Database Explorer a Tool to Simplify Accessing Remote Databases

Nan Guo

Advisor: Dr. Raphael A. Finkel

A project report submitted in partial fulfillment of the requirements for the Degree of Master of Science

in the Department of Computer Science

at the University of Kentucky

Lexington, KY

May 2000

Acknowledgements

I would like to thank Dr. Finkel, my advisor, for all the guidance and support he has given me. His knowledge and personality always impress me and will always encourage me in my future career.

I also thank Dr. Jaromczyk and Dr. Jaynes for being my committee members.

my comments

word choice or punctuation or missing word, or grammar mistake

spelling

my insertion

Table of Contents

Abstract ……………………………………………………………………………3

1. Introduction …………………………………………………………………….4

2. Background ……………………………………………………………………..7
2.1 Relational Database and SQL………………………………………………..
7

2.1.1 Relational Database …………………………………………………….7

2.1.2 SQL …………………………………………………………………….
8

2.2 JDBC API …………………………………………………………………...
9

2.3 Two-Tier and Three-Tier Client/Server Model in JDBC Application ……...10

2.3.1 Two-Tier Client/Server Model ………………………………………...10

2.3.2 Three-Tier Client/Server Model ……………………………………….11

2.4 RMI …………………………………………………………………………11

2.5 JFC/Swing …………………………………………………………………..14

3. Design of the Database Explorer Application ………………………………..15
3.1 Driver Management ………………………………………………………....15

3.2 RDBMS Independent ……………………………………………………….16

3.3 Uniform Method for All Data Access ………………………………………16

3.4 RMI Framework …………………………………………………………….17

3.4.1 The Remote Interface …………………………………………………..17

3.4.2 The Remote Interface Implementation …………………………………18

3.4.3 The RMI Server ………………………………………………………...19

3.4.4 The Client Application …………………………………………………19

3.5 Session Management ………………………………………………………..20

3.6 Automatic Data Type Conversion …………………………………………..21

3.7 Automatic Generation of SQL Statement …………………………………...22

3.8 Graphical User Interface …………………………………………………….23

4. Implementation of the Database Explorer Application ……………………...25
4.1 System Requirement ………………………………………………………...25

4.2 Programming Issues …………………………………………………………25

4.3 Restriction and Limitation …………………………………………………..28

5. Testing and Test Results ……………………………………………………….29

6. Conclusion
………………………………………………………………………31
Abstract

In my project, I built a database application named “Database Explorer” to simplify accessing remote databases that support JDBC. By taking advantage of the flexibility provided by the JDBC API, the database explorer application is able to interact with any relational database, regardless of vendor and type of driver, as long as the database endorses JDBC. I employ Java RMI, which is a network protocol in the Java distributed computing model, as a means to build a three-tier client/server environment. In this three-tier environment, a third server acts as a proxy to handle requests from the client and then passes them off to the database server. This application allows multiple users to access a remote database simultaneously. I developed a GUI with Java JFC/Swing to help the user perform most database operations including data manipulation and data definition.

Chapter 1

Introduction

The goal of my project is to develop a tool named “Database Explorer” for simplifying access to remote databases that support JDBC (Java database connectivity). JDBC is a common interface to all the RDBMSs (relational database management system) that are supported in Database Explorer.

RDBMSs including Oracle, Sybase, Informix and Microsoft SQL Server play an important role in today's market. They are all based on a relational model that was proposed by E. F. Codd in 1970 [1]. The relational model is simple and elegant: A database is a collection of one or more relations, where each relation is implemented as a table with rows and columns. SQL (structured query language) is the standard language of all the relational databases. JDBC API is a set of specifications that defines how a program written in Java can communicate and interact with a database, that is. it provides a vehicle for the exchange of SQL between Java applications and a database. The JDBC API is designed to make a Java database application RDBMS-independent. It ensures that the application can interact with all databases in a standard and uniform way. At the heart of JDBC is the JDBC driver. The JDBC driver is not only responsible for ensuring that an application has consistent and uniform access to any database, but is also responsible for ensuring that any requests made by the application are presented to the database in a way that is meaningful to the database. But different database vendors have their own JDBC drivers, which creates difficulties for the user to choose, load and register an appropriate driver in his/her application. In addition, JDBC only allows for the sequential access of data in a ResultSet and does not allow for the multiple reads of the same data. Also, results that are not ResultSets font must be handled separately.

Currently most database applications are built on a two-tier client/server environment, where the database application is the client and the DBMS is the server. In this configuration, the client communicates directly with the database server without the help of another server or server process. A two-tier access system is easy to implement and maintains a persistent connection between the client and the database, thereby eliminating overhead associated with opening and closing connections. But it also has some disadvantages. For example, most currently available drivers require that native libraries be loaded on a client machine; applets can only open up connections to the server from which they are downloaded.

To overcome these limitations, I employed a three-tier client/server model. In this model, a third server is employed to handle requests from the client and then pass them off to the database server. The third server acts as a proxy for all client requests. The three-tier model has the benefit of separating the database server from the client. All client requests for the database are routed through the proxy server, thereby creating a secure (don't use comparatives without indicating what you are comparing to) environment for the database. Also, it eliminates the needs for the RDBMS to be located on the same server as the client and for applets to download the driver to the client, thus freeing us from the native-library security-access issue. But the three-tier client/server architecture also creates some difficulties of its own. Some disadvantages are: The client does not maintain a persistent database connection; it is difficult to develop a robust and efficient network protocol that can pass data back and forth between the proxy server and the client. These difficulties can be avoided by the use of Java RMI (remote method invocation). Since RMI can transparently transmit objects from one server to another, it can be used as a network protocol to transfer data between the client and the middle-tier proxy server. First, RMI sets up a listener process to handle access requests from the clients. When access requests are received, RMI invokes a set of methods that make the requests to the database on behalf of the client. In addition, RMI is an all-Java solution, so it is a vendor-independent implementation. Also, it maintains a persistent connection with the database.

Therefore, I was very interested in developing a Java database application to simplify accessing a database by the use of three-tier client/server model with RMI and JDBC to overcome some of the limitations of two-tier environment and some of the current limitations of JDBC drivers. Also, since the users of RDBMS are distributed, employing a distributed computing model (RMI) to develop this application should be appropriate. In my project, the back end is a database server that supports JDBC. A middle tier is a proxy server to listen for client requests, receive the requests, convert them to the proper format, and pass them on to the JDBC driver for further execution. The front end is the client application that initiates the requests and provides the GUI (graphical user interface) to help the user to perform database operations. I implement the GUI with Java JFC (Java Foundation Classes)/Swing. This application, which is named "Database Explorer", has the following features: (1) All JDBC drivers can be managed centrally in the server side. The user can easily add, delete, update or list the available drivers through command line. An appropriate driver is determined, loaded and registered at run time so that the user does not need to worry about choosing drivers. (2) It allows multiple users to access the same database, even the same table in a database simultaneously. The application will maintain all the data integrity by synchronizing each method that accesses the database. (3) By taking advantage of the flexibility provided by JDBC meta data, this application is able to interact with any database, regardless of the vendor and type of driver (I have already tested it on Oracle and Sybase). (4) It has simple database login procedure. (5) The user can randomly access any row or column or field of data in a table. (6) The application provides dynamic catalog, schema and table information. (7) The application can automatically convert the user's input into SQL statements and then submit them to the JDBC to execute. (8) The application can automatically map SQL data types into Java types. (9) The GUI part of this application allows database data and tables to be interactively created, fetched, displayed and modified even if the user does not know anything about SQL. It has a similar interface to the "Window Explorer". The design and implementation details are covered later in this report.

This report is organized into six chapters. Chapter 2 provides some background knowledge about relational databases, JDBC, two and three-tier client/server models, RMI and JFC/Swing. Chapter 3 describes the design of this database explorer application. Chapter 4 layouts the important issues for the implementation. Chapter 5 contains the test results. Chapter 6 is a brief conclusion and the bibliography.

Chapter 2

Background

2.1. Relational Database and SQL

2.1.1Relational Database

The relational model was proposed by E.F. Codd of the IBM San Jose Research Laboratory in 1970 [1]. It uses a collection of tables to represent both data and the relationships among those data. This model has established itself as the primary data model for commercial data-processing applications. The relational database is based on this model.

A relational database consists of a collection of tables, each of which is assigned a unique name. Each table has a number of columns (attributes) and rows (tuples or records). A row in a table represents a relationship among a set of values. Since a table is a collection of such relationships, there is a close correspondence between the concept of table and the mathematical concept of relation, from which the relational data model takes its name. This simple tabular representation allows declarative data access. The declarative nature and limited power (compared to a programming language) of the query language provides good protection of data from programming errors and make high-level optimization relatively easy. The most influential commercial query language is SQL, which is discussed later.

The process of designing a relational database involves identifying the entities, relationships and attributes. An entity is a "thing" or "object" in the real world that is distinguished from all other objects. A set of entities of the same type that share the same properties or attributes form an entity set. The individual entities that constitute a set are said to be extension of the entity set. An entity is represented by a set of attributes. Attributes are descriptive properties possessed by each member of an entity set. The designation of an attribute for each entity set expresses that the database stores similar information concerning each entity in the entity set; however, each entity may have its own value for each attribute. For each attribute, there is a set of permitted values, called the domain of that attribute, which defines the data type of the attribute. Usually, only a small, fixed collection of data types (such as integer, char, numeric and date) are supported in relational databases. A database thus includes a collection of entity sets, each of which contains any number of entities of the same type. An entity set is mapped to a table in a straightforward way: Each attribute of the entity set becomes an attribute of the table.

A relationship is an association among several entities. For example, we can define a relationship that associates customer Hayes with loan L-15. A relationship set is a set of relationships of the same type. It can also have descriptive attributes. A relationship set is also mapped to a table.

Numerous relational-database products are now commercial available today, including Oracle, Sybase, IBM's DB2, Ingres, Informix, Microsoft SQL Server. Database products for personal computers include Microsoft Access, dBase and FoxPro.

2.1.2 SQL

SQL is a specialized language used for the access and management of RDBMSs. Although we refer to the SQL language as a "query language", it contains many other capabilities besides querying a database. It includes features for defining the structure of the data, for modifying data in the database, and for specifying security constraints. SQL has clearly established itself as the standard relational database language. There are numerous version of SQL. The original version was developed at IBM's San Jose Research laboratory. This language, originally called Sequel, was implemented as part of the System R project in the early 1970s [2]. The language has evolved since then, and its name has changed to SQL (Structured Query Language). In 1989, SQL was standardized by the American National Standard Institute (ANSI) and the International Standards Organization (ISO). The database systems today typically support at least the features of SQL-89 [3]. The current version of the ANSI/ISO SQL standard is the SQL-92 standard [4]. The SQL92 standard incorporates several key features lacking in the earlier version. One of the most important additions to SQL92 standard is the addition and standardization of the information schema. The information schema is a table containing information about the database itself. The information is known as database metadata metadata in JDBC. The database metadata tells the user who owns a table, where it is located, and what type of data are stored in it. SQL92 also standardizes the procedures for database structure definition and manipulation. Although the SQL language has been standardized, it can be found in many varieties and forms. SQL92 is broken into three levels: SQL92 Entry Level, SQL92 Intermediate Level and Full SQL 92. Different RDBMSs comply with different levels of SQL92.

The SQL language mainly consists of two parts: The data-definition language (DDL) and the data-manipulation language (DML). DDL statements are SQL statements that alter the database's structure. The SQL DDL provides commands for defining relation schemas, deleting relations, creating indices, modifying relation schemas, defining views, specifying access rights to relations and views and specifying integrity constraints that the data stored in the database must satisfy. For example, if we want to create a table named "student" with attributes: SSN (Char (10)), name (Char (30)), age (Integer), and department (Char (10)), in which SSN is the primary key. The SQL statement is as follows:

CREATE TABLE Student (SSN

CHAR(10),

 Name

VARCHAR(30),

 Age

INTEGER,

 Department
VARCHAR(10),

 PRIMARY KEY
(SSN))

The DML statements are the SQL statements that alter the contents of the database. The SQL DML includes a query language based on both relational algebra and tuple relational calculus. It includes commands to query the database, insert tuples into, delete tuples from, and modify tuples in the database. A example a SQL DML statement to query a database is as follows:

SELECT
SSN, Name

FROM

Student

WHERE
Program = 'CS'

2.2. JDBC API

JDBC API stands for Java Database Connectivity Application Programming Interface. As its name implies, the JDBC API is a set of specifications that defines how a program written in Java can communicate and interact with a database. It defines how the communication is to be carried out and how the application and database interact with each other. More specifically, the JDBC API defines how an application opens a connection, communicates with a database, executes SQL statements, and retrieves query results. In other words, it provides a vehicle for the exchange of SQL between Java application and databases.

The JDBC API was designed by the people at JavaSoft to ensure that a Java database application can interact with all databases in a standard and uniform way. So it is DBMS independent. In an effort to keep the JDBC API as simple as possible, JDBC only incorporates those tasks that are essential. The goal is to create an interface that keeps simple tasks simple, while ensure that more difficult and uncommon tasks are at least possible. It is assumed that developers and vendors will use the basic building blocks provided by JDBC to build any higher-level interface desired. In order to ensure access to the widest range of database possible, JDBC was designed to support the most common form of SQL: ANSI SQL92 Entry Level Standard. By supporting the SQL92 Entry Level Standard, JDBC application programmers can be sure that the SQL will be uniform across all RDBMS and their application will be portable to any database.

The JDBC API defines a set of interfaces and classes to be used for communicating with a database. This set of interfaces and classes are all contained in the java.sql package. The JDBC driver is at the heart of all database access. It implements the driver interface and provides the means to interact with the database. Each database vendor has its own JDBC drivers. One needs to load and register different drivers for different databases. The JDBC driver is not only responsible for ensuring that an application has consistent and uniform access to any database, but is also responsible for ensuring that any requests made by the application are presented to the database in a way that is meaningful to the database. Thus a JDBC driver acts as a translator between Java and SQL: The JDBC driver receives the client application request, translates it into a format that the database can understand, and then presents the request to the database; the response is received by the JDBC driver, translated back into Java data format, and presented to the client application. In order for this all to occur, the JDBC driver must speak both Java to the application and the native language of the database.

There are seven steps to using JDBC to access a database no matter what JDBC driver and RDBMS you are using. They are: (1) Import the java.sql package. (2) Load and register the driver. (3) Establish a connection to the database server. (4) Create a statement. (5) Execute the statement. (6) Retrieve the results. (7) Close the statement and connection.

Currently, JDBC has been endorsed by many major database-vendors including the follows: Oracle, Sybase, IBM, Borland, Informix, Intersoft, Intersolve, Symantic, WebLogic.

2.3. Two-Tier and Three-Tier Client/Server Model in JDBC Application

2.3.1 Two-Tier Client/Server Model

The architecture of any client/server environment is by definition at least a two-tier system, the client being the first tier and the server being the second. Similarly, in a two-tier JDBC environment, the database application is the client and the DBMS is the server. In this configuration, the client communicates directly with the database without the help of another server process. In a typical two-tier implementation, SQL statements are issued by the application and then handed off by the driver to the database for execution. The results are then sent back via the same mechanism, but in reverse. A JDBC driver is responsible for presenting the SQL statement to the database in a form that the database understands.

There are several advantages to a two-tier database access system: (1) A two-tier access system is the least complicated to implement. (2) The two-tier architecture maintains a persistent connection between the client and the database, thereby eliminating overhead associated with opening and closing connection. (3) A two-tier system is usually faster than a three-tier implementation. Conversely, it has some disadvantages: (1) Most currently available drivers require that native libraries be loaded on a client machine. (2) Local configuration must be maintained for native code if required by the driver. (3) Applets can only open up connections to the server from which they were downloaded. So there are problems when two-tier system is used on the internet: You need to have your database running on the same server as your web server. This is usually not a good idea for several reasons, one of which is that web servers are the most prone to attacks from outside and are most vulnerable to hackers because they are directly visible to the Internet. Additionally, both RDBMS and web servers can be very resource-intensive applications. Some platforms may not be able to scale to the size necessary to run both applications simultaneously on the same server. So if keeping the database server separate from the web server is necessary, we need to consider the three-tier client/server model.

2.3.2 Three-Tier Client/Server Model

In a three-tier model, a third server is employed to handle requests from the client and then pass them off to the database server. The third server acts as a proxy for all client requests. Its role is to listen for client requests, receive the requests, convert them to the proper format, and pass them on to the JDBC driver for further execution. The three-tier model has the benefit of allowing us to separate our database server from the web server. All client requests for the database are routed through the proxy server, thereby creating a more secure environment for the database. In a two-tier environment, the client uses a driver to translate the client's request into a database native library call. In a three-tier environment, the driver translates the request into a network protocol and then makes a request via the proxy server. This approach eliminates the need for the RDBMS to be located on the same server as the web server. It also eliminates the need for the applets to download the driver to the client, thus freeing us from the native-library security-access issue.

Some of the advantages of using a three-tier model include: (1) Clients do not need to have native libraries loaded locally. (2) Drivers can be managed centrally. (3)The database server does not have to be directly visible to the Internet. However, the three-tier model also has some disadvantages, including (1) The client does not maintain a persistent database connection. (2) A separate proxy server is required. (3) It is difficult to develop and incorporate a robust and efficient network protocol that can pass data back and forth between the proxy server and the client. In addition the network protocol used by the driver may be proprietary and therefore not vendor independent. Fortunately, Java provides a network protocol RMI (remote method invocation) that is well suited to this task.

2.4. RMI

The Java Remote Method Invocation (RMI) allows an object running in one Java Virtual Machine (VM) to invoke methods on an object running in another Java VM. RMI provides for remote communication between programs written in the Java programming language. RMI applications are often comprised of two separate programs: a server and a client. A typical server application creates some remote objects, makes references to them accessible, and waits for clients to invoke methods on these remote objects. A typical client application gets a remote reference to one or more remote objects in the server and then invokes methods on them. RMI provides the mechanism by which the server and the client communicate and pass information back and forth. Such an application is a distributed object application.

Distributed object applications need to (1) Locate remote objects. Applications can use one of two mechanisms to obtain references to remote objects. An application can register its remote objects with RMI's simple naming facility, the rmiregistry, or the application can pass and return remote object references as part of its normal operation. (2) Communicate with remote objects. RMI handles the details of communication between remote objects. To the programmer, remote communication looks like a standard Java method invocation. (3) Load class bytecodes for objects that are passed around. Because RMI allows a caller to pass objects to remote objects, RMI provides the necessary mechanisms for loading an object's code, as well as for transmitting its data.

The illustration below depicts an RMI distributed application that uses the registry to obtain a reference to a remote object. The server calls the registry to associate (or bind) a name with a remote object. The client looks up the remote object by its name in the server's registry and then invokes a method on it.

[image: image1.png]
One of the central and unique features of RMI is its ability to download the font bytecodes of an object's class if the class is not defined in the receiver's virtual machine. The types and the behavior of an object, previously available only in a single virtual machine, can be transmitted to another, possibly remote, virtual machine. RMI passes objects by their true type, so the behavior of those objects is not changed when they are sent to another virtual machine. It allows new types to be introduced into a remote virtual machine, thus extending the behavior of an application dynamically, which is called dynamic code loading.

Like any other application, a distributed application built using Java RMI is made up of interfaces and classes. The interfaces define methods, and the classes implement the methods defined in the interfaces and, perhaps, define additional methods as well. In a distributed application, some of the implementations are assumed to reside in different virtual machines. Objects that have methods that can be called across virtual machines are remote objects. An object becomes remote by implementing a remote interface, which has the following characteristics: (1) A remote interface extends the interface java.rmi.Remote. (2) Each method of the interface declares java.rmi.RemoteException in its throws clause, in addition to any application-specific exceptions.

RMI treats a remote object differently from a non-remote object when the object is passed from one virtual machine to another. Rather than making a copy of the implementation object in the receiving virtual machine, RMI passes a remote stub for a remote object. The stub acts as the local representative, or proxy, for the remote object and font is, to the caller, the remote reference. The caller invokes a method on the local stub, which is responsible for carrying out the method call on the remote object.

A stub for a remote object implements the same set of remote interfaces that the remote object implements. This approach you need a noun after "this" allows a stub to be cast to any of the interfaces that the remote object implements. However, this approach also means that only those methods defined in a remote interface are available to be called in the receiving virtual machine.

A working RMI System is composed of several parts: (1) Interface definition for the remote services. (2) Implementation of the remote services. (3) Stub and skeleton files. (4) A server to host the remote services. (5) An RMI naming service that allows clients to find the remote services. (6) A class-file provider (an HTTP or FTP server). (7) a client program that needs the remote services.

In a three-tier JDBC application, RMI can be used as a robust and efficient network protocol to pass data back and forth between the proxy server and the client because RMI can transparently transmit objects from one server to another. RMI can easily be programmed to act as a proxy service to a database by setting up a listener process to handle access requests from clients. When access requests are received, RMI can invoke a set of methods that make the request to the database on behalf of the client. The advantages of using RMI to implement a three-tier client/server model include: RMI is a part of Java, not a vendor-specific implementation; it has all the advantages of a three-tier architecture described previously. It maintains a persistent connection with the database.

2.5. JFC/Swing

JFC (Java Foundation Classes) is a set of Graphical User Interface (GUI) classes that integrate with JDK1.1.5 and is standard with the Java 2 platform to provide a more polished look and feel than the standard Java AWT (Abstract Window Toolkit) component set. JFC is composed of five APIs: AWT, Java 2D, Accessibility, Drag and Drop, and Swing. The AWT components refer to the AWT as it exists in JDK versions 1.1.2 and later. Java 2D is a graphics API based on technology licensed from IBM/Taligent. The Accessibility API provides assistive technologies, like screen magnifiers, for use with the various pieces of JFC. Drag and Drop support is part of the next JavaBean generation. Swing includes a component set that is targeted at forms-based applications. The Swing components provide a set of well-groomed widgets and a framework to specify how GUIs are visually presented, independent of platform. A subset of Swing widgets are analogous to the basic AWT widgets but have greater capabilities than their corresponding AWT widgets. In some cases, the Swing versions are simply lightweight components, rather than peer-based components. The lightweight component architecture was introduced in AWT 1.1. It allows components to exist without native operating system widgets so the components will have the same look and feel on all platforms. Swing also contains some new widgets such as trees, tabbed panes, tables and splitter panes that greatly improve the look and functionality of GUIs. In conclusion, Swing expands and simplifies the development of cross-platform applications.

Chapter 3

Design of the Database Explorer Application

I designed the database explorer application to simplify accessing any remote databases that support JDBC. By taking advantage of the flexibility provided by JDBC API, this application can interact with any relational database, regardless of vendor and type of driver, as long as the RDBMS endorses JDBC, that is, JDBC serves as a common interface to all these RDBMS. Database Explorer employs a distributed computing model, Java RMI, to build a three-tier Client/Server architecture. The back end is a relational database server. The middle tier is a proxy server to listen for the client requests, receive the requests, convert them to the proper format, and pass them on to the JDBC driver for further execution. The front end is the client application that initiates the requests and provides the GUI to help the user to perform database operations. The GUI is implemented with Java JFC/Swing. This application, which is named "Database Explorer", provides the following features: (1) All JDBC drivers are managed centrally in the server side. The user can easily add, delete, update or list the available drivers through the command line. Database Explorer determines, loads and registers an appropriate driver at run time so that the user does not need to worry about how to choose drivers. (2) It allows multiple users to access the same database, even the same table in a database simultaneously. The application will maintain data integrity by synchronizing each method that accesses the database. (3) By taking advantage of the flexibility provided by JDBC font metadata, this application is able to interact with any database, regardless of the vendor and type of driver (I have already tested it on Oracle and Sybase). (4) It provides a simple database login procedure. (5) The user can randomly access any single row or column or field of data in a table. (6) The application provides dynamic catalog, schema and table information. (7) The application can automatically convert the user's input into SQL statements and then submit them to the JDBC for execution. (8) The application can automatically accomplish the data-type mappings from SQL data types to Java types. (9) The GUI part of this application allows database data and tables to be interactively created, fetched, displayed and modified even if the user does not know anything about SQL.

3.1 Driver Management

Each database vendor has its own JDBC drivers. One needs to load and register different drivers for different databases. It creates difficulties for the user to choose and load the appropriate driver that suits his/her database. In addition, since Database Explorer is intended to work with any database that support JDBC, it is necessary to make Database Explorer vendor-independent by eliminating the hard-coding of driver names. Furthermore, the three-tier client/server architecture makes it possible to manage the drivers centrally in the server side. So in my design, I include a class DriverlistManager name it and use that name consistently to maintain, retrieve and modify a persistent list of drivers to be loaded by Database Explorer. DriverlistManager contains several methods for storing and retrieving JDBC driver names from a single configuration file. It provides a means for the user or system administrator to determine what drivers should be loaded at run time rather than at compile time. To accomplish this task, DriverlistManager simply writes the list of driver names to a file. At application run time, the getDriverList() method is called to retrieve and load the stored driver list. The user can also add to, delete from, update, or print the list of available drivers through a command-line interface. So this class actually manipulates the contents of the driver list. To login to a database, the user only needs to provide the JDBC URL, user name and password and does not need to worry about what driver he/she should use. Database Explorer determines, loads and registers the appropriate driver at run time.

3.2 RDBMS Independent

To support any RDBMS that endorses JDBC, any implementation in font Database Explorer should be vendor and driver-independent. I achieve independence by taking advantage of the flexibility provide by the JDBC metadata. In Database Explorer, I employ the methods in the JDBC DatabaseMetaData and ResultSetMetaData interfaces extensively. The DatabaseMetaData interface enables me to dynamically discover properties of the RDBMS and database state itself. For instance, I am able to discover catalog, schema or table-related information so I can build an application that has the ability to dynamically select and use catalog, schema and table objects. The ResultSetMetaData interface allows me to discover information about structure and properties of the results. For instance, I am able to get the information about column count, column types and column titles dynamically at run time. Thus I do not require previous knowledge of the data or database structure. In other words, by the use of result set metadata, I can write the entire application without even knowing what RDBMS, tables, or types of data are to be accessed.

Since SQL is the standard language of all RDBMSs and JDBC supports ANSI SQL92 Entry Level Standard, which is the most common form of SQL, Database Explorer should be portable to any database by the use of JDBC.

3.3 Uniform Method for All Data Access

One of the drawbacks of JDBC is that it only allows for sequential access of data in ResultSet and does not allow for multiple reads of the same data. Second, results that are not the ResultSet, such as row count, must be handled separately. What are results that are not the ResultSet? Third, the standard JDBC methods provide no means for determining the number of rows returned by a query or in a ResultSet. To simplify access to data results, it is desirable to design a uniform method for all data access so that I can remove some of the bottlenecks and difficulties that arise from using the JDBC methods directly.

I designed and implemented a class DataTable to handle results of all types by providing several constructor methods for this class. I use this class to be a common way to access all data. The data can be actual ResultSets, row counts or even groups of related metadata, such as database-vendor information and database-driver information. Conceptually, we can think of all data being placed in an array of vectors and having a row and column indices. Each column of data has a certain amount of header information associated with it (metadata). The header information describes properties of that column, such as its column name. Once the data is stored in this "two-dimensional array", I can access it by referring to its row-column pair. Thus this approach allows for random access to any field, row, or column of data and is much more flexible than using a row pointer and accessing all data sequentially. Additionally, I want to be able to access all of my results in the same manner. Row counts associated with SQL functions, such as update, insert and delete, therefore are returned as a single row of data as ResultSet objects. DataTable creates a consistent and uniform method for all data access. Also, DataTable extracts the information about the number of rows returned by a query or in a ResultSet and allows direct access to it.

3.4 RMI Framework

In the introduction, I introduced RMI as a means to build three-tier client/server environment. The three-tier environment helps overcome some of the limitations of the two-tier environment and some of the limitations of JDBC drivers. To make this model work for my application, I have to build the necessary framework for RMI. This framework consists of four components including three server-side components and one client-side component. I discuss these components in details in this section. 3.4.1-3.4.3 discuss the server-side components and 3.4.4 discusses the client application.

3.4.1 The Remote Interface

The RMI architecture is based on one important principle: the definition of behavior and the implementation of that behavior are separate concepts. RMI allows the code that defines the behavior and the code that implements the behavior to remain separate and to run on separate JVMs. It fits nicely with the needs of a distributed system where clients are concerned about the definition of a service and servers are focused on providing the service. Specifically, in RMI, the definition of a remote service is coded using a Java interface. The implementation of the remote service is coded in a class.

The first component to be built is the remote interface. It is the heart of RMI. This component, like all interfaces, defines all the methods and variables that are available to the client. The interface does not implement any methods. In Database Explorer, since I want to make all the methods in the classes of DataTable and DatabaseAccess available to the user, my DBAccessInterface interface contains an entry for every public method in both of these classes. To be able to let multiple clients to use this application simultaneously, I need to create multiple instances of the remote implementation. To differentiate which instance is used, I include an additional argument (comparable to methods in DataTable and DatabaseAccess) in the methods' signature as a reference ID. This argument is discussed in details in Section 3.5.

3.4.2 The Remote Interface Implementation

The remote interface implementation is a server-side component that acts as a proxy for the client. With RMI, remote objects are not actually downloaded to the client, but rather only references (handles) to the object. When executed, they execute on the server, not the client. Results and return values are first serialized and then sent back to the client.

RMI supports two classes that implement the same interface. The first class is the implementation of the behavior, and it runs on the server. The second class acts as a proxy for the remote service and it runs on the client. A client program makes method calls on the proxy object, RMI sends the request to the remote JVM, which forwards it to the implementation. Any return values provided by the implementation are sent back to the proxy and then to the client's program. This succession of events is shown below.

[image: image2.png]
Stubs and Skeletons:

The implementation is also used to generate the client-side stubs and server-side skeleton. The stubs and skeletons actually perform communication between the client and the server. To generate them, I run the rmic command against the implementation class file.

The RMI Architecture Layers:

The RMI implementation is essentially built from three abstraction layers. The first is the Stub and Skeleton layer, which lies just beneath the view of the developer. This layer intercepts method calls made by the client to the interface reference variable and redirects these calls to a remote RMI service. The next layer is the Remote Reference Layer. This layer understands how to interpret and manage references made from clients to the remote service objects and connects clients to remote service objects that are running and exported on a server. The connection is a one-to-one (unicast) link. The transport layer is based on TCP/IP connections between machines in a network.

3.4.3 The RMI Server

The last server-side component is the RMI server application, which is a remote service host program. It is a stand-alone Java application that binds the remote objects to the RMI registry through a naming service. RMI itself includes a simple naming service called the RMI Registry, rmiregistry. The RMI Registry runs on each machine that hosts remote service objects and accepts queries for services, by default on port 1099. It contains a list of objects available to clients. On a host machine, a server program creates a remote service by first creating a local object that implements that service. Next, it exports that object to RMI. When the object is exported, RMI creates a listening service that waits for clients to connect and request the service. After exporting, the server registers (binds) the object in the RMI Registry through the Naming.rebind(URL) method. The URL takes the form: rmi://<host_name> [:<name_service_port>] /<service_name>, where the host_name is a name recognized on the local area network (LAN) or a DNS name on the Internet. Name_service_port needs to be specified only if the naming service is running on a different port to the default 1099.

In Database Explorer, the server application contains a single instance of the implementation and binds this instance to the registry. When a client application needs to access the remote object, it contacts the registry, which in turn returns a reference to the instance. However, this single instance is shared by all remote clients and therefore must be developed in such a way that accommodates multiple users. This topic is discussed in Section 3.5.

3.4.4 The Client Application

After all the server-side components are in place, the client application needs to obtain a reference to the remote object by calling the Naming.lookup(URL) method. Once the client has the reference to the object, it can begin using the objects made available through the remote interface. My client application implements the GUI using JFC/Swing and interacts with the DatabaseAccess class and DataTable class via RMI and DBAccessInterface. The GUI design is discussed later in this chapter.

The figure on the next page illustrates the three-tier Client/Server Model using RMI.

[image: image3.png]
3.5 Session Management

As I mentioned above, Database Explorer accommodates multiple users. But since there is only a single instance of the remote interface implementation, the implementation itself must be able to create multiple instances of the DatabaseAccess and DataTable objects. To do so, I create two stacks containing integers. Each integer is a reference ID for either a DatabaseAccess or a DataTable object. Next, an array of each object is initialized to the same number of object ID numbers on each stack. When a client requests access to one of these objects, an ID number is popped off the appropriate stacks, and a new instance of the object is created and placed in the object array using the ID number as the array index. Whenever the client needs to access that object, it can easily reference that object by using the ID number as the array index. After the client has obtained a reference ID to the remote object, it needs to use that ID for every remote method call. That is the reason I include an additional argument (session ID or table ID) in all the methods in the remote interface. When the user is done with the object, I dispose of the object and push back the ID number on the stack. Then the ID number can be used again by the next user.

The figure below demonstrates how it works:

Figure 3. Object array, Object Stacks, reference to objects from stack

3.6 Automatic Data Type Conversion

Because data is retrieved from a SQL database to a Java application, an appropriate mapping is required between SQL data types and Java native data types. In order to correctly display the data retrieved from the database in the GUI (specifically to a tabular format) and construct an SQL statement from the user's input, I implement a method to automatically get the data type of a specified column in the database and convert it into the corresponding Java data type. The mapping from SQL data types to Java types are as follows:

SQL Data Type

Java Type

CHAR

String

VARCHAR

String

LONGVARCHAR

String

NUMERIC

java.lang.Bignum

DECIMAL

java.lang.Bignum

BIT

boolean

TINYINT

integer

SMALLINT

integer

INTEGER

integer

BIGINT

long

REAL

float

FLOAT

double

DOUBLE

double

BINARY

byte[]

VARBINARY

byte[]

DATE

java.sql.Date

TIME

java.sql.Time

TIMESTAMP

java.sql.Timestamp

3.7 Automatic Generation of SQL Statement

One of my goals for developing this database application is to accommodate users with different levels of expertise in SQL and to make database operations as simple and pleasant as possible. So in Database Explorer, I provide several functions to automatically convert user’s inputs from the GUI into correct SQL statements and submit them to the JDBC for execution. By just clicking some buttons, making some choices and/or filling in some information in the text fields, a novice user is able to perform most of the basic database operations, such as searching the database, inserting data into or deleting data from the database, creating new tables, dropping existing tables and changing table schema. So even if the user has no knowledge about SQL, he/she can still do some database operations. An experienced user can directly submit his/her SQL statements to the JDBC and perform some sophisticated database operations such as table join, nested query, sorting the data and aggregate function. Therefore Database Explorer gives the user a lot of flexibility to interact with the database. All the results returned from the database are shown in a tabular format with column titles, like the Microsoft Excel spreadsheet.

3.8 Graphical User Interface (GUI)

I developed the GUI of Database Explorer by using Java JFC/Swing, which is a class library in JavaSoft's Java Foundation Classes. Most of Swing widgets are lightweight components, which means they are written with 100% pure Java. So they present the same look and feel across different platforms. In addition, Swing provides a much richer set of widgets to use and much more powerful functionality for each widget than that in Java AWT.

The main window in my client application consists of several elements. On the left-hand side, I build a node tree that display all the available catalogs (if supported), schemas and tables. From the tree, the user can select a table node and have its contents displayed on the right-hand portion of the screen. Each table is fitted with appropriate scroll bars and headers and placed in a "tab folder" so that the user can quickly navigate among multiple tables. On the top of the screen, I build a menu to contain all the options available for the user to use. Below the menu, there is a toolbar that contains the shortcut button to some menu items. The user can perform most database operations by interacting with the GUI. All the results are displayed with a tabular format on the right-hand portion of the screen, and the screen components are updated dynamically according to the type of the operation the user performs. For instance, if the user creates a new table, a new table tree node is added to the tree as a leaf node, which is on the left-hand portion of the screen, in an appropriate position.

A snapshot of the main screen of Database Explorer is shown on the next page.

Chapter 4

Implementation of the Database Explorer Application

4.1 System Requirement

I implemented Database Explorer with Java, JDBC, RMI and JFC/Swing. It has a set of requirements for production and compilation.

Production requirements:

 Sun Solaris platform: Version available at cslab.uky.edu is v2.7

 JDK1.2.2: Java 2 SDK Standard Edition version 1.2.2 with Swing release 1.1

 Oracle 8.0.5 (with JDBC oci8 and thin driver).

 Sybase 11.5 (with Sybase JDBC driver SybDriver)

Compilation Requirement:

 Sun Java compiler: javac

4.2 Programming Issues

Java Classes and Functions Implemented in My Database Explorer Application

My database explorer application contains the following Java classes:

DriverlistManager class: This class maintains a persistent list of drivers to be loaded by the application. The user or system administrator can easily add, list, delete and update the driver list through command line at the server side. It allows the user or system administrator to create applications that have absolutely no vendor dependence by eliminating the hard-coding of the driver names. Currently, the configuration file that stores the driver list contains JDBC driver names for

Oracle (oracle.jdbc.driver.OracleDriver) and

Sybase (com.sybase.jdbc.SybDriver).

DataTable class: This class contains methods for the manipulation and management of the data. All data are placed in tabular format and manipulated by either row, column, or field access methods. The user can randomly access any field, row, or column of data by referring to the row and column pair. I created this class to simplify accessing results of all types. It overcomes some drawbacks of JDBC. For instance, JDBC only allows for the sequential access of data in ResultSets and does not allow for multiple reads of the same data. In addition, the results that are not ResultSets must be handled separately. I wrote two constructor methods for this class:

(1) public DataTable(ResultSet rs)

(2) public DataTable(Vector[] metatable, String[] column)

The first constructor accepts a ResultSet as an argument. It is used whenever the user executes an SQL query. The second constructor expects an array of Vectors and an array of Strings. I provide this constructor to create DataTable objects out of non ResultSet data. It gives the user the flexibility to convert any type of data into a DataTable object. The user can then access any type of data in a consistent and uniform manner. This class also provides methods for retrieving data in rows, columns or fields through the public methods getColumn(columnIndex), getRow(rowIndex) and getDataAt(rowIndex, columnIndex) and for getting some useful information about columns and rows, such as number of columns, number of rows, column title and column type.

DatabaseAccess class: This class contains methods that interact directly with the database and use the JDBC API classes and methods. These methods simplify database access by grouping several related JDBC method calls into single methods and by providing a single structure for all data to be returned. The results of database operations are passed to the DataTable class for handling. This class takes care of loading all the available drivers at run time. The users simply need to login and execute SQL statements. Some examples of the methods provided by this class are

openSession(usr, user, password),

getDBMSInfo(), getDriverInfo(), getSQLLevelInfo(),

getCatalogNames, getSchemaNames(),

getTableNames(catalog, schema, tabletypes),

getTableTypes() and exeSQLstatement(sql).

Classes used to build the remote database access components are discussed in detail below.

DBAccessInterface class: This class is the remote interface, which describes the methods and variables available to the client. All public methods (other than the constructors) contained in the DatabaseAccess and DataTable classes have a remote-interface entry. All methods listed in the interface have an additional argument passed to them. This additional argument is a reference ID discussed in Chapter 4. The interface does not implement any methods.

DBAccess class: This class is the remote interface implementation. The implementation is a server-side component that acts as a proxy for the client. With RMI, remote objects are not actually downloaded to the client, but rather reference the object. When executed, they execute on the server. Results and return values are first serialized and then sent back to the client. The implementation code is a multi-user wrapper that goes around my existing methods in the classes of DatabaseAccess and DataTable. In this class, I create two stacks and two arrays to manage the object IDs as discussed in session management section of Chapter 4.

DBAccess_Skel class and DBAccess_Stub class: They are generated by issuing the rmic command against the DBAccess class. The client-side stubs and server-side skeletons actually perform communication between client and server.

RMIServer class: It is a small stand-alone server-side application that binds the remote objects to the RMI registry. The registry is a process run on the server that contains a list of objects available to the clients. The server application contains a single instance of the implementation and binds this instance to the registry. When clients need to access to that object, they obtain a reference to the bound object through registry. In Database Explorer, I create a instance of DBAccess and bind it to the name "remoteServer" in the registry on the port 1099:
DBAccess server = new DBAccess();

Naming.rebind("rmi://localhost:1099/remoteServer",server);

Client class and its inner classes: I wrote these classes to provide a GUI for helping the user to perform database operations, which include accessing and modifying the data in the database (query, insert, delete, update), modifying the schema of the database (add columns, delete columns) and creating or dropping the existing tables in the database. When a client wants to access the remote objects, it needs to first contact the registry to obtain a reference to the bound object. Then the client and the server are able to communicate with each other.

I implemented the GUI with JFC/Swing. The GUI consists of tree, table and tabbedPane components for displaying the results and toolbar, tool tips, menu and dialogs for organizing main window controls, getting user input and displaying messages. To access the database, first the user has to enter the correct JDBC driver URL, user name and password in the login window. After the system has checked the correctness of the information, it opens a new screen, which is the main window with which the user will interact with the database. In Database Explorer, I use separate dialog window for searching the database, creating a new table, dropping tables and editing a table schema. By just following the instructions on the screen, the user can easily perform these operations. If the user wants to insert a row into a table or delete a row from a table, he/she needs to open that table first. For insert, the user then inserts a new row by clicking a button in the toolbar or menu item in the menu, enters the data and saves the change. For delete, the user just needs to highlight the rows he/she wants to delete and click the delete button. For update, the user needs to find the data field he/she wants to update in the table, edit that field and click "Enter" in the keyboard to submit the change. Database Explorer automatically checks data integrity, referential integrity defined in the database and return the corresponding message to the user about the status of the operation.

Database Explorer also provides an option for experienced users to submit their SQL statements directly to the JDBC for execution.

4.3 Restrictions and Limitations

Database Explorer does not provide a means to guide novice users to perform some advanced database operations such as joining two or more tables, using aggregate functions (SUM, MIN, MAX), sorting the data results, constructing nested queries and create indices unless the user know how to write the correct SQL statement by themselves. Rewrite this sentence: In other words, not all database operations are available to novice users by only interacting with the GUI.
Chapter 5

Testing and Test Results

I have tested Database Explorer in two database systems that support JDBC (Oracle and Sybase) in our university. It works fine without errors and warnings. It is desirable to test Database Explorer in other RDBMS, such as Microsoft SQL server, Informix and WebLogic, in the future.

The test results are shown in the following figures.

Connecting to Oracle:

[image: image4.png]
Connecting to Sybase:

Chapter 6

Conclusion
In my project, I designed a tool named Database Explorer for simplifying access to any remote databases that support JDBC. I successfully built a three-tier client/server architecture with Java RMI and implemented the tool by the use of Java, JDBC and Java JFC/Swing. At this time, it works for relational database systems Oracle and Sybase. I have tested it in these two systems and found no errors and warnings. Future enhancement could include removing restrictions and limitations of the tool that I have discussed in Chapter 4. What restrictions and limitations?

Bibliography

[1] E. F. Codd, "A Relational Model for Large Shared Data Banks", Communications of

 ACM, Volumn 13, Number 6 (1970) 377-387.

[2] D. D. Chamberlin and R. F. Boyce, "SEQUEL: A Structured English Query

 Language", Proceedings of the ACM SIGMOD Workshop on Data Description

 Access and Control (1974) 249-264.

[3] "Database Language SQL with Integrity Enhancement", ANSI X3, 135-1989,

 American National Standard Institute, New York (1989). Also available as ISO/IEC

 Document 9075:1989.

[4] "Database Language SQL", ANSI X3, 135-1992, American National Standard

 Institute, New York (1992). Also available as ISO/IEC Document 9075:1992.

Figure 1. RMI diagram with stubs, skeletons and components.

Serialized Objects

Bind Object Instance to a Port

Get Object

 Reference

Remote Method Call

RMI Server

Object Instance

Local Method Calls

Client Application

Client Application

Client Stub

Server Side Objects

Remote Implementation

Remote Interface

Remote Skeleton

RMI registry

Remote Server

Figure 2. Three-Tier Client/Server Model using RMI.

Database Libraries (Call Level Interface)

Network Interface

JDBC Driver

RMI Skeletons

Remote Reference Layer

Transport Layer

Proxy Server

Database Server

Client

Network Interface

Database

Network B

Network A

Transport Layer

Remote Reference Layer

RMI Stubs

Applicationn

SID []

Server

 Remote Server

Object Bound to RMI Registry

Remote Implementation

Remote Implementation

Remote Implementation

Client Application (SID =5)

Client Application (SID =2)

Client Application (SID =1)

2

3

5

1

Session Object Instance

Session Object Instance

Session Object Instance

Session Object Instance

Session Object Instance

XXXIII
32

_1021985195.doc
[image: image1.png]

