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ABSTRACT OF PROJECT

KATR
SOFTWARE FOR MORPHOLOGICAL STUDIES IN

COMPUTATIONAL LINGUISTICS

This project is to design and implement KATR, an extension of DATR. DATR is a
language for defining nonmonotonic inheritance networks with path/value
equations. It was designed specifically for lexical knowledge representation by
Roger Evans and Gerald Gazdar in 1989. Since then, DATR has gained
considerable success in the area of linguistic analysis, especially in describing
the morphological structures of nature languages. We implement the full DATR
language using the free, widely available and platform−independent language
Java, and we enhance DATR with a new set construct that makes DATR more
appropriate for certain linguistic analyses.



Chapter 1 DATR Fundamentals

Introduction

KATR is an implementation of an enhancement of DATR. DATR is a formal
representation of default inheritance hierarchies used in morphological analysis
of natural languages. The morphological structure of a natural language
describes how words are modified to represent their grammatical position in a
sentence. For example, Latin verbs have different forms to indicate the number
and person of the subject, the tense, the mood, and the voice. The verb
representing "I will love" is different in all these regards from the verb "She might
have been loved." In any natural language, words with different base meanings
(such as "love" and "hear") tend to have very similar morphological forms to
indicate other aspects (such as "I will").

DATR allows the similarities in morphological formation to be abstracted out to a
node high in an inheritance tree (such as a node called "VERB"). Classes of
similar words might be grouped together at a lower level, such as "verbs with
stem ending in e" versus "verbs with stem ending in a." Within each group,
individual words may be placed. Queries can then ask how to construct a
particular form of a word, such as "the first person singular future indicative
active of the verb to love."  In DATR, such a query might look like this:

Love:<mor 1 singular future indicative active>

This query would be answered by recourse to rules in the node Love, its parent
node (perhaps "Verbs ending in e"), and its parent (perhaps "Verb"). Any
exceptional formations would be found as rules in the first nodes in this list,
which would be the lowest (most concrete) in the tree of abstraction. 

Basic notions

We now turn to a description of how DATR represents morphological
information. The best way to learn DATR, like any other language, is through
examples.

Exampl e 1−1:  A si mpl e node i n DATR 
    LovePr esent Par t i c i pl e:
        <synt act i c cat egor y>  == ver b
        <synt act i c f or m>      == pr esent  par t i c i pl e
        <mor phol ogi cal  f or m>  == l ove i ng.



This short program defines a node, which describes the present participle form
of the verb l ove using DATR. A node in DATR usually corresponds to a word,
for example l ove, a lexeme, for example al l ver bs , or a class of lexemes,
such as al l wor ds . In this particular example, we have a node
LovePr esent Par t i c i pl e that has three rules. A rule is an equation in
the DATR program. The left−hand side of the equation should always be
enclosed in pointy brackets with a sequence of atoms inside.  This left−hand side
item is called a path. The length of the path is the number of atoms in the
path. The value associated with the path is the right−hand side of the equation.
This value is a list of terms, which can take various forms.

Exampl e 1−2:  Rul e i n DATR
    <synt act i c f or m> == pr esent  par t i c i pl e

In example 1−2, the right−hand side value consists of two terms, both of which
are atoms.  We will see more detailed information about other forms later.

By default, the node name should start with an upper−case letter, and an atom
should start with any non upper−case letter. This constraint can be explicitly
overridden by an atom or node clause. However, we will assume no overrides in
the rest of this paper unless otherwise noted for simplicity.

The DATR program of example 1.1 tells us that there is a node named
LovePr esent Par t i c i pl e whose syntactic category is ver b, whose
syntactic form is pr esent par t i c i pl e, and whose morphological form is
l ove i ng. That is how the DATR language describes the present participle
form of the word l ove. A group (network) of nodes in DATR represents a body
of knowledge called a theory. The principle behind the DATR language is that
we can categorize information hierarchically, represent it, then query the theory
or generate the whole theory.

Suppose we already have a theory that consists of several nodes. (In example
1−1, we only have one node.) The theory is a body of knowledge, and the
DATR engine is an automated tool to find the information we need. In DATR, a
query is a question presented to the engine in the form NodeName: pat h,
where pat h is in the form <at om1 at om2>.

The engine computes the answer to a query by following a set of steps within the
specified node. The first step of this function is to find a matching rule. If a
matching rule is available, the DATR engine takes the right−hand side of the
matching rule as the temporary result. Next, the engine checks whether this
temporary result contains only atoms. A temporary result that contains atoms
only is called a flattened result, and this flattened result becomes the final



result. The DATR engine tries to flatten the temporary result, treating it as a
new query, and keeps doing so until it gets a final result that contains atoms
only. If a rule uses = instead of ==, then flatten is not to be called, and the
right−hand side must already be flattened.

Let’s talk about the matching algorithm first. Suppose we have a query
NodeName: <at om1 at om2> and want to find a matching rule in the theory
for this query. The engine first locates the node in the theory with the same
name as the node name in the query. After that, it finds the rule whose left−
hand side is the longest prefix of the path in the query. We say that path A is
path B’s prefix if A’s first atom is B’s first atom and A’s second atom is B’s
second atom and so on. Length is measured in the number of atoms in the path.

Exampl e 1−3:  Longest  Pr ef i x f or  Mat chi ng Al gor i t hm

   Theor y:   Node:
        <at om1> == val ue1
        <at om1 at om2> == val ue2.
   Quer y:    Node: <at om1 at om2 at om3> 

All rules’ left−hand sides are prefixes of the query’s path. In this case, however,
the matching rule is <at om1 at om2> == val ue2, because <at om1
at om2> has length two, which happens to be the longest.

The right−hand side of the rule is a value. A value consists of terms, which can
be atoms or more complex structures shown now.

Exampl e 1−4:  Basi c For m of  DATR Ter m.  
    VERB:
      <synt act i c cat egor y>  == ver b.

    LovePr esent Par t i c i pl e:
      <synt act i c cat egor y>  == VERB: <synt act i c cat egor y>
      <synt act i c f or m>      == pr esent  par t i c i pl e 
      <mor phol ogi cal  f or m>  == l ove i ng.

    LovePassi vePar t i c i pl e:
      <synt act i c cat egor y>  == VERB: <synt act i c cat egor y>
      <synt act i c f or m>      == pr esent  par t i c i pl e
      <mor phol ogi cal  f or m>  == l ove ed.

Both node LovePr esent Par t i c i pl e and node LovePassi ve−
Par t i c i pl e have value VERB: <synt act i c cat egor y> as the value
of their first rule.  This value contains one term of the form  Node:path.



It is permissible to abbreviate the term by either omitting the node name and
" : " if the desired node happens to be the current node, or by omitting " : " and
<at om1 at om2> if that path is the same as the left−hand side’s path.

Exampl e 1−5:  Abbr evi at ed For m of  t he Ter m.
    VERB:
      <synt act i c cat egor y>  == ver b.

    Love:
      <synt act i c cat egor y>  == VERB
      <mor phol ogi cal  r oot >  == l ove
      <f i r st  gender >        == <mor phol ogi cal  r oot >.

In the first rule of node Love, we specify the value as VERB, which has the
same meaning as VERB: <synt act i c cat egor y>. We omit
<synt act i c cat egor y> on the right−hand side because it is the same as
the left−hand side of the rule. The last rule of node Love follows the same
idea. We specify the value as <mor phol ogi cal r oot >, which is the
same as Love: <mor phol ogi cal r oot >, since the desired node name
is the same as the current node name.

A typical default rule looks like <> == Par ent Node, in which the value of
the default rule is a node name. A default rule, in which the path on the left is
empty, has the DATR engine refer to the related node to find information not in
the current node. In example 1−6, if the DATR engine cannot find information
about the node Love, it tries to find it in node Ver b. By such inheritance, a
programmer can abstract common information in some high−level node and let
all low−level nodes inherit it from the high−level nodes instead of repeating the
information individually. This abstraction saves a lot of work and is an important
DATR programming idiom.

Exampl e 1−6:  I nher i t ance by Def aul t  Rul e.
    Ver b:
      <> == 
      <synt act i c cat egor y> == ver b.

    Love:
      <> == Ver b
      <r oot > == l ove.

The right−hand side of the default rule <> == in the node Ver b is blank. This
rule is valid and indicates that the default rule has null replacement. 

Another form of a term is " Node: pat h" . This form uses a pair of quote
marks and is called a global term, whereas Node: pat h is called a local



term. Abbreviations apply to global terms as well as local terms; either the Node
or the path may be omitted. Therefore, we have seven different forms of terms:
at om, Node, " Node" , pat h, " pat h" , Node: pat h and
" Node: pat h" . The detailed meaning of a global term will be fully explained
later in the flatten algorithm.

All forms of terms mentioned so far are called basic forms. In addition to these
basic forms, DATR allows recursion in defining a term. A recursive term
definition has the form: Node: <t er m1 t er m2>.

We need to strengthen the notation here.  The distinction between Node: pat h
and Node: <t er m1 t er m2> is that pat h can only be of format <at om1
at om2>, while t er m1 and t er m2 can be any valid term. Therefore,
Node: pat h is an example of Node: <t er m1 t er m2>.

Exampl e 1−7:  Recur si vel y Def i ned Ter m
    Node: <Node1: <at om1> at om2 " Node2" >

Sanskrit example

A real−world Sanskrit example (Figure 1−1) provided by Dr. Greg Stump at the
University of Kentucky) is listed here to demonstrate inheritance

The purpose of this program is to generate case forms of specific nouns and
adjectives in Sanskrit. The node NOMINALS lists declensional properties that
are (at least by default) associated with all of the nouns and adjectives at the
bottom of the tree. These include (for example) the property of forming the
accusative singular through the suffixation of −m and the property of forming the
instrumental plural through the suffixation of −bhis. The node
VOWEL_STEM_NOMINALS contains properties that are typical only of nouns
and adjectives whose stems end with vowels; these include (for example) the
property of forming the accusative plural through the suffixation of −n. The node
I_OR_U_STEM_NOMINALS contains properties that are typical only of nouns
and adjectives whose stems end in i or u; these include (for example) the
property of forming the nominative dual without a suffix. Thus, the program and
tree diagram account for the fact that Sanskrit nouns and adjectives fall into
nested classes, where members of the same class share certain declensional
properties while members of distinct classes exhibit distinct declensional
properties.[1]

[ 1] Sour ce:  ht t p: / / www. cs. uky. edu/ ~gst ump/ i ndi cf r agment s/ epi cf r agment  
   Resul t :  ht t p: / / www. cs. uky. edu/ ~gst ump/ i ndi cf r agment s/ epi c00. ht ml



  
Figure 1−1

An ACL example

DATR is intended for describing morphological forms of natural languages.  It
can also be used in other realms.  For example, the rights pertaining to files in
an operating system are sometimes described by access control lists (ACLs).
We can formulate ACLs by using DATR rules:

NOMINALS

I_OR_U_STEM_NOMINALS

VOWEL_STEM_NOMINALS

FEMININE_I_OR_U_STEM_NOMINALS

LONG_VOWEL_STEM_NOMINALS

LONG_VOWEL_STEM_NOMINALS_2

RADICAL_LONG_VOWEL_STEM_NOMINALS

NONALTERNATING_CONSONANT_STEM_NOMINALS

Shuuchi
(masc.)

Shuuchi
(fem.)

Devii Nadii

Dhii Vaach



Super user :
 <r ead> == t r ue 
 <wr i t e> == t r ue 
 <exec> == t r ue  
 <del et e> == t r ue.

Devel oper :
 <> == Root
 <wr i t e> == f al se
 <del et e> == f al se.

User :
 <> == Devel oper
 <wr i t e user ’ s sour ce> == t r ue.  
 <del et e user ’ s sour ce> == t r ue.

The flatten algorithm

There are several methods available for modeling the flatten algorithm; we
choose to use the local/global environment model here.

For every new query, DATR starts with two fresh pairs of environments: local
and global. Both environments contain (Node, path) and are initialized based
on the query. We will use LE to represent local environment and GE for global
environment for simplicity.

During the flatten phase, the DATR engine tries to flatten every term of the
temporary result. Because flattening has no side effects, it makes no difference
in what order DATR flattens the term if it has several parts that need flattening.
If the term being flattened is not an atom but is one of the basic forms, such as
Node: pat h, " Node: pat h" , or their abbreviations, the local/global
environment is updated according to following rules:

1 if term is Node, update term to Node: LE. pat h
LE = ( Node,  no change)
GE is unchanged

2 if term is pat h, update term to LE. Node: pat h
LE = ( no change,  pat h)
GE is unchanged

3 if term is Node: pat h,
LE = ( Node,  pat h)  
GE is unchanged

4 if term is " Node" , update term to Node: GE. pat h
LE = ( Node,  GE. pat h)
GE = ( Node,  no change)

5 if term is " pat h" , update term to GE. Node: pat h



LE = ( GE. Node,  pat h)
GE = ( no change,  pat h)

6 if term is Node: pat h
LE = ( Node,  pat h)
GE = ( Node,  pat h)

In some cases, the path is supplemented, but we will discuss that later.

After the engine updates the term and the local and global environment, the
updated term is in the form Node: pat h. The engine now takes this
Node: pat h as a new query. Therefore, the query is broken into several
small new queries. The engine keeps doing so until the query is flattened. Let’s
look at an example:

Exampl e 1−8:  Descr i pt i on of  t he DATR Engi ne.
    Ver b:
     <pr esent  par t i c i pl e> == " <r oot >"  i ng.

    Love:
     <> == Ver b
     <r oot > == l ove.

        Quer y:  Love: <pr esent  par t i c i pl e>

In example 1−8, both local and global environments are initialized to ( Love,
<pr esent  par t i c i pl e>) .

step a)
Matching rule: Love: <> == Ver b.
Temporary result: Ver b
LE: ( Love,  <pr esent  par t i c i pl e>)
GE: ( Love,  <pr esent  par t i c i pl e>)

step b)
Update term to: Ver b: <pr esent  par t i c i pl e>
Update LE:  ( Ver b,  <pr esent  par t i c i pl e>)
GE is unchanged: ( Love,  <pr esent  par t i c i pl e>)

step c)
Take Ver b: <pr esent  par t i c i pl e> as new query
Matching rule: 
   Ver b: <pr esent  par t i c i pl e> == " <r oot >"  i ng.
Temporary result : " <r oot >"  i ng.

step d) flatten term " <r oot >"
Update " <r oot >"  to  Love: <r oot > according to rule 5
Update LE:  ( Love,  <r oot >)



Update GE: ( Love,  <r oot >)

step e)
Take Love: <r oot > as a new query,
Matching rule: Love: <r oot > == l ove
Temporary result:  l ove i ng.

step f)
All terms of the temporary result are atoms now at this step; the final result is
l ove i ng.

Although the rules behind the DATR engine are simple, it is lengthy to write
down every single step of its behavior. In the previous example, we see how the
engine deals with the seven basic forms in the temporary result. For the
recursive term, the fundamental idea is the same. The engine first breaks down
the original problem into pieces and then uses a depth−first algorithm to flatten
the recursion to arrive at a final answer.

Exampl e 1−9:  Fl at t en Compl i cat ed Ter m
    VERB:
      <mor  f or m> == " <mor  " <syn f or m>" >"
      <mor  pr esent  par t i c i pl e> == " <mor  r oot >"  s

    Love:
      <> == VERB
      <mor  r oot > == l ove.

    LovePP:
      <> == Love
      <syn f or m> == pr esent  par t i c i pl e

  Quer y:  LovePP: <mor  f or m>.

The Analysis:
     Initialize both LE and GE to:  ( LovePP,  <mor  f or m>)

  Step a) 
  LovePP: <mor  f or m> matches the rule <>==Love in node LovePP.
     The temporary result is Love.

  Step b)
     Update Love to:   Love: <mor  f or m>
     Update LE to:        ( Love, <mor  f or m>)
     GE is unchanged:  ( LovePP, <mor  f or m>)

  Step c)



  Love: <mor  f or m> matches the rule <>==VERB in node Love.
     The temporary result becomes VERB.

  Step d)
     Update VERB to VERB: <mor  f or m>
     Update local environment to:  ( VERB, <mor  f or m>)
     The global environment is unchanged: ( LovePP, <mor  f or m>)

  Step e)
  VERB: <mor  f or m> matches the rule <mor  f or m> in node VERB.
     The temporary result becomes " <mor  " <syn f or m>" >"

  Step f) 
     The term is recursive. Solve " <syn f or m>"  first
     Update " <syn f or m>"  to LovePP: <syn f or m>
     Update LE to ( LovePP,  <syn f or m>)
     GE is unchanged:  ( LovePP,  <syn f or m>)

  Step g)
     Get LovePP: <syn f or m> == pr esent  par t i c i pl e
     Update temporary result to: " <mor  pr esent  par t i c i pl e>"

  Step h)
     Update term to LovePP: <mor e pr esent  par t i c i pl e>
     Both LE and GE: ( LovePP, <mor  pr esent  par t i c i pl e>)

  Step i)
     Based on the rules above, the engine now flattens the recursive term and
     derives  the final result is l ove i ng.

A DATR program can have more complicated rules with recursion, such as those
in the Swahili program (shown later). The DATR engine may need many steps
to solve the query. However, the rules it uses are the same. Because the rules
that the engine uses to solve the query are the heart of the DATR, we present
another example here.  

It is highly recommended for any reader to go through this example without
referring to the trace first. If you can understand this example, then you have
grasped 80% of DATR.

Exampl e 1−11:  Last  Local / Gl obal  Envi r onment  Exampl e:

    Node1:
      <choi ce a> == " <choi ce b>"
      <choi ce b> == you ar e k i ddi ng.



    Node2:
      <choi ce a> == Node1
      <choi ce b> == shoul d be.

    Node3:
      <choi ce a> == no way t o be her e
      <choi ce b> == i s her e ?
      <quer y>    == " Node2: <choi ce a>" .

A brief trace for the query Node3: <quer y> is:
  Step a) 
      Temporary result: Node2: <choi ce a> 
      LE and GE:  Node2: <choi ce a>.

  Step b)
      Temporary result: Node1
      Term updated to: Node1: <choi ce a>
      LE:   ( Node1, <choi ce a>)
      GE:  ( Node2, <choi ce a>)

  Step c)
      Temporary result: “ <choi ce b>”
      Term updated to:  Node2: <choi ce b>
      LE and GE:  Node2, <choi ce a>)

  Step d)
      Final result: shoul d be.

Clauses

DATR allows some clauses that help us to write DATR program more easily.

We have already mentioned atom and node clauses. These two clauses
override the default naming convention of the DATR program.

Exampl e 2−1:
      #at oms NODE,  UPPER.
      #node  smal l ,  l ower .

In example 2−1, we define two atoms NODE and UPPER beginning with upper−
case letters and two nodes smal l and l ower beginning with lower−case
letters.

Hide, show and showif clauses are very useful for querying. Consider the



following case: We have a theory of 10000 different verbs and want to ask for
the present participle form for every single verb. Instead of writing these 10000
queries down, we can achieve the same goal by the following.

Exampl e 2−2:  Hi de and Show St at ement s
    VERB:
      <pr esent  par t i c i pl e> == " <r oot >"  i ng.

    Love:
      <> == VERB
      <r oot > == l ove.

    Hat e:
      <> == VERB
      <r oot > == hat e.

    . . .  % 9998 ot her  ver bs def i ned her e.

    #hi de VERB.
    #show <pr esent  par t i c i pl e>.

The hide statement lists the nodes that we don’t want to see when the full theory
is presented. DATR programs typically hide all nodes from which others inherit
(that is, internal nodes in the inheritance tree). The show statement lists the
paths that we would like to see when the full theory is presented.

The showif statement lists paths to be presented for nodes that satisfy given
conditions. We just give an example without explanation because it is quite
straightforward. 

Exampl e 2−3:  Showi f  St at ement
    VERB:
      <synt act i c cat egor y> == ver b
      <pr esent  par t i c i pl e> == " <r oot >"  i ng.

    NOUN:
      <synt act i c cat egor y> == noun
      <pl ur al  f or m>  == " <r oot >"  s.

    Love:
      <> == VERB
      <r oot > == l ove.

    St udent :
      <> == NOUN
      <r oot > == st udent .

    #hi de VERB NOUN.
    #showi f  <synt act i c cat egor y> == VERB



    #t hen <pr esent  par t i c i pl e>.
    #showi f  <synt act i c cat egor y> == NOUN
    #t hen <pl ur al  f or m>.

The vars clause allows the programmer to define variables. Wherever a defined
variable appears in the program, the rule in which it appears is replicated for all
possible values of that variable.  A variable must start with the $ sign.

Exampl e 2−4:  Var  St at ement
   #var s $vowel : a e i  o u.
   #var s $nonv:  a b c d f  g h j  k l  m n p q r  s t  v w x y z.

   Doubl eVowel :
      <>  == 
      <$vowel > == $vowel  $vowel  <> 
      <$nonv>  == $nonv <>.

   Love:
      <st r ange> == Doubl eVowel : <l  o v e>.

This program doubles all the vowels in the word while keeping the non−vowel
letters unchanged. For example: Query Love: <st r ange> yields the result
l  o o v e e.

Unused parts of queries

It is impossible to derive the trace to get l  o o v e e by just using the rule
we mentioned before. The rules we introduced to update local/global
environment are not 100% right; they need some small modification. We have
six rules corresponding to the six different basic forms, Node, pat h,
Node: pat h, " Node" , " pat h" and " Node: pat h" . The modification
affects the four that involve paths. The change we make is that the DATR
engine appends the unused part of the query path (the part not matching the
prefix on the left−hand side) to every path on the right−hand side. 

Exampl e 2−5:  Ol d/ New Rul e Compar i son
        Node:
           <at om1 at om2> == Node1 Node2: <>.
        Quer y:   Node: <at om1 at om2 append1 append2>

Temporary result under the old rule: 
       Node1: <at om1 at om2> Node2: <>
Temporary result under the new rule:



       Node1: <at om1 at om2> Node2: <append1 append2>

The transformations of Love: <st r ange> are:
Love: <st r ange> ==> Doubl eVowel : < l  o v e >
               ==> l  < o v e >
               ==> l  o o < v e >
               ==> l  o o v < e >
               ==> l  o o v e e.



Chapter 2 KATR

This project implements the DATR language with enhancements using the
platform−independent programming language Java.

Sets

In addition to basic DATR functionality, we add sets to KATR to make it more
useful in describing languages such as Swahili. The set idea comes from the
following.

Suppose a theory says that Love: <3r d−per son pr esent >==l oves .
The DATR query Love: <3r d−per son pr esent > will return the result
l oves , but the query Love: <pr esent 3r d−per son> does not work as
we hope. DATR requires that queries be in the right order because of a
shortcoming in its matching−rule definition. A matching rule is the longest prefix
of the query path, which takes into account the explicit order of the atoms in the
matching rule. 

One way to solve this problem is to list all rules in all possible query orders. This
solution is not practical because the number of combinations increases
exponentially. Until now, researchers have accepted the restriction that queries
must be carefully ordered. However, Swahili demonstrates that this restriction is
too confining, as shown in Example 3−1.

Exampl e 3−1 Par t i cul ar  or der  i s not  enough.
          Wor d:
           <> ==  
           <1sg> == n i  <>
           <neg 1sg> == s i  <>
           <past >  == l  i  <>
           <neg past > == k u <>.

We have three properties here: 1sg, neg and past . In this case, no matter
what kind of particular order we request for queries, it is impossible to solve the
query <neg 1sg past > correctly without replicating neg in the query (the
desired result is  s i  k  u). 

We realized this problem when we tried to use DATR to describe Swahili,
Bulgarian and other languages. We tried to solve this shortcoming of DATR by
using replication but found that sets provide a more elegant and general
solution. The basic idea is that the left−hand side of a rule may contain a set of
atoms instead of an ordered path; such a rule matches any query that contains



all the given atoms.

In order to build sets into KATR, we slightly modify the syntax of DATR. We use
#<at om1 at om2># to indicate a set rule in KATR. The semantics of DATR
are modified also. The DATR engine has two main algorithms, the matching
algorithm and the flatten algorithm. The DATR matching algorithm finds a rule
whose path part is the longest prefix of the query’s path. In the case of set rules,
matching finds the rule whose set is the largest subset of the query’s path, where
the length is still defined as the number of elements in this rule’s path.
Therefore, DATR considers all rules whose path is a prefix of the query if the rule
is a regular rule or whose path is a subset of the query if the rule is a set rule.
Then DATR selects the longest rule among them as the matching rule. If an
element (an atom or a variable) appears more than once in a set rule, it must
match the query as many times as it appears. In this regard, KATR sets are
really multisets.

Exampl e 3−2:  Set  Rul e
    Love:
    #<3r d−per son pr esent −t ense># == l oves.

Both queries
    Love: <3r d−per son pr esent −t ense>
    Love: <pr esent −t ense 3r d−per son> 
produce result l oves .

We provide another real−world KATR program here to show how to use sets.
(Thanks to Dr. Greg Stump.)

Exampl e 3−3:  Swahi l i  Exampl e 
#var s $abc: a b c d e f g h i j k l m n o p q r s t u v w x
y z.

SANDHI :  % el i s i ons
  <> ==              %def aul t :  succeed,  no r epl acement      
  <a a> == a <>
  <a u> == u <>      %some combi nat i ons ar e r epl aced
  <$abc> == $abc <>.  %ot her  al phabet i c char act er s r et ai ned

VERB1:
  #<># ==
  #<negat i ve># == h a.

VERB2:
  #<1 sg># == n i
  #<2 sg># == u
  #<3 sg># == a
  #<1 pl ># == t  u



  #<2 pl ># == m
  #<3 pl ># == w a.

VERB3:
  #<past ># == l  i
  #<negat i ve past ># == k u
  #<f ut ur e># == t  a.

VERB12:
  #<># == VERB1 VERB2
  #<negat i ve 1 sg># == s i .

VERB:
  #<># == SANDHI : <VERB12 VERB3 " <r oot >" >.

WANT:
  #<># == VERB
  #<r oot ># == t  a k a.

#hi de SANDHI  VERB VERB12 VERB1 VERB2 VERB3.
#show
  <1 sg posi t i ve f ut ur e>.

The trace for query WANT: <1 sg posi t i ve f ut ur e>
1) WANT: <1 sg posi t i ve f ut ur e> 
2) VERB: <1 sg posi t i ve f ut ur e>
3) SANDHI : < VERB12<1 sg posi t i ve f ut ur e> 
           VERB3<1 sg posi t i ve f ut ur e>
           WANT: <r oot > >
4) SANDHI : < 
    VERB1<1 sg posi t i ve f ut ur e> VERB2: <1 sg posi t i ve f ut ur e>

  t  a
  t  a k a >

5) SANDHI : <
    n i
    t  a

  t  a k a >
6) n i  t  a t  a k a

If we restrict ourselves to classical DATR, node VERB12 needs to put
negat i ve, 1 sg together, and node VERB3 needs to put negat i ve,
past together. That’s impossible in DATR. However, example 3−3
demonstrates that we can solve this order problem by using sets, and VERB1,
VERB2 and VERB3 all generate correct results. 

Negation

Another enhancement we add in KATR is that the ! sign before an atom in a set
rule means that this atom must not appear in the query for matching to succeed.



The negated atom is not matched against any particular atom in the query; it
merely represents an atom that must not be present.

Exampl e 3−4:  Negat i ve i n Set  Rul e
    Node:
    #<a b d># == a b d
    #<a b ! c d># == a b no−c d.

Query Node: <a b d> gives answer a b no−c d, because both rules
match this query and the length of #<a b ! c d># is longer. However, query
Node: <a b c d> gives answer a b d because rule #<a b ! c d>#
does not match this query because it has c .

The negation sign may also be placed before a variable, in which case it means
that no possible value of this variable may appear in the query. If an atom or
variable appears negated twice in a set, it is the same as if it appeared only
once, but the effective length of any match is longer.

Negation provides a convenient way to represent certain language rules. As a
result, negation simplifies the KATR program and makes the program to be
easier understandable and maintainable. Currently, Dr. Greg Stump is using
negation in his Bulgarian research.

Below is a short KATR program example provided by Dr. Greg Stump that
generates present−tense and past−tense paradigms for the verbs wal k and be
in English. As you can see, the default past−tense form for be is wer e. In the
first− and third−person singular of the past tense, however, be has the form
was . Using the notation ! second_per son in the rule introducing was
simplifies matters; without ! , it would instead be necessary to have two rules
(i.e. #<past f i r s t _per son si ngul ar ># == was and #<past
t hi r d_per son s i ngul ar ># == was ) .

Exampl e 3−5 Negat i on Exampl e:

VERB:
   #<># == " <st em>"  " <suf f i x>"
   #<suf f i x pr esent  t hi r d_per son si ngul ar ># == s
   #<suf f i x past ># == e d
   #<suf f i x># ==.

Wal k:
   #<># == VERB
   #<st em># == w a l  k.

Be:
   #<># == VERB
   #<st em pr esent  f i r st _per son si ngul ar ># == a m



   #<st em pr esent ># == a r  e
   #<st em pr esent  t hi r d_per son si ngul ar ># == i
   #<past  ! second_per son si ngul ar ># == w a s
   #<past ># == w e r  e.

#hi de VERB.
#show
  <pr esent  f i r st _per son si ngul ar >
  <pr esent  second_per son si ngul ar >
  <pr esent  t hi r d_per son si ngul ar >
  <pr esent  f i r st _per son pl ur al >
  <pr esent  second_per son pl ur al >
  <pr esent  t hi r d_per son pl ur al >
  <past  f i r st _per son si ngul ar >
  <past  second_per son si ngul ar >
  <past  t hi r d_per son si ngul ar >
  <past  f i r st _per son pl ur al >
  <past  second_per son pl ur al >
  <past  t hi r d_per son pl ur al >.

Implementation decisions

KATR’s design is upward−compatible with DATR: all DATR programs run in
KATR without any modification and give the same result. 

We also considered the following issues when we designed KATR: free
availability, ease of installation and completeness.

When we decided to use DATR as a tool for computational linguistic research at
the University of Kentucky, we tried several implementations available at that
time: DATR2.7, from the University of Sussex UK, QDATR, from the University
of Düsseldorf Germany, and ZDATR, from  the University of Bielefeld Germany.

DATR 2.7 is based on Prolog and needs to be customized for the underlying
Prolog implementation because there are so many dialects of Prolog. Based on
my experience, it is really hard for a linguist (most likely not a computer guru) to
find a usable Prolog, install and customize DATR. Moreover, the best−
supported Prolog (Sicstus Prolog) is not free. QDATR has versions for
Windows, MAC and Unix, but it runs slowly. ZDATR is written in C and provides
only source code, which must be compiled for underlying system because of the
incompatibility of different C compilers. None of the three implementations has a
full implementation of the DATR language. They all lack showi f functionality,
for example.

We decided to provide our own enhanced implementation of DATR after
suffering from these problems. We choose to use Java, which is a free,
platform−independent language, to implement KATR. People can install KATR
easily due to the Java’s "write once, run everywhere" property. We also



implemented all functionality of DATR, including showi f .



Chapter 3 KATR implementation

BNF

A good starting point for implementing a compiler is to have a BNF[1] (Backus
Normal Form) syntax definition. We started with the BNF in the ZDATR
implementation and modified it to meet our needs.

  <kat r  t heor y>  : : = <var s c l auses> <kat r  t heor y> |
                     <at om cl auses> <kat r  t heor y> |
                     <node cl auses> <kat r  t heor y> |
                     <show cl auses> <kat r  t heor y> |
                     <hi de cl auses> <kat r  t heor y> |
                     <showi f  c l auses> <kat r  t heor y> |
                     <sent ence> <kat r  t heor y> |
                     <sent ence>

  <var  c l ause>      : : = #var s <var  name> <var  val ue l i s t >
  <var  name>        : : = <i dent i f i er >
  <var  val ue l i s t >  : : = <var  val ue> |  
                        <var  val ue> <var  val ue l i s t >
  <var  val ue>       : : = <i dent i f i er >
 
  <at om cl auses>    : : = #at om <at om l i st > .
  <at om l i st >       : : = <nul l > |  <at om> |  <at om> <at om l i st >
  <nul l >            : : = ’ ’
  <at om>            : : = <i dent i f i er >

  <node cl auses>    : : = #node <node l i s t > .
  <node l i s t >       : : = <nul l > |  <node> |  <node> <node l i s t >
  <node>            : : = <i dent i f i er >

  <show cl auses>    : : = #show <si mpl e pat h l i s t > .
  <si mpl e pat h l i s t >: : = <si mpl e pat h> |
                        <si mpl e pat h> <si mpl e pat h l i s t >
  <si mpl e pat h>     : : = <r egul ar  pat h> |  <set  pat h>
  <r egul ar  pat h>    : : = ’ <’  <i t em l i st > ’ >’  
  <set  pat h>        : : = ’ #<’  <i t em l i st > ’ >#’
  <i t em l i st >       : : = <nul l > |  <i t em> |  <i t em> <i t em l i st >
  <i t em>            : : = <i dent i f i er >

  <hi de cl auses>    : : = #hi de <nodel i st > .

 <showi f  c l auses>   : : = #showi f  <si mpl e pat h> 
                           == <quer y r esul t >

[1] The proposal that BNF, which begin as an abbreviation of Backus Normal Form, be read as Backus−
Naur Form, to recognize Naur’s contributions as editor of the Algol 60 report.(Naur 1963) is
contained in a letter.(Knuth 1964). The highly influential Algol 60 report (Naur 1963) used Backus
Naur Form (BNF) to define the syntax of a major programming language. The equivalence of BNF
and context−free grammars was quickly noted, and the theory of formal languages received a great
deal of attention in the 1960’s.



                        #t hen <si mpl e pat h l i s t > .
  <quer y r esul t >    : : = <nul l > |  <at om l i st >

  <sent ence>        : : =  <node> :  <r ul e l i s t > .
  <r ul e l i s t >       : : =  <r ul e> |  <r ul e> <r ul es>
  <r ul e>            : : =  <si mpl e pat h> == <t er m l i st > |  
                         #<si mpl e pat h># == <t er m l i st >
  <t er m l i st >       : : =  <nul l > |  <t er m> |  
                         <t er m> <t er m l i st >
  <t er m>            : : =  <node> |  <at om> |  <var  name> |
                         <node> :  ’ <’  <t er m l i st > ’ >’  |
                         ’ <’  <t er m l i st > ’ >’  |  
                          "  <t er m l i st >"

We used JavaCC to help us write the compiler. JavaCC (Java Compiler’s
Compiler) is a free software tool provided by JavaSoft.  For those who have used
lex and yacc, JavaCC is an equivalent set of tools tailored to Java. JavaCC takes
a BNF specification and generates a parser. JavaCC also provides useful
information in debug mode, which can greatly benefit  developers. 

Data structures

The main data structures used in KATR include Ter m, Rul e,
El eI nNameTabl e and Theor y . 

    c l ass Ter m {  
      St r i ng   nodeName;
      Vect or    subTer ms;
      bool ean  i sGl obal ;
    }  

The field nodeName represents either the name of the node or the atom if any.
The i sGl obal field represents the difference between a quoted term (global)
and an unquoted term (local). The most complicated field is subTer ms , which
is an array of terms within the path.

We use a triple ( nodeName, subTer ms, i sGl obal ) to represent a term
and use [ el ement 1, el ement 2]  to represent a vector of atoms.

Exampl e 4−1:  Basi c Ter m Repr esent at i on:
at om                   ( at om,  nul l ,  f al se)
Node                   ( Node,  nul l ,  f al se)
" Node"                  ( Node,  nul l ,  t r ue)
<at om1 at om2>          ( nul l ,  [ at om1,  at om2] ,  f al se)
" <at om1 at om2>"         ( nul l ,  [ at om1,  at om2] ,  t r ue)
Node: <at om1 at om2>     ( Node,  [ at om1,  at om2] ,  f al se)
" Node: <at om1 at om2>"    ( Node,  [ at om1,  at om2] ,  t r ue)



KATR allows recursion within a path, so much more complex terms can be
constructed.

Exampl e 4−2:  Compl ex Ter m Repr esent at i on.
           <" r oot "  Anot her : <hel l o>> is represented as

               ( Node,  ?,  f al se )
                      / \
        [ (  nul l ,  r oot ,  t r ue ) ,  ( Anot her ,  ?,  f al se) ]
                                         / \
                                [ ( hel l o nul l  f al se) ]

The path (left−hand side) of a rule is also represented as a term, a special kind
of term whose subterms are all atoms.

Class Rul e is for representing rules.
    c l ass Rul e {
      Vect or   l ef t s i de;
      Vect or   r i ght s i de;
      bool ean i sSet ;
    }

The left−hand side is an array of atoms, and the right−hand side is an array of
terms. Both are represented as a vector of strings instead of Terms after
parsing has completed. The purpose of i sSet is to indicate whether this is a
set rule, which uses #<># instead of <>.  For example, for the rule 

Node: <p1 p2 p3> == Node1 Node2: <q1 q2>, 

Rul e. l ef t s i de is [ p1, p2, p3] , Rul e. r i ght s i de is
[ ( Node1, nul l , f al se) ( Node2,  [ q1, q2] , f al se) ] , and
Rul e. i sSet  is f al se. 

Class El eI nNameTabl e represents both nodes and atoms.
   Cl ass El eI nNameTabl e{
      St r i ng  st r Type;
      St r i ng  st r Key;
      Vect or   r ul es;
}

The first member is st r Type, which specifies whether to represent a node or
an atom. The second member is st r Key , which is the node name if



representing a node, and is the atom name if representing an atom. The last
member is a vector. The value of this vector is null if the instance represents an
atom, and contains all rules associated with the current node if the instance
represents a node.

Class Theor y  is built of nodes and other information.
   c l ass Theor y{
      Hasht abl e nameTabl e;
      Hasht abl e var Tabl e;
      Hasht abl e hi deTabl e;
      Vect or     showVect or ;
      Vect or     showi f Vect or ;

      l ong      MAXRECURSI VEDEPTH;
      Hasht abl e mapTabl e;
      St r i ng    gl obal Node;
      Vect or     gl obal Pat h;

      Hasht abl e i dent i f i er Tabl e;
      Hasht abl e t er mTabl e;
   }

The data members in the first group are used during both the parsing and
querying phases. Data member nameTabl e is a hash table for quick
reference to all the nodes and atoms defined. The key for nameTabl e is the
node or the atom name. The value of nameTabl e is an instance of class
El eI nNameTabl e. Field var Tabl e is a quick reference to all the
variables defined by the program.  For example,
    #var  $vowel :  a e i  o u.
adds a (key value) pair as ( vowel , [ a, e, i , o, u] ) . Field hi deTabl e
contains all the nodes that appear in the hide clauses. 

Both showVect or and showi f Vect or are vector types. ShowVect or
contains all paths defined by the show statements. The information carried by
the showi f statement is stored in field showi f Vect or . This vector has
three components for a single showi f statement: a vector of atoms in the i f
part, a vector of atoms in the t hen part, and all paths that need to be shown
under this condition. These fields are filled during the parsing phase and used
only in the query phase.

Example 4−3:  the representation of #showi f  statement
#showi f    <cat egor y> == ver b
   #t hen   <pr esent  par t i c i pl e>.
#showi f    <cat egor y> == noun
   #t hen   <pl ur al >.



The vector for storing these showif information is:
[  [ cat egor y]  [ ver b]  [ pr esent  par t i c i pl e]  
  [ cat egor y]  [ noun]  [ pl ur al ]  ]

The next group of data is used for querying. Read−only field
MAXRECURSI VEDEPTH defines the maximum recursion we allow during the
query.  This feature protects against mistakes in a program.

Example 4−4: A bad query that needs to be protected against.
   Node:  <at om1> == <at om2>
         <at om2> == <at om1>.
       Query Node: <at om1>

When variables are introduced by #var s statements, the mapTabl e field
records the value for every variable. Fields gl obal Node and gl obal Pat h
record the global environment.

Other data members in the class Theor y reduce memory use.
I dent i f i er Tabl e and t er mTabl e hash every identifier (string) and
every term that appears in the KATR program. We only build a reference to
represent them when the same identifier or term appears again. This reuse
saves memory.

Algorithm

The algorithm implementation is a straight translation from the methods
introduced before into the Java implementation. However, we came up with
several ideas to improve the speed of matching.  

First of all, we use a tree−structure dictionary to represent all the regular rules.
For example:  If we have the following rules:

    <yel l ow dog> == f oo
    <yel l ow cat > == bar
    <whi l e dog> == baz

The logical tree−structure dictionary representation is:
                   yellow  white
                    /     \       |
                dog  cat    dog



This dictionary−like structure allows matching to stop the comparison early if
appropriate.

For each set rule, we use a hash table to store those atoms in this rule before
the comparison. Consider the following case: The rule is
#<f oo bar  baz># and the query is <ha f oo t i bar nu baz>.
We first build a hash table for the query. We use this hash table to check
whether every atom in the rule is in the query. The cost for this approach is the
time for building the hash table plus the time for checking the atoms in the rule,
which is linear in the number of atoms in the rule and the query. On average,
this cost is less than the cost if we enumerate every possible order of the query
and do a regular matching against each of these orders.

Second, because the matching rule is the longest prefix, we always record the
current maximum matching length and do not bother to consider those rules
whose lengths are smaller than the current maximum matching length. We do
not sort the rules at compile time by length to make this optimization faster,
because there are generally few rules in a node, so there would not be much
improvement, and the speed of KATR appears to be sufficient as it is.

Finally, we only create one instance for each string. Therefore, all the string
comparisons become reference comparisons, which are much faster.

Here we provide a brief outline of the algorithm implementation. Please refer to
the source code for a more detailed explanation.

Mat chi ng al gor i t hm:
l ongest _mat ch_l engt h = −1;  
   l ongest _mat ch_r ul e   = nul l ;
   l ocat e t he appr opr i at e node
   f or  ever y r ul e i n t hi s node
       i f  ( l engt h of  t hi s r ul e < l ongest _mat ch_r ul e)
           cont i nue;
       i f  i t  doesn’ t  mat ch cont i nue
       i f  ( ( r egul ar  r ul e && pr ef i x)  | |  ( set  r ul e && subset ) )
           l ongest _mat ch_r ul e   = cur r ent  r ul e
           l ongest _mat ch_l engt h = cur r ent  r ul e’ s l engt h
       endf or

Answer i ng quer y:
   updat e quer y i f  necessar y
   i ni t i al i ze/ updat e l ocal / gl obal  envi r onment  i f  necessar y
   i f ( f i nd mat chi ng r ul e)
       f or  ever y t er m i n t he r i ght  hand si de
            f l at t en each t er m accor di ng t o t he r ul e
   el se
       er r or



Chapter 4  Testing

We tested KATR in four steps: parsing−level testing, data−structure verification,
algorithm testing, and integration testing. We also created a test suite that can
be used as well for other DATR or KATR implementations. 

The purpose of the parsing−level test was to make sure the KATR parser
actually accepts a KATR program with correct syntax and rejects KATR
programs with grammatical errors. The parsing−level test consisted of three
parts: Token testing ensured that the parser separates the KATR program into
tokens, rule testing checked that the KATR implementation recognizes each rule
in the KATR program, and node testing parsed a whole piece of code defining a
node.

Data−structure verification ensured that what we store in the computer memory
is complete and accurate. It should be possible to construct an equivalent KATR
program by using the data structure in memory. We first dumped out the data
structure after parsing a KATR program in human−readable format. This
readable information is organized according to KATR syntax: The data dump is a
well−formatted standard KATR program. Finally, we compared this well−
formatted program to the original KATR program to verify that our memory
representation of the KATR program is correct.

We have two algorithms in the KATR implementation; the matching algorithm
and the flatten algorithm. We tested the matching algorithm in three steps. In
the first step, we tested DATR regular rules to see whether the rule with the
longest prefix is selected. The second step tested set rules only and ensured the
longest subset is selected. In the last step, we mixed both regular and set rules
to check whether the result was the desired one.  

The flatten algorithm is the lengthiest part of the KATR program and therefore
received the most attention during the test phase. Testing began with the seven
basic forms. After these basic forms were verified, recursive forms were tested.
Test cases for complicated terms were constructed for this purpose to make
sure recursion does work.

A final test was integration testing. During this phase, real KATR programs were
used to verify the implementation. In this phase, many existing DATR programs
were tested while representative and real KATR programs using sets were also
constructed. During the integration phase, we also worked on tuning the
performance. Most of the ideas about how to speed the matching phase were
proposed at that phase. (Many thanks to Dr. Raphael Finkel for his suggestions).

During testing, most errors were picked up in the stages before integration
testing.  Coding KATR was not hard because its rules are clearly defined.



The parser part of the KATR implementation is about 600 lines, and the engine
part is about 2000 lines. Dr. G. Stump at the University of Kentucky is currently
using the KATR implementation seriously as a research tool, and he reports that
the KATR implementation runs smoothly and quickly. The implementation is
available at ftp://ftp.cs.uky.edu/cs/software/katr.tar.gz.  

From this project, I learned several things. First, I became more familiar with
Java programming, especially in writing a compiler. Second, I learned how to
get a detailed specification from a vague starting requirement. Last, I learned
how to add a new feature into an existing software package while considering all
kinds of tradeoffs. I also learned how to write a technical document.

The current KATR implementation, version 1.0, only provides basic interfaces for
compiling a KATR program and getting the whole theory. We will consider
providing a more easy−to−use and powerful interface in a future version. 
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