runs on Windows with very few changes, and its usage is the same as on the Unix versions. It can accept input from any host running any of the pulse monitors. I had to modify the pulse monitors considerably, however. The following modified pulse monitors have equivalent functions under Windows and run normally: badfile (find programs with known bad signatures), cpu (find CPU usage), disk (see if disks are getting full), ether (measure ethernet errors), id (report information about the machine, such as the host name and OS version), log (report on entries in the system log), mem (find programs using too much memory), md5 (check the md5 checksum on files), ping (check network connectivity), pulsar (check to see if hosts are reporting regularly), sat (check to see if Sat needs attention), and swap (check if swap space is getting full). In addition, the schedule.tcl script schedules the monitors correctly. These monitors can give a fairly good picture of the health of the host, although one can get much more specific information from the perfmon utility that ships with Windows NT.

Many monitors do not run under Windows NT for various reasons, primarily because they have no analogue under NT. I modified these monitors to recognize that they are running on Windows and exit cleanly. They are: mail and rootmail (few Windows hosts have a local mail daemon or queue), daemon and process (Windows hosts don't usually have any daemons or processes that need restarting), excess (multiple copies of processes generally aren't a problem), printers and printqueue (printing is done completely differently under Windows), connect (the ping executable on Windows does not give statistics; also, this monitor is fairly similar to the ping monitor), source (source code is unfortunately not available for many applications in Windows), xhost and remotex (Windows hosts don't usually have X servers), clock (one cannot determine clock drift on NT), collis (one cannot determine collisions on NT), netprinter (one cannot test SNMP printers), and the collection of dot, ftp, home, suid, and readonly (these monitors address security concerns not present on NT).

Rdist is a package that allows an administrator to maintain identical copies of files over multiple hosts. I eventually managed to get rdist to compile and execute on Windows NT, but it does not connect to a remote host or allow incoming connections at the current time, which makes it useless. Since Windows uses such a different authentication mechanism, it is difficult for Unix-based programs on Windows to authenticate users. I was unable to find a secure method to allow rdist to run, but I did find a workaround.

Implementation

I began by trying to port Pulsar version 1.6, which is written in Tcl/Tk [Ousterhout 1990]. Fortunately, Tcl/Tk was designed to be portable, and there is a Tcl/Tk interpreter for Windows NT, so porting the code of Pulsar was reasonably straightforward. The original presenter runs with only a few minor changes. The pulse monitors are another story, however. Many of the pulse monitors have no equivalent in Windows NT, and several that do had to be completely rewritten to use the registry or performance APIs instead of command-line utilities. In particular, since NT lacks any command-line utility that gives CPU utilization, I wrote a cpu command that returns the average CPU utilization over a short interval. NT also has a binary message log instead of a plain-text log, so I wrote the command-line utility evdump to dump NT's event log as plain-text. The other pulse monitors required special logic and different command parameters to collect information. There were several interesting stumbling blocks. One was in subtly different behaviors between the Tcl/Tk interpreters; the Windows interpreter misinterprets a large value in the schedule.conf file, which the Unix version interprets correctly. Another was due to upgrading to Tcl/Tk version 8.0 (I need version 8.0 because it allows me to access the Windows Registry). The file mtime function respects time zones in version 8.0 and ignores them in version 7.0. Since Pulsar 1.6 uses a file time stamp as authentication between a pulse monitor and a presenter, I got cryptic "bad protocol" errors if the monitor and presenter were running on different versions of the interpreter, because the time stamps on the same file didn't compare correctly. This problem disappeared when I upgraded to Pulsar 2.5, because version 2.5 asks for a pass phrase when the presenter starts. The Tk console on Windows NT does not support console input and output, however, so I wrote a small Tcl wrapper for the presenter that asks for a pass phrase and stores it in the presenter.pass file.

I was able to port ten of the monitors after I solved these problems. As mentioned in the usage section, the following pulse monitors have NT equivalents: badfile, cpu, disk, ether, id, log, md5, mem, ping, pulsar, sat, and swap. The badfile monitor required some changes because of the differences in filesystems. The disk monitor also only required minor changes, to accommodate a different df program. The ether monitor had to be modified due to the difference in netstat commands. The id monitor simply takes the output from the ver command and some environment variables that Windows NT provides. The md5 monitor works exactly as it does on Unix; I compiled the md5-c command to generate md5 checksums and added a test entry to the md5.conf file. The mem monitor uses the output of a ps command, just as it does on Unix, although it had to be modified slightly. In addition, the ps command included with the cygwin package only reports process status on the processes in the cygwin process space, so I use a different freeware NT ps command. The ping monitor required changes in the way it checks the date service on a remote machine. The pulsar monitor required command-name changes. The sat monitor works essentially unchanged. The swap monitor is a little more complicated; I modified it to look in the registry to find the location of all of the swap files on NT, then check the size of those files.

The most difficult parts of this project were rewriting the log monitor and the cpu monitor. As discussed in the background section, Windows NT keeps an event log (somewhat analogous to the /var/adm/messages file on many Unix hosts). The information in this log is very useful to a system administrator; events are generated by system components when the disks are near capacity, swap space is almost exhausted, device drivers fail to load, a program or user attempts to violate system security, etc. Unfortunately (for the purposes of this project), the event log is stored in binary form and the only correct way to access it is via the APIs provided by Microsoft. The APIs are not entirely straightforward, either, because NT is intended for use in many countries and languages. All that is stored in the log is a provider, a message number, and insertion strings. To view a log entry, the programmer must call the correct APIs to retrieve an event log entry structure. Then, the programmer must link in a locale-specific dynamic library that contains the messages for an event, call the exported FormatMessage() function in order to get the message string, perform any other cleanup desired (such as substituting real paths for environment variables and converting the timestamp to human-readable form) and insert the insertion strings. I wrote the evdump program to dump the event log in plain-text so that the modified log monitor can sift through the output. I then added some NT-specific alerts to the log-monitor configuration file.

A cpu monitor was much more difficult to implement. Windows NT does not include a command line equivalent to uptime, and none is available for free that I could find. (An implementation of uptime is included with the cygwin package, but it only reports the time elapsed since the system booted.) There are many graphical programs that tell you the CPU usage, but nobody seems to have written a free text-based one that another program can use to determine CPU usage until now. My cpu program must run for a few seconds to accumulate statistics; currently it is defined to run ten seconds by a compiler directive. (Although the kernel increments hundreds of performance counters as the operating system runs, it does not compute an average for CPU usage; a program must watch the performance counters and compute the average. Setting the interval time too low gives an artificially high reading because of the CPU usage spike generated when the program starts.)

Accessing these performance counters from C is quite difficult, since there are many layers of data structures to pick apart. Microsoft's documentation is fairly good, but the value I obtained didn't seem to be scaled correctly. In addition, since I was using the gcc that comes with the Cygwin toolkit (discussed below), I didn't have a usable debugger (the provided gdb crashes a lot, and it doesn't work inside the Windows APIs since they aren't compiled with symbols), so I was forced to debug using printf statements. This portion of the project would have been much easier to code using Microsoft Visual C++, which would allow me to use PDH (the Performance Data Helper) to get the information without manually digging through all of the data structures. However, I didn't have Visual C++, and I was already wary of the bad interactions between native Windows tools and the Cygwin tools, as discussed below.

With the exception of these two monitors, Pulsar was relatively straightforward to port, since it was written in Tcl/Tk. Sat was a different matter, since it is written in C. Although there are of course numerous C compilers for Windows NT, the standard Unix libraries are not present, so porting C programs is very difficult. At first, I had planned to rewrite a small portion of Sat using Win32 calls so that I could access the distributed database and generate a few reports. However, in researching a solution I found the Cygwin project [Noer 1998] (previously named the gnu-win32 project), a free package offered by Cygnus Corporation. The Cygwin project is composed two main parts: a dynamic-link library (DLL) that implements many of the Unix calls using Win32 calls, and a set of Unix-like library files. It is somewhat analogous to WINE for Unix that allows Unix systems to run Windows programs; it is not a "Unix emulator", but an implementation of many of the Unix APIs in Windows.

With Cygwin, programs written for Unix may be compiled with very few changes; when running, these programs call exported functions in the Cygwin DLL; these Cygwin functions then execute the appropriate Win32 calls. The effect is astounding; Windows NT suddenly appears to a C programmer to be a flavor of Unix, albeit a very strange one in some cases. Before too long, I had several of the utilities compiled and started trying to run them. Unfortunately, there are conflicts between programs compiled to use the Cygwin calls (for this discussion, I call these "Unix tools" or "Unix versions" of tools) and programs that use Win32 calls directly (I call these "Windows tools" or "Windows versions").

The most exasperating problems are in the simple matter of reading text files; by default, the Cygwin calls allow you to "mount" a filesystem so that Unix tools read and write text files assuming <CR><LF> (ASCII 13, ASCII 10) at the ends of lines, which is the Windows standard. This automatic text translation, similar to what the FTP client does, would help to avoid a lot of problems, as seen below. Unfortunately, the translation also means that any time one reads a binary file that contains ^Z (ASCII 26), the Cygwin libraries consider the ^Z the end of file marker. Therefore, I have to mount the filesystem with the "TEXT=BINARY" call instead so that no conversion is performed. However, using "TEXT=BINARY" means that the Unix tools write the files with only a <LF> at the ends of lines. Most Windows tools do not correctly read files that only have <LF> as a line delimiter, and most Unix tools do not not read files correctly that contain <CR>s. So, even though native Windows versions of languages like Perl are available, I had to be extremely careful to use Cygwin-compiled versions of any tools to avoid these problems. (Unfortunately, in the case of Perl, the Windows tools have the registry functionality that I need and the Unix tools do not. Fortunately, I was able to copy the registry package to the Cygwin-compiled Perl.) I also accidentally corrupted files many times by using a Windows version of vi and other Windows editors.

Other annoying problems stem from the fact that Unix is case-sensitive, whereas Windows NT is only case-preserving. If you use a Windows tool to create a file, it is often named in all uppercase, and the Unix tools fail to open it since they try to open it in all lowercase or mixed case. At one point, I made the mistake of making backups of my project files with a Windows tool. When I restored the backups, I found that nothing worked. I had to write a script to rename all of the files to lowercase and then manually rename the files that should be mixed-case or upper-case as things failed. In addition, I have to be careful to log into NT in all lowercase; NT ignores the case but preserves it, and the cygwin calls are sensitive to it.

Still more problems were caused by bugs in the cygwin libraries (the version I use is, after all, still in beta test). Some of these bugs are difficult to track down because they only occur in certain circumstances inside of the cygwin subsystem. For example, the Satd program would crash each time another process connected to it due to some problem with the implementation of fork(), although many other programs had no trouble using fork(). Other cygwin-compiled programs would crash occasionally then would work fine if immediately run again. To fix some of these bugs, the cygwin project released new versions during development of this project. Each time a new major version was released, I had to recompile all of the programs due to changes in exported functions in the library.

Even with the Cygwin libraries, the rdist program stubbornly refused to compile. Rdist interacts with the file system at a fairly low level, and some of these calls are not implemented in the Cygwin libraries. (The rdist source tree contains thirty-five configuration files and makefiles for various Unix flavors.) After much tweaking of the configuration files, I did get rdist and rdistd to compile, but then ran into another problem: the rdist server, rdistd, is usually run by the client via the rsh command, and Windows NT doesn't come with a version of rshd to allow these incoming connections. Someone ported the secure shell suite to cygwin on NT, and I was able to compile and run ssh and sshd. However, I could only use password authentication with sshd; rdist requires non-password authentication such as RSA keys or .rhosts files to function properly. (I did get RSA authentication working and found out why the person who performed the port disabled it. With RSA authentication, sshd would always log in as the user running sshd regardless of what valid credentials were presented because, unlike the su command on Unix, it appears that the password is required for sshd to call the NT routines to impersonate a different user.) Since I was unable to find a secure method to run the rdist server, I did not attempt to use it to copy files to the NT host. I did attempt to use the rdist client on Windows NT to copy files to a Linux host as a test; the client freezes at some point before connecting to the Linux host and consumes all available processor time. The debug messages built into rdist don't yield much useful information, and when run under gdb the rdist client crashes immediately.

Distributing files in this manner is not as useful on NT as it is on Unix, because you can't use this method to install most programs. On NT, programs usually need to be installed via their setup scripts or the correct changes are not made in the registry. In addition, all Windows NT hosts have an administrative share that allows anyone with an Administrator ID to map every drive; Unix users can use the smbclient program from the Samba suite to copy files to and from the Windows NT hosts automatically without any special software running on the Windows host.

Conclusion

For the most part, the Unix administration tools seem to work well on NT, although I was not successful in making rdist useful. Pulsar does give useful information about the state of the Windows machines, and Sat can be used to manage the local accounts, IP configurations, and local configuration files. However, the native administration tools available in Windows NT are much more powerful. For performance monitoring, the performance counters and APIs implemented in Windows NT are very flexible; there are hundreds of counters supplied, applications can install their own counters, these counters may be read locally or remotely, and access to the counters uses native Windows authentication so that no additional access lists are required. All the information is exposed via the same APIs and may be perused hierarchically. The performance monitor tool that comes with Windows NT allows fairly sophisticated charting, reporting, logging, and alerts based upon any of the performance counters. This tool allows the administrator to add any number of hosts to the charts, reports, logs, and alerts. Third-party solutions possess even more powerful alerting and reporting capabilities. The drawback to this power is that it is considerably more difficult to code something to read these performance counters from scratch! Pulsar is useful, however, for integrating Windows NT hosts into a network consisting primarily of Unix hosts.

Sat is very useful for keeping a database of machines and users, and it brings some administrative scripting power that Windows NT 4.0 doesn't possess. Windows NT does have a domain concept, where a group of machines can share a centralized user database. Domains can have trust relationships with each other, and these relationships allow for fairly powerful user management. However, fewer tools are shipped with Windows NT to manage the individual machines. An administrator may make registry changes, read the event logs, and modify the user database remotely, but the scripting power that is so common on Unix is not readily available on NT. Sat helps to bring some of this scripting power to NT.

Unix and NT are very different, but not as different as they first appear. These Unix administration tools may be useful for administrators attempting to incorporate a small number of NT machines into a Unix network. To manage a large number of NT machines, however, an administrator probably wants to use native NT management solutions and incorporate Samba on a Unix host to allow easy file sharing and common authentication with Unix hosts.

References

John D. Blair. Samba: Integrating UNIX and Windows. Specialized Systems Consultants, Inc., 1998.

Raphael A. Finkel, Brian Sturgill. Tools for System-administration in a Heterogeneous Environment. Proceedings of the Workshop on Large Installation System-administration, Usenix, 1989, pp15-30.

Raphael A. Finkel. Pulsar: An Extensible Tool for Monitoring Large Unix Sites. SP&P 27(10): 1163-1176 (1997)

Raphael A. Finkel, Brian Sturgill, Harlan Stenn. Experience with a Unix System-Administration Tool. SP&E 29(11): 953-971 (1999)

Geoffrey J. Noer. Cygwin32: A Free Win32 Porting Layer for UNIXreg. Applications. 2nd USENIX Windows NT Symposium, August 3-4, 1998.

John K. Ousterhout. Tcl: An Embeddable Command Language. Proceedings of the Winter 1990 USENIX Conference, Washington, D.C., USA, January 1990. pp133-146.

� (Amusingly, in retrospect, Windows 1.0 shipped with sheets touting Microsoft OS/2 as the "operating system of the future".)

� Rumor has it that the name Windows NT, or WNT, was composed by incrementing each letter in VMS. Microsoft at one point claimed that "NT" was an abbreviation for "New Technology", although they no longer claim it is an abbreviation for anything.

