The design and implementation of EPOCH,

a web-based educational software package.
Prasanth Ramachandran,

Department of Computer Science,

University of Kentucky, Lexington.

Advised by: Dr. Raphael A. Finkel

December 2003.

Project sponsored by Prentice Hall Inc.
 Contents

1. Abstract

3

2. Introduction

3

3. Problem statement and scope

3

4. Project plan

4

5. User model and functionalities

5

6. Different components

6

7. Selecting components

7

8. Selecting development tools and platform

8

9. Design

8

10. Implementation details

20

11. Packaging and installation

22

12. Testing and debugging

22

13. EPOCH screen shots

23

14. Learning outcomes

27

15. Current status of the project

27

16. References

28

17. Appendix

39

1) Abstract

In this project, I developed an online homework program, which serves as a teaching aid in an Organic Chemistry course. This program, EPOCH (Electronic Personal Organic Chemistry Homework), requires students to draw chemical structures as their response. EPOCH attempts to give students feedback for wrong answers, thus enabling them to find the correct answer by themselves. In addition to the homework program, EPOCH consists of an authoring tool to create problems and an instructor tool to assemble assignments.

2) Introduction

Students can often learn material more effectively with the help of computers. The impact and popularity of the web has paved the way for on-line learning environments with far more outreach than their traditional counterparts. However, many fields, especially pure sciences, have yet to make full use of the benefits of these techniques. Among such fields, Organic Chemistry deserves special mention.

In an Organic Chemistry course, an instructor issues homework problems by giving the students a set of questions and possibly a key of correct answers. The student solves the questions, looks in the key to see if his answer is correct, and feels that he understands the concepts (Per03). However, a computer program, which evaluates the student’s response without giving away the correct answer and provides feedback to improve an incorrect answer, can be very effective in this situation. EPOCH is a web-based application designed to serve this purpose. The University of Kentucky (the departments of Chemistry and Computer Science) has developed EPOCH for Prentice Hall Inc. Prentice Hall Inc. will eventually make EPOCH a part of their online course-management software package available for educators.

3) Problem statement and scope

EPOCH has four classes of users: instructors, students, authors, and administrators. The instructor issues assignments from a ready-to-use set of problems. Each problem contains a statement, related images or chemical structures, and a set of conditions to evaluate the student's response. The student creates an answer using a structure-drawing applet and submits it to EPOCH. EPOCH analyzes this answer and displays a message if the answer is correct. If the answer is incorrect, EPOCH matches it against a problem-specific list of conditions and gives appropriate feedback to the student. If there is no feedback to give, EPOCH instructs the student to try again. The conditions are predicates about the structure based on its chemical properties. The author lists these conditions along with the problem statement and related images while authoring the problem.

The instructor can create a personal set of problems and customize the existing problems (for instance, to give specific feedback to the students). The instructor can view a summary of responses given by students. By viewing this summary, the instructor can understand the reasoning of the students and help them correct common mistakes. Administrators perform maintenance-related duties, such as configuring EPOCH and making backups.

EPOCH acts as a plug-in to a course-management application. The course-management application allows the instructor to set up an online course, distribute course materials, issue text-based homework, and manage enrollment. Blackboard™ is an example of such an application. Being a plug-in, EPOCH doesn’t perform duties like managing user registration and controlling user access.

The primary goal of this project is to design and implement two flavors of EPOCH.

a) EPOCH BB is a plug-in to the Blackboard™ course-management software. This version is very useful for those instructors who already use Blackboard for their courses.

b) EPOCH Lite is a plug-in to our own simple course-management application. Users who don't want the advanced features of Blackboard can choose this version.

Though there are two target products, they share common code as much as possible.

4) Project plan
The development team (Appendix C) allocated 12 months for developing EPOCH 1.0. Since the software is the first of its kind and the client was not exactly sure of the requirements, we decided to follow a prototype-based development approach. Prototype development is a common practice in software engineering (Pre01). The idea is to first develop a "glue-stick" model of the program with minimum functionality without concentrating on the finer details. After presenting this model to the client, the programmers get a firmer idea about the requirements of the application. The programmers then develop the application again, this time in a thorough and systematic manner.

5) User model and functionalities
Based on the primary requirements, I created a formal list of functionalities for each category of users. The four categories of users are

 1) Author: composes problems

 2) Instructor: modifies and uses problems, issues assignments

 3) Student: solves the assignments

 4) Administrator: maintains EPOCH program and data

The group of problem sets installed by the administrator for use by all instructors is called the master question pack. Each instructor inherits a copy of this pack called the local question pack. Changes each instructor makes to this pack are visible only to that instructor. However, given permission, the instructor can edit the master question pack so that his changes are visible to all instructors.

 List of functions

 Author

· Add/edit problems in the master question pack

· Export a problem set into a file and send it to the administrator for integrating into the master question pack

Instructor

· Create assignments by selecting problems from the local question pack

· View the grades of students in the assignments

· View student responses to all questions in the local question pack

· Add/edit problems in the local question pack

· Export problems from the local question pack into a file and send the file to the administrator for integrating into the master question pack.

Student

· Solve an assignment

· View feedback for each response

· View the total grade for a homework set

 Administrator

· Merge problem sets in the master question pack with the modified problem sets sent by instructors

· Install new problem sets sent by authors in the master question pack

· Create backups and restore data from backup

6) Different components

Figure 1 (Overall view)

[image: image1.png]
Figure 1 gives an overall component-based view of EPOCH. The web server is a program capable of serving static and dynamic HTML contents using standard techniques (cgi-bin and servlets). A set of programs written and packaged using such techniques is referred to as a web application. Binding these applications to the web server is referred to as deployment. The web server in the figure has two deployed web applications: the course-management application (COURSEWARE) and EPOCH. The EPOCH application maintains a database of chemical structures used in the problems. EPOCH accesses those structures through a chemical database-management system (CHEMDB). EPOCH also needs a database (PROBLEMDB) to store its own data. EPOCH uses the service of a Cheminformatics library (CHEMAPI) to manipulate chemical structures. COURSEWARE stores its own data in a separate database (COURSEDB).

Users access EPOCH using a web browser. The browser displays the HTML pages served by the web server. An HTML page may contain a structure-drawing applet in it (CHEMAPPLET). Most of these components are available commercially. In the next section, I explain the choices we made in selecting these components.

7) Selecting components
An array of commercial products matching the requirements of CHEMAPPLET, CHEMDB and CHEMLOGIC was available. I evaluated them based on the following features.

 (1) Technology required for gluing with other components

 (2) Use of accepted standards in Cheminformatics

 (3) Flexibility in the data types used in operations

 (4) Availability (such as free trial download)

 (5) Technical support and documentation

The following is an incomplete list of the products we tried.

a) ChemDraw, ChemOffice, ChemFinder

 (CambridgeSoft Inc., http://www.cambridgesoft.com)

b) ISISDraw, ISISBase (MDL Inc., http://www.mdli.com)

c) Chemistry Development Kit (Sourceforge, http://cdk.sourceforge.net)

d) MarvinSketch, JChem (ChemAxon Inc., http://www.chemaxon.com)

I selected the MarvinSketch™ applet and JChem™ as CHEMAPPLET and CHEMDB, respectively. JChem has a Java API (Application Programmer’s Interface) with a myriad of Cheminformatics functions. JChem also allows efficient storage of chemical structures. Thus, JChem satisfies the need of both CHEMDB and CHEMAPI. By using a Java API, we get platform independence and flexibility in selecting other components. Though MarvinSketch has some limitations compared to more popular alternatives like ChemDraw, its acceptance of Cheminformatics standards and capability of gluing with other components made it a perfect candidate for CHEMAPPLET. Since JChem lacked some necessary functions, we decided to supplement it with our own Cheminformatics programs.

The problem statement dictates the choice of COURSEWARE component. We can add plug-ins to the Blackboard application to extend its functionality. The plug-in has to be a Java-based web application. The Blackboard application is bundled with its own web server.

8) Selecting development tools and platform
I developed EPOCH as a Java-based web application in order to make use of JChem and to conform to the Blackboard plug-in specification. The Java Servlet 2.3 Specification™ (Ser03) and related standards deal with the development of such applications. An array of web servers supports this standard; Apache’s Tomcat web server (Appendix B) is a popular one. I use Tomcat for testing EPOCH during its development phase. I also use Tomcat as the default web server for EPOCH Lite. The Servlet standard guarantees that once developed, the EPOCH application runs on any compliant web server.

In order to use JChem as CHEMDB, we need a Relational Database Management System (RDBMS) like Oracle™ or MySQL™. We use the same RDBMS to store other information in EPOCH (PROBLEMDB). We chose Oracle 9.i as the RDMBS due to its availability and advanced features. We chose MDLI’s MOL format (Appendix B) to transfer chemical structures between different modules.

The essential development tools (Appendix B) include Java 2 Developer Kit (J2SDK) 1.4, Tomcat 4.1, Perl 5.8.0, GNU Prolog 1.2.13, and Oracle utilities like Sqlplus. I assembled all these tools on a RedHat Linux (Appendix B) machine.

9) Design

The design process of a web application must be different from that of a traditional application (Pre03). Since web applications are primarily content-driven, a big portion of the development effort is spent on presenting content. Web applications are also network-intensive. The implementation should consider network-resource usage, memory usage, and access speed. These goals are in addition to the conventional aims of software development: modularity, maintainability and reusability.

I followed a layered approach to design EPOCH. Each layer uses the service of lower layers to perform its functions. Figure 2 describes the structure of these layers and their interaction with each other.

Figure 2 (Layers)
[image: image2.png]
The module EPOCH Objects contains objects corresponding to the entities in the EPOCH application. Various layers communicate with each other by passing these objects. These objects provide mostly data abstraction. Code in this module needs the service of the Chemical Intelligence (CI) layer. For example, the class Problem needs the CI layer to decide whether the student’s response matches a specific condition.

The User Interface (UI) layer is responsible for producing the HTML pages and processing the HTTP commands from the client's browser. The Session layer implements the functions available for the user. The UI layer invokes these functions. The Session layer uses the Persistence layer for storing and retrieving data. CHEMDB manages the chemical structures, a part of the persistent data. I explain the design details of these layers below.

9.a) EPOCH Objects
I include the basic classes needed by the EPOCH application in this module. The different layers implement their functionalities with the help of these classes. The core part of this module is the class Problem, which stands for a single problem created by an author. The Unified Modeling Language (UML) (Alh02) diagram given in Figure 3 captures the relationship of the class Problem with a few other classes.

Figure 3 (Object Relational model)

[image: image3.png]
The class Problem has an aggregate (part of the whole) relationship to two other classes: Reference and ExpectedAnswer. Reference stands for a single figure or structure used by the problem. The class ExpectedAnswer represents a single condition entered by the author to evaluate the student’s response. Some conditions are Boolean combinations of individual sub-conditions. The class Expression and its relationship with ExpectedAnswer capture this fact.

 ExpectedAnswer has an evaluation algorithm for each type of condition (Appendix A). A class that implements the generic interface ExpectedAnswerInterface embeds this algorithm. This design makes it possible to plug in new conditions without disturbing the rest of the code. Each of these implementations in turn invokes the CI layer to perform the necessary evaluations.

Other important classes include Result (for the result of an attempt by a student), ProblemDisplay (the display-only view of a problem), AnswerDisplay (the display-only view of a single expected answer) and ProblemSetDescr (the attributes of an entire problem set).

9.b) User Interface layer

The User Interface layer interacts with the user via a browser. This layer serves two purposes. It gets the EPOCH objects from the Session layer and presents them as HTML pages to the browser. It also receives HTTP commands and data from the browser and translates them into function calls on the Session layer. I divide the code in this layer into two sections: the HTML pages and the programs for generating these HTML pages.

9.b.1) HTML and JavaScript code

HTML pages include data and controls interpreted and displayed by the browser. I use the <applet> tag to include CHEMAPPLET in these pages. An HTML page also includes properties pertaining to the style of the display. Some HTML pages have snippets of JavaScript code embedded in them. JavaScript allows us to manipulate the behavior of the browser on the client side. These functions include the following.

1) Managing (opening, resizing, positioning) browser windows at the client side.

 2) Validating user input at the client side.

3) Changing the appearance of the HTML page dynamically (hiding/showing contents).

4) Interacting with the CHEMAPPLET (transferring data between the CHEMAPPLET and the

 HTML page).

9.b.2) Java Server Pages (JSP™) code

JSP scripts allow easier production of dynamic HTML content compared to Java Servlets. The web server (more specifically, the JSP engine module) converts each JSP file into a Servlet before serving it to the client. This code serves two purposes.

 1) Presenting data in the Session layer to the user.

2) Converting HTML request parameters into Java objects.

This type of dynamic content handling is called the page-centric approach (Jsp01).

Notes on JSP

JSP is very useful for dynamically creating HTML data. It lets us use HTML tags and Java programs side by side. For example, consider the JSP script

 <html>

 <% for (int i=1; i<=2; i++) { %>

 Hello <%=i%>

 <% } %>

 </html>

At run time, the web server converts this script into a program, which in turn produces the following output for the client.

 <html>

 Hello 1

 Hello 2

 </html>

 However, such scripts carry some disadvantages in some contexts (Jsp01). Web projects need developers with HTML expertise to work on the user-interface code. However, the presence of Java code demands that they understand and use the Java language as well. So it is impossible to clearly partition the work according to developer skill. There are a few workarounds for this problem. Most of them involve the use of user-defined custom tags. Using this technique, the interface designer uses XML tags to denote a program element. Since EPOCH is a small project, I did not adopt this technique.

9.c) Session layer
The Session layer implements the activities of a user in a single interactive session with EPOCH. Here, a session corresponds to the set of actions performed by the user after logging in and before logging out. I implemented this layer as a set of classes. Each such class forms a stateful session object that stays in the memory of the web server. The HTTP protocol works on a request-response model, where individual requests from the browser don’t carry state. However, with the use of cookies, the Servlet engine of the web server implements a "virtual HTTP session" on top of these individual requests. The Servlet engine maintains this HTTP session until the program (JSP script) explicitly destroys it or the client remains inactive for a predefined time-out period (I use 60 minutes). I bind the EPOCH session object to this HTTP session. As a result, each page can handle requests from the client according to the current session state. I unbind the session object when the user logs out or starts a new session.

 I grouped the user functions in Section 5 into logical sets and designed a single session class for each of them. The session classes for EPOCH 1.0 are given below.

 1) ProblemSetSession: session in which an author creates/modifies a problem

 2) HWSession: session in which a student works on assignments

 3) HWCreateSession: session in which an instructor creates/modifies an assignment

 4) GradeBookSession: session in which an instructor views the gradebook

 5) AdminSession: session in which an administrator performs

 maintenance-related duties.

A typical session life cycle proceeds as follows. First, the user logs into the COURSEWARE application. The web server then creates an HTTP session for the COURSEWARE application. The EPOCH session begins when the user does an appropriate action (like clicking on a link) on the COURSEWARE. On initialization, EPOCH verifies the credentials of the user using utilities supplied by the COURSEWARE. After verification, EPOCH instantiates the appropriate session object and binds it to the current HTTP session. The JSP code in the UI layer handles all succeeding activities by invoking functions on the session object. Some actions (like adding a figure to a problem) are transient. The changes made by those actions stay in the session object. Some actions (like saving a problem) are persistent. The session object applies the changes made by those actions instantly to the database. The user ends the EPOCH session by clicking a “finish” or “close” button. EPOCH then unbinds the session object from the HTTP session and returns control to the COURSEWARE. The COURSEWARE destroys the HTTP session when the user logs out.

Session objects load data from the database as needed. For example, when the user views a problem set, the session object does a “light read” from the tables, getting just enough details for a non-detailed display of the problem. For example, if the conditions are complex, the session object makes no effort to read all of them or construct the decision tree. When the user chooses to view a problem, the session object loads all the problem details. This design reduces the time required for Persistence-layer function calls and the memory required for session objects.

It is impractical to embed all the functions needed by the user in a session object. The UI layer uses EPOCH Objects bound to the HTTP session for some functions. For example, when the user edits a problem, the UI layer extracts the entire object Problem (corresponding to the current problem) out of the current session object using a getProblem() call. The UI layer then binds this object to the HTTP session and invokes subsequent user actions (those that are not persistent) on it. When the user saves this problem, the UI layer passes the whole object back to the session using a single setProblem() call.

9.d) Persistence layer
This layer services the session layer to maintain the persistence of EPOCH objects. It is primarily a set of functions that convert objects into RDBMS tables and vice versa. This layer uses Structured Query Language (SQL) to communicate with the RDMBS server using the Java Database Connectivity (JDBC) API. This communication can be over a network. The RDMBS server can be on a machine different from the one that hosts the web server. In our setup, both RDMBS and the web server run on the same machine. The relational data model is also a part of this layer.

We can use the Entity Relationship (ER) model (RG00) to depict the relational data model. Using this technique, we describe the data in terms of entities and relationships among them. I derived the ER model directly from the Object Relational (OR) model, which already captured the characteristics of the EPOCH application. The concept of entity closely corresponds to the concept of object. In the OR design, we concentrate on how to neatly abstract data and operations. In the ER design, we focus on how to store the data in a consistent and efficient manner.

The ER diagram given below corresponds to the entities Problem, ExpectedAnswer, Reference and their relationships to one another. Reference and ExpectedAnswer are referred to as “weak entities”, whose existence is dependent on Problem. Each entity has a set of attributes that identifies an instance of it. For example, an ExpectedAnswer has the sequence number (of its appearance in the problem), the type (correct, partially-correct, wrong), the type of condition (like “if response is exactly”), and the data used for matching (like a molecule). The “has subexpression” relation represents the fact that a single expected answer can be a Boolean combination of individual answers.
Figure 4 (ER model)

[image: image4.png]
The next step is to convert the ER model into a relational schema. In this step, we define tables in which the rows correspond to an instance of the entity. We use column definitions to capture the attributes of the entities and their relationship between each other. Standard methods exist to convert a properly formed ER model into a database schema (RG00).

Figure 5 represents the relational schema of the ER diagram in Figure 4. The three table definitions capture the three entities and the three relations. I have used Data Definition Language (DDL), a part of SQL, to express the schema. Capital letters denote keywords. (Some keywords are specific to Oracle 9.i and don’t belong to the SQL standard.)

 Figure 5 (Relational schema)

[image: image5.png]
The schema definition involves constraints (in boldface). They help to capture the relations and prevent the data from being inconsistent. The constraints used here are

a) Domain-checking of column values (using the CHECK keyword)

b) Primary-key constraints

c) Foreign-key references

The following nine tables capture the entities and relationships in EPOCH.

1) chapters: chapter information like name and book-name

2) pbsets: problem-set information like name and author

3) problems: problem id and statements

4) answers: expected answers

5) references: figures

6) misc_values: miscellaneous values referred to by answers

7) hwsets: information about assignments, like name, instructor, and

 problem id

8) hwsets_sequences: the student-specific arrangement of problems

 in a random assignment.

9) responses: responses of students to problems

I implemented this layer as a set of classes, where a class (with mostly static functions) is designed for every EPOCH class that needs persistence. For example, the class ProblemStore deals with the persistence of objects of the Problem class. All the objects in this layer are stateless.

All the functions in this layer follow a single call-return model. For a single function, the Persistence layer opens a network connection with the SQL server, executes the SQL command, returns the results, and closes the connection. I used the following techniques to improve the performance of these functions.

a) Indexing the schema definitions

b) Combining nested SQL queries for executing complex queries

c) Batching execution of similar queries

d) Handing over some functions, like sorting, to the RDBMS

This layer also consists of the CHEMDB module, which stores, retrieves and efficiently searches chemical structures. The CHEMDB uses an RDBMS for storage purposes. We use CHEMDB library functions to create and operate the RDBMS.

Notes on RDMBS usage

There has been a clear shift in the data-storage and programming paradigms over the past few decades. While it has become easier to use object-oriented methods to design complex systems, the prominent technology used in data storage is still RDBMS. The result of this shift is "impedance mismatch", caused by the need to map objects to tables and vice versa (Sla03). Though Object-Oriented Database systems (OODBMS) have tried to eliminate the need for this mapping, they are far from replacing RDBMS as the primary data-storage mechanism.

I had to face some of the related issues in the implementation of EPOCH. I had to design a separate ER model for the data-storing tables. Though the ER model closely resembles the OR model (classes resemble tables, attributes relate to fields), I had to spend a great deal of effort disassembling and linearizing the objects to store them in tables with flat structures. As a designer, I realize that this effort was worthwhile it because of the advantages that come with RDMBS. It is very helpful to have a detached and "at-rest" model of the system. RDBMS provides an open view of the storage. The designer can choose the manner of storage (schema definition) and is able to retrieve data in an efficient way (SQL). The designer can also fine-tune the storage for efficiency, based on usage patterns (indexing). The relational model is also very powerful in avoiding inconsistencies in stored data. These features are in contrast to that of OODBMS, where a major part of the persistence mechanism is transparent to the user. Current RDMBS designs are rapidly evolving to accommodate storage of objects. Hybrid approaches like Object Relational Database Systems (ORDBMS) and Object-Relational mapping tools are also helpful in these situations.

9.e) Chemical Intelligence Layer

A central, innovative component of EPOCH is the module that evaluates the response of the student using a set of conditions given by the author. EPOCH evaluates these conditions sequentially until it finds a satisfied condition, leading to the result (correct or incorrect) and feedback for a response. If the response satisfies none of the conditions, EPOCH marks the response as incorrect and instructs the student to try again. The student response is always a chemical structure. The author inputs the conditions by selecting from a predefined set (Appendix A). The author can also form arbitrary Boolean combinations of conditions.

We use the JChem API to evaluate most of these conditions. The API lets us compare two molecules, search for substructures, calculate molecular weight, and so forth. JChem cannot determine if a molecule contains a substructure defined both by what must be present and what must be absent. Such a function is necessary for determining the presence of functional groups. We wrote our own Cheminformatics programs to implement these functions.

9.e.1) Functional-group analyzer

We can identify functional groups by both the presence and absence of certain atoms and bonds in the structure. For example, a molecule with a C singly bonded to O and that O singly bonded to H is the defined as an alcohol. But the same C must not be doubly bonded to another O, in which case, the molecule becomes an acid. The problem reduces to finding the presence of a specific subgraph in a graph, which can be solved by a method of picking candidate subgraphs sequentially, evaluating them and backtracking if not successful. This method is similar to the way Prolog (SS86) evaluates rules. So a Prolog interpreter can solve this problem, if we code the problem as a set of Prolog rules.

We developed a notation, Structure Definition Language (SDL), to define a functional group. Functional-group analyzer1 is a program that takes the group definition (in SDL) and the structure (in MOL format), compiles both into a Prolog program, submits them to a Prolog interpreter, and displays the result accordingly.

SDL is a line-by-line definition of the functional group using standard notation to represent atoms and predefined symbols for bonds (- means a single bond, = means double, -= means triple). Every clause is either positive (should be present) or negative (shouldn't be present). For example, the alcohol group is defined in SDL as

+ C1-O1-H1

- C1=O2 or C1-N

This SDL definition says that in order for a molecule to be an alcohol, it must have a chain of carbon, oxygen, and hydrogen as given. Also, the carbon in question (C1) should not be doubly bonded to another oxygen (O2) or any nitrogen (N).

1) Dr. Raphael Finkel wrote the initial version of the functional-group analyzer in Perl.

The functional-group analyzer converts this definition into a set of Prolog rules. Each such rule consists of a precondition on the right-hand side and a conclusion on the left-hand side. For example, the presence of a bond C-O can be checked by the Prolog rule

structure :- single(C,O), carbon(C), oxygen(O), !.

The functional-group analyzer converts the molecule to be checked into a set of Prolog facts. For example, the molecule methyl alcohol can be represented as a set of Prolog facts (ignoring the implicit hydrogen atoms, which are assumed to be attached to the carbon).

carbon(c1). oxygen(o1). hydrogen(h1).

single(c1,c2). single(c2,c1).

single(c2,o1). single(o1,c2).

single(o1,h1). single(h1,o1).

 Both the facts and rules are given to the Prolog interpreter. The goal "structure" can be satisfied with the given facts if and only if the functional group is present in the structure.

10) Implementation details

I designed the UI layer as a set of HTML and JSP files. I use HTML files when the data in the page is static. I use JSP files when the page contains dynamic data or the page needs to handle a HTTP-form submission. The HTML code makes use of JavaScript library functions included in JS files. I copied some JavaScript functions from public web sites and acknowledged them accordingly in the code.

I implemented all other layers, including the EPOCH objects, as separate packages. I followed the Standard Java package-naming conventions. The following are the names of the packages.

 a) EPOCH Objects

com.prenhall.epoch.answer.*

includes the class ExpectedAnswer and a manager class for managing

implementations of the matching algorithm

com.prenhall.epoch.answer.impl.*

includes implementations of ExpectedAnswerInterface
 com.prenhall.epoch.problem.*

contains EPOCH class Problem

 com.prenhall.epoch.*

other EPOCH classes, utility classes

b) Session layer

com.prenhall.epoch.session.*

c) Persistence layer

com.prenhall.epoch.db.*

 d) Chemical-intelligence layer

 com.prenhall.epoch.chem.*

(I implemented some functions as Perl programs. Java classes

 call these programs using Runtime.exec() calls)

Some project metrics:

Java source: 83 files, 12616 lines of code

JSP scripts: 126 files, 12363 lines of code

(JSP scripts contain approximately 75% HTML content)

 HTML content: 59 files, 1376 lines of code

 JavaScript code: 4 files, 467 lines of code

 Perl source: 3 files, 775 lines of code

EPOCH uses some Java libraries. A partial list of these libraries:

1) Oracle JDBC driver

2) GNU regular-expression library

3) O’Reilly Servlet package

11) Packaging and Installation
I packaged EPOCH BB according to the specification of the Blackboard Standard Extension. I packaged EPOCH Lite according to the Servlet specification (Ser03). In either case, the package contains

1) JSP and HTML files and other resources, like images and JavaScript libraries

 2) CHEMAPPLET files

 3) Compiled class files of all layers

 4) Third-party libraries (jar files)

5) The EPOCH configuration file

A typical installation consists of the following steps.

1) Setting up an oracle account

2) Creating the database schema

3) Deploying the application in the web server

a) Following procedures given by Blackboard for EPOCH BB

b) Following procedures of the web server in use for EPOCH Lite

4) Configuring the application

 5) Importing problem set data from external files into EPOCH

12) Testing and debugging
We tested the EPOCH 1.0 prototype in a limited manner. We opened a revised EPOCH 1.0 for beta testing to instructors and students of a few universities in September 2003. I classified the feedback from the users into two categories.

 Bug: Inability to execute a function or deviation from the expected behavior.

 RFE (Request For Enhancement): A functionality that is desirable, but not present.

After the release of the beta version, I have revised the code on a regular basis to make the fixes. I number and rank the bugs. I evaluate the RFEs based on their impact on the code. I apply those RFEs that require minor changes immediately. I sort out other RFEs and include them in the requirements of the next version of EPOCH. I debug the errors in the server side by print statements. For debugging client side errors (usually JavaScript errors), I use the JavaScript debugger that comes with Netscape Navigator 7.0. This effort for fixing and enhancing EPOCH continues.
13) EPOCH screen shots

In this section, I explain some characteristics of the user interface of two main EPOCH modules, the student interface and the authoring tool, with the help of some screen shots.

13.a) Student Interface

The student views the set of homework in the “Course Documents” area of the Blackboard application (Figure 6, A). When the student clicks on a “Try homework” link, a new window (B) pops up with the EPOCH homework program. Initially, the student views all the problems as a list. The student can view a specific problem by clicking the “Go” link (C) near it.

Figure 6: Student interface (view list)

[image: image6.png]

When the student selects a problem, he sees an interface as in Figure 7. On the left-hand side is the description of the homework (A), the problem statement, and related images (B). The right-hand side consists of a structure-drawing applet (C) and a submit button. The student draws the response and clicks on the submit button. The student can see the result of his submission in a status bar on the top (D). In this figure, EPOCH states that the given answer is incorrect and it gives the student a hint to improve the answer.

Figure 7: Student interface (view problem)
[image: image7.png]
13.b Authoring Tool

I put the link to invoke the authoring tool along with a few other miscellaneous links in the “Tools” section of Blackboard (Figure 8, A). When the user clicks on this link, a new window pops up (B) and displays the authoring tool. The initial view of the authoring tool is divided into two sections: a top section (C) where the author can select a chapter and a problem set and a bottom section (D) where the author can view the selected problem set.

Figure 8: Authoring tool (view problem set)

[image: image8.png]
When the author chooses to edit or add a problem, EPOCH takes him to a different screen (Figure 9). The bottom section of this screen has buttons to modify the problem. The author can edit the problem statement (A), add/edit/delete the figures (B) and add/edit/delete the expected answers (C). The top section (D) includes buttons for actions like save and reset.

Figure 9: Authoring tool (edit problem)
[image: image9.png]
14) Learning outcomes
While doing this project, I learned how to visualize, design, and implement a complex application using a modular approach. I also learned to appreciate the benefits of prototype-based development and to work in an incremental development mode with constant feedback from the client. I have taught myself some of the techniques involved in web-application development, such as JSP, HTML and JavaScript. I also learned the fundamentals of technical writing. Most important of all, it was a valuable experience to get involved in all stages of the software-development cycle.

15) Current status of the project
A copy of EPOCH 1.0 is hosted at the University of Kentucky (http://epoch.chem.uky.edu) and it is currently (December 2003) being beta tested. About 350 students enrolled in two Introductory Organic Chemistry courses at the University of Kentucky are using EPOCH 1.0 Lite. Anecdotal evidence1 from one instructor indicates that the students who use EPOCH perform better in the class tests compared to the students who don’t use EPOCH. We have heard some encouraging comments from the students who have benefited from EPOCH. I am now working on the design of EPOCH 2.0. EPOCH 2.0 contains additional facilities, like the ability to handle conformation and reaction-mechanism problems.

1) Information from a class using EPOCH in fall 2003

 Class test 1 - Class average: 77, EPOCH percentage: 43, EPOCH average: 86

 Class test 2 – Class average: 66, EPOCH percentage: 61, EPOCH average: 70

 Class test 3 – Class average: 53, EPOCH percentage: 63, EPOCH average: 60

 Class average: Average score (out of 100) of the class
 EPOCH percentage: percentage of students in the class who solved all

 EPOCH problems assigned by the instructor

 EPOCH average: The average score (out of 100) of those student

16) References

 (Pre01) Roger S. Pressman.

 Software engineering, a practitioner’s approach.

 McGraw Hill, 2001.

 (RG00) Raghu Ramakrisnan, Johannes Gehrke.

 Database Management Systems.

 McGraw Hill, 2000.

 (Ser03) Java Servlet 2.3 Specification.

 http://www.jcp.org/aboutJava/communityprocess/first/jsr053/
 (Jsp01) Professional JSP.

 Wrox Press, 2001.

 (Sla03) Community discussion.

 “Why aren’t you using an OODMS?”

 http://slashdot.org/article.pl?sid=01/05/03/1434242
 (Alh02) Sinan Si Alhir.

 Guide to applying the UML: with 241 illustrations.

 Springer, 2002.

 (Per03) Personal communication.

 Dr. Raphael Finkel, Dr. Robert Grossman, University of Kentucky.

 Paul Draper, Nicole Folchetti, Prentice Hall Inc.

 (SS86) L. Sterling, E. Shapiro

 The art of Prolog.

 MIT Press, 1986.

17) Appendix

A) Type of conditions in EPOCH 1.0

 1) If the answer is exactly A

 2) If the answer is not exactly A

 3) If the answer is either enantiomer of A

 4) If the answer is neither enantiomer of A

 5) If the answer contains the substructure A

 6) If the answer doesn't contain the substructure A

 7) If the answer contains (among other molecules) A

 8) If the answer doesn't contain (among other molecules) A

 9) If the answer has the skeleton A

 10) If the answer doesn't have the skeleton A

 11) If the answer has the same sigma-bond network as A

 12) If the answer doesn't have the sigma-bond network as A

 13) If the answer has the functional group Q

 14) If the answer doesn't have the functional group Q

 15) If number of X atoms in the answer is [equal to | more than | less

 than | not equal to | not more than | not less than] n

 16) If the answer has molecular weight y

 17) If the answer doesn't have molecular weight y

 18) If the answer has exact mass y

 19) If the answer doesn't have exact mass y

 20) If the number of rings in the answer is [equal to | more than | less

 than | not equal to | not more than | not less than] n

 21) If the charge on the molecule is [equal to | more than | less

 than | not equal to | not more than | not less than] c

 22) If the number of molecules in the answer is [equal to | more than | less

 than | not equal to | not more than | not less than] n

 A: a chemical structure

 Q: a functional group

 X: an element

 n: a positive integer

 c: a positive or negative integer

 y: a positive real number

B) Tools and related information

 1) Red Hat Linux 9

 http://ftp.redhat.com/pub/redhat/linux/9/en/iso/i386/
2) Java 2 Platform, Standard Edition, 1.4

 http://java.sun.com/j2se/1.4/
3) Tomcat web server

 http://jakarta.apache.org/tomcat/index.html
4) Perl compiler

 http://www.perl.com/pub/a/language/info/software.html
5) GNU Prolog interpreter

 http://pauillac.inria.fr/~diaz/gnu-prolog/
6) Oracle 9.i

 http://otn.oracle.com/products/database/index.html
7) JChem, MarvinSketch

 http://www.chemaxon.com
8) Blackboard Standard Extension

 http://www.blackboard.com/addons/b2/index.htm
9) MOL file format

 http://www.mdli.com/solutions/white_papers/ctfile_formats.jsp
10) JavaScript reference

 http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/
 11) SQL reference (Oracle)

 http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96540/toc.htm
 C) EPOCH developer team (2002-2003)
1) Dr. Raphael A. Finkel

 Professor, Department of Computer Science.

2) Dr. Robert B. Grossman

 Associate Professor, Department of Chemistry.

3) Roxana Ciochina

 Graduate student, Department of Chemistry.

4) Raghu Ram Chamala

 Graduate student, Department of Chemistry.

5) Prasanth Ramachandran

 Graduate student, Department of Computer Science.
Acknowledgements

I extend my sincere gratitude towards Prentice Hall Inc. for generously funding and supporting this project. I would also like to thank Dr. Robert Grossman and Dr. Raphael Finkel for guiding me in this project.
A

B

C

B

A

C

D

A

B

C

D

A

B

C

D

What is the product of the following reaction?

PAGE
2

