
Compiler Implementation in Standard ML

Daniel Phelps
daniel.phelps@uky.edu
University of Kentucky

Supervised by Dr. Raphael Finkel

June 15, 2015

1 Introduction
I designed and built a compiler in Standard ML of New Jersey (SML/NJ)
for the CSX programming language. This language is defined and presented
in Crafting a Compiler by Fischer et al, and given as a course project in
CS541 Programming Languages [1, 2]. In CS541, we implemented a CSX
compiler using Java, an imperative, object-oriented language. My personal
interest in functional programming and languages led me to propose rewriting
the compiler in Standard ML (SML), a functional language popular among
compiler writers [3, 4]. The basic code for this project was derived from
a small calculator program included with Andrew Appel’s book “Modern
Compiler Implementation in Standard ML” [5].

I was familiar with functional programming concepts, but I had never
written a non-trivial program in a functional language. I believed SML to
be a good choice for my project because it would require me to learn SML,
a statically typed functional language with Hindley-Milner type inference,
parametric polymorphism, and pattern matching.

We briefly discuss the SML environment and the compiler generation
tools that come with it. Next, we discuss the implementation of each part of
the compiler. Then, we cover the approach for testing the implementation.

1.1 SML/NJ Environment
SML/NJ is available for Unix, MacOS, Windows, and Cygwin. Packages are
available for Ubuntu Linux via aptitude. The SML/NJ Language Processing
Tools (LPT) are installed separately under the names ml-yacc, ml-ulex,

1

and ml-lpt. An interactive session is started with the sml command:
$ sudo apt-get install smlnj ml-lpt ml-ulex ml-yacc > /dev/null
$ sml
Standard ML of New Jersey v110.76 [built: Mon Jul 7 23:25:08 2014]
- 1 + 1;
val it = 2 : int
-

1.2 SML/NJ Compilation Manager
SML/NJ provides its own build system called the Compilation Manager
(CM) [6]. The CM is invoked by running the ml-build command, and
takes as arguments the heap image name, the entry point, and a build con-
figuration file containing the root group. The root group is a list of external
dependencies and all source files in the project to be built. The CM com-
pares time stamps of files in the root group to the SML heap time stamp, and
rebuilds the heap image when the code changes. The CM does not require
the developer to explicitly define dependencies within the project. It decides
when to invoke ml-yacc and ml-ulex according to the input filename ex-
tensions in the root group. The CM appends the architecture and operating
system name to the heap image file for later reference. Building the heap
image with ml-build and loading it with sml is straightforward:

$ ml-build sources.cm mystructure.main myprogram-img > /dev/null
$ sml @SMLload myprogram-img.x86-linux [arguments for myprogram]

1.3 SML Terminology
SML is equipped with unique constructs. We use the following terms and
definitions throughout this paper:

• structure — a module containing definitions and declarations of func-
tions and values

• datatype — a keyword for defining an abstract record type

• reference — a stateful value of a certain datatype

• exception — a value that can be raised and handled in an error state

• function — a mapping from values of some type to values of some
type

2

• type constructor — a function returning a value of a certain datatype

SML and other functional languages encourage the developer to eschew side
effects whenever possible. A change of state in a functional program is ac-
complished by the use of tail recursion or continuations; rather than modify
a data structure with assignment, the developer creates a new structure and
either recurs or continues in another context. SML provides a mechanism
allowing for assignment, but it requires use of the ref datatype along with
a special syntax for doing so. The ref is useful in situations where adding
another argument to a set of mutually recursive functions would be time con-
suming or redundant. The ref is also helpful for tasks naturally implemented
with assignment, such as memoization.

2 The CSX Language
CSX is an imperative, block-structured language. Its definition calls for
bool, char, and int datatypes, and arrays of each. It supports recursion,
and looping is available with a while-do construct. Input and output is
available with read() and print(). A CSX program with recursion and
looping might appear as follows. This program takes a positive integer as
input and prints integers from that number down to zero:

class PrintToZero {
void print_from(int i) {

print(i, "\\n");
if(i <= 0) {

return;
}
print_from(i - 1);

}
void main() {

int max = 0;
while(max <= 0) {

print("Enter a number greater than 0: ");
read(max);

}
print_from(max);

}
}

3

3 The CSX Lexical Analyzer
The lexer of a compiler segments the input string into tokens later used by a
parser. It recognizes the finite set of terminal symbols found in the language
definition such as delimiters, keywords, and identifiers. Writing a lexer by
hand is possible but tedious. Instead, lexers are automatically generated
based on a specification. A lexer specification for ml-ulex consists of three
sections: user definitions, regular expression pattern definitions, and another
containing the semantic actions for each token type [7].

The first section allows the developer to define arbitrary functions that
can be used elsewhere in the specification. We define values allowing the
lexer to track its current position within the input string. The position
values accompany tokens in the lexer output stream.

3.1 Integer Literals
CSX places restrictions on the use of integer literals, and those rules are
enforced by the lexical analyzer. Integers in CSX are 32-bit and signed. Any
integer literal in a program not within the interval [−231 − 1, 231] results in
a warning, and the input value becomes the maximum or minimum possible
int value, whichever is closest to the literal input value.

The next section of the lexical specification names regular expressions
that appear in the third section.

The third section contains the rules for tokenizing the input string. We
include a regular expression for each token type and associate a semantic
action with it. The semantic action updates the current position within the
string based on the length of the token and returns a value containing the
text and position within the file. The CSX language defines the following
terminal symbols: identifiers, integer literals, character literals, string literals,
conventional arithmetic symbols, logical operation symbols, delimiters such
as brackets and parenthesis, and keywords. Our lexer is not case sensitive;
“WhiLE” and “while” are equivalent tokens.

4 The CSX Abstract Syntax Tree (AST)
We use SML type constructors to represent syntactical elements of the CSX
language. The recursive nature of the elements is elegantly expressed using
the datatype construct in SML. SML’s and keyword allows the developer to
define mutually recursive datatypes. We show only a portion of the definition
for the sake of brevity:

4

datatype csx_program = Program of (id * csx_member_decls)
and csx_member_decls = MemberDecls of (csx_decl list

* csx_decl list)
...

The most complex part of the AST defines statements and expressions.
We define a type constructor for each syntactical element given in the CSX
definition. We show part of the statement datatype definition below. Each
statement type contains its constituent elements and a pair of integers. The
integers are used to indicate the line and column where the construct appears
in the source program:
datatype
stmt = NoneStmt

| Block of (csx_decl list * stmt list * int * int)
| IfThen of (expr * stmt * int * int)
| IfThenElse of (expr * stmt * stmt * int * int)
| While of (expr * stmt * int * int)
| LabeledWhile of (label * expr * stmt * int * int)
| Asg of (expr * expr * int * int)
| Read of (expr * int * int)
...

5 CSX Symbol Table
A compiler writer implements a symbol table for a block-structured language
using a stack of hash tables. In addition to a hash table, we store the name
of the current method under analysis and label stack. CSX supports the use
of labels on while loops, so the table must store that information as well.

We provide ancillary functions for searching the symbol table based on
the semantics of block-structured languages. The symbol table in this im-
plementation also contains functions for retrieving information about items
in the structure. Our symbol table supports several operations, all of which
are written in a functional style:
insert_symb : string * symb_info * symb_table -> symb_table
make_symbol_table : unit -> symb_table
symb_exists : string * symb_table -> bool
get_symb : string * symb_table -> symb_info

A symb info is a tuple containing the name of a symbol, its type, the
declaration, and metadata to help determine the origin of the symbol:

5

datatype
symb_info = CSXMethod

| CSXField
| CSXLocalDecl
| CSXFormalArg
| CSXLabel
| CSXClass of (string)
| NoneSymbInfo
| Info of {name : string,

tipe : csx_type,
decl : csx_decl,
whatisit : symb_info}

| CodegenInfo of {info : symb_info,
addr : jvm_address}

The name, tipe, and whatisit fields of the Info tuple can be derived from
the decl. We duplicate this information to assist with pattern matching
elsewhere in the compiler. The CodegenInfo tuple contains a jvm address,
which allows the compiler to quickly determine whether a symbol refers to a
field or local variable.

6 CSX Parser
The parser generator ml-yacc emits an LALR parser based on the input
specification. The specification contains three sections: one for user defi-
nitions, another for ml-yacc directives, and the last for parsing rules from
which ml-yacc derives the parse table [8].

In the first section, we import three structures that are used within the
parser: String, Char and DataTypes. String and Char are basic utilities for
string and character manipulation and come as part of the SML environment.
The DataTypes structure contains the AST datatypes discussed earlier.

In the second section, we define the set of terminals and non-terminals.
Each named non-terminal is associated with an appropriate abstract data
type. For example, the METHODDECL non-terminal is of type csx decl:
%nonterm PROGRAM of csx_program

| MEMBERDECLS of csx_member_decls
| FIELDDECLS of csx_decl list
| METHODDECLS of csx_decl list
| METHODDECL of csx_decl
...

6

This section also contains directives for the parser to disambiguate the gram-
mar by specifying token precedence and to identify the starting symbol.
Other options assist with debugging the generated parser. For example,
the %verbose directive produces a “.desc” file that summarizes any errors in
the specification, and provides a list of all possible states of the parser[8].

In the last section, we encode the context-free grammar, expressed in ex-
tended Backus-Naur Form (EBNF). For instance, a void method declaration
with no arguments has the following EBNF production:
METHODDECL : RW_VOID ID LPAREN RPAREN LBRACE

FIELDDECLS STMTS RBRACE OPTIONALSEMI (
(Method(Void, id(ID), nil,

FIELDDECLS, STMTS,
RW_VOID1left, RBRACE1right))

)

All constituent pieces of the method declaration are available in an SML
block, and we return a value containing all information about the method dec-
laration, including the return type, the argument list, and so on. The parser
generator also provides position information for each symbol on the right-
hand side of the production. For example, RW VOID begins at RW VOID1left
and ends at RW VOID1right. In general, the positions are given by namen+1left
and namen+1right where n is the number of occurrences of the symbol to the
left of the symbol in the production [8].

6.1 If/Else Shift-Reduce Conflict
Ambiguities in the grammar result in a shift-reduce conflict, in which the
parser does not know whether to follow a reduction rule and execute a se-
mantic action or continue reading from the token stream.

Consider the following short program:
if(a)

if(b)
print("a and b are true");

else
print("a is not true");

When a is false, nothing should be printed at all in CSX. By default, a
parser generated by ml-yacc assumes a shift operation when this ambiguity
is present, and thus emits the equivalent of this program:
if(a) {

if(b)

7

print("a and b are true");
}
else {

print("a is not true");
}

We direct ml-yacc to associate RW ELSE to the left, so that the parser per-
forms a reduction instead of a shift, yielding a parse tree equivalent to this
program:
if(a) {

if(b) {
print("a and b are true");

} else {
print("a is not true");

}
}

7 Semantic Analysis
The type-checker traverses the AST and builds a new AST containing type
information it discovers during semantic analysis. Pattern matching is a key
component of the type-checker implementation. For example, we define a
type constructor for each possible type in CSX:
datatype csx_type = Int | Bool | Char | Void | Error

| UnknownConst | NoneType
| StringLit of int
| Const of csx_type
| Param of csx_type
| Array of (csx_type * Int32.int)
| ArrayParam of csx_type

We pattern match on these values in several ways in the type checker. In
the case of arithmetic, the CSX program might contain the expression ′a′ +
1000. The compiler takes the safest route possible by assuming the expression
could overflow. Thus, it determines the type of the expression should be the
“widest” of the two operands. In CSX, variables of type char and int are
8 bits and 32 bits wide, respectively. We utilize SML’s pattern matcher to
implement widest(). It does not make sense to find the widest of two types
where at least one of them is not integral, and we return the Error type in
that case. Other parts of the compiler test for the presence of the Error
value and report the situation to the end user:

8

fun widest(Char, Int) = Int
| widest(Int, Char) = Int
| widest(Char, Char) = Char
| widest(Int, Int) = Int
| widest(Error, _) = Error
| widest(_, Error) = Error
| widest(Const(t0), Const(t1)) = widest(t0, t1)
| widest(Const(t0), t1) = widest(t0, t1)
| widest(t0, Const(t1)) = widest(t0, t1)
| widest(_, _) = Error

The type-checker rebuilds the abstract syntax tree given by the parser
and embeds extra type information within it. Expressions in CSX can be

• a literal value such as a character, integer, string, or boolean

• an identifier

• a function call

• an array dereference

• an arithmetic operation such as add, subtract, multiply, divide

• the logical operators &&, ||, and !

• the relational operations ==, ! =, <=, >=, >, <

Some expressions are not composed of any others, and determining their
type is trivial. For composite expressions, we must determine the type of the
operands and apply a rule given in the CSX specification. For example, 1+x
is of type int so long as x is a type that can be added to an int; any other
type of x would produce an error.

8 Code Generation
The code generator uses the augmented AST to generate appropriately typed
bytecode for the Java Virtual Machine (JVM). With the JVM as our plat-
form, we must map CSX features to the JVM facilities. A CSX class becomes
a Java class. CSX fields become public static Java fields. CSX methods be-
come public static Java methods. Variables on the runtime stack are stored
in registers on the JVM. The registers on the JVM are virtually unlimited
and are identified by an integer.

9

8.1 Jasmin
The code generator emits Jasmin code, an assembler notation for JVM byte-
code. The last step of compilation from assembler to bytecode is handled
by the Jasmin open source project [9]. Jasmin reads the assembler text and
emits a Java class file.

9 The Glue
The glue provides the main entry point of the compiler, and it integrates each
of the parts we previously discussed. It implements the rules to determine
whether the compiler should proceed from one phase to the next. Fatal errors
occurring during compilation propagate back to the glue as an exception. The
glue is straightforward; without any defensive tests to determine whether to
proceed from one phase to the next, it would say:
fun main(prog_name, args) = (

if length(args) = 2 then (
codeGen(typeCheck(parse(lex(hd(tl(args))))))
handle e => (print("Compilation failed: "ˆ

exnToString(e)ˆ"\n");
1)

)
else (

usage();
1

)
)

The final integration point for all parts in the compiler is a shell script
that invokes the CSX compiler, Jasmin assembler, and JVM for execution
of the program. The script’s return code is that of the CSX program under
execution. If the compiler or the assembler fails, it reports an error and exits.

10 CSX Runtime Support
Some utilities must be present for a language to have any useful features.
Fischer et al. provide a runtime library that implements the underlying func-
tionality of read() and print()[2]. It also provides other semantic details
of the language, such as checking array lengths on assignment. The CSX
language specification states that an exception should be thrown when the

10

lengths do not match. This code, and the exception itself, is defined in the
CSX runtime library.

We refer to this library in the generated code as needed. This library
is placed on the Java classpath when the CSX shell script invokes the JVM
with the compiled class file.

11 Testing
It is imperative to test a compiler during development. Even the lexing and
parse phases must be tested, which can be difficult because these phases
use automatically generated code. The best approach is to build the lexer,
parser, and a special “unparse” phase that prints the AST created by the
parser. Only when all terminals and non-terminals in the language definition
are handled appropriately in the lex and parse stages can the unparse be
successfully completed. Once this phase is debugged, it is safe to proceed to
semantic analysis.

A good testing strategy for semantic correctness is to first write a set of
positive tests. A positive test is a program that the CSX compiler accepts.
A valid program without semantic error succeeds in execution and returns 0.
We have 85 such programs for the SML implementation. Approximately 60
of the 85 originated in the test suite for the Java implementation, a smaller
portion of which are adapted from the CS541 course materials [1, 2]. The
remaining programs test for bugs appearing during the development of our
SML implementation. Each program performs an action and tests the result.
If the result is not what is naturally expected, it prints a message stating
the problem and exits with a non-zero exit code. For example, the CSX
specification states that false < true evaluates to true. The following
program tests for this property and returns a non-zero exit code when the
test fails:
class false_lt_true {

void main() {
if(false < true) {

print("ok\n");
} else {

print("false < true should be true.\n");
exit(1);

}
}

}

11

When the compiler accepts a sufficient set of CSX programs exercising
each part of the type checker and code generator, the developer should like-
wise construct a set of negative tests. A negative test for the CSX compiler is
a program that either fails compilation or exits abnormally during execution.
We have 85 such programs adapted from the set of positive tests, and 6 more
that test for bugs appearing during development of the SML implementation.

For example, the CSX specification does not allow the addition of a bool
and int. An attempt to compile this program should result in a non-zero
error code and a meaningful message indicating the source of the problem:
class add_bool_to_int {

void main() {
bool x = true;
print(x + 1);

}
}

Each test program should be small and print exactly what was expected.
We expect negative tests to compile and run but then exit with an error code.
We test the return code in a shell script to detect a failure for a particular
program. The entire test suite can be executed after each change, which aids
the developer in finding bugs within the compiler. This approach is called
“regression testing”.

12 Debugging
SML does not come with a debugger like gdb. The easiest approach is to
debug with print() statements. Every function has a return type, so we
have to group statements together in a block to achieve this effect. The last
expression in a block of expressions is its return value:
fun myfun(a, b, c) = (

debug(a); (* a side effect *)
[a, b, c] (* the return value *)

)

Debugging the code generator involves much of the same process, but
with the addition of debugging the code emitted by the compiler. In some
situations, it can be difficult to determine which bytecode to generate. It
can be informative to view the bytecode of a compiled Java program that
achieves the desired effect. The Java javap command decompiles a Java
class file:

12

$ javap -c HelloWorld.class
Compiled from "HelloWorld.java"
public class HelloWorld
public HelloWorld();
Code:
0: aload 0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return

public static void main(java.lang.String[]);
Code:
0: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3 // String Hello world.
5: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return

13 The Java Virtual Machine (JVM)
The JVM provides several advantages as a target platform. First, the JVM is
available and supported on several architectures. Second, the JVM provides
architecture specific runtime optimization; Java bytecodes are adaptively
compiled into native code as the JVM detects performance bottlenecks [10].
This behavior is especially beneficial with numerical computation. Next,
the JVM provides generational garbage collection that is configurable upon
startup, unlimited virtual registers, and immediate access to a large library.
Libraries that are developed in other languages can be used in another lan-
guage hosted via the JVM. Last, there is an enormous community around the
JVM, so it is easy to find documentation and support for a given problem.
These features make the JVM an attractive option for new languages.

14 Conclusion
SML differs greatly from the typical object-oriented and imperative approach
to programming. The most radical difference is found in its type system.
Types are inferred; the user is not required to declare types in every situa-
tion, which makes some programs shorter. However, programs in SML are
not necessarily easier to understand than, say, the Java counterpart. Hav-
ing written a CSX compiler in both Java and SML, I feel that the CSX

13

implementation was more difficult to achieve, but it is more stable.
The Java implementation I wrote contains 5796 lines of code, and the

SML implementation contains 2969 lines, including the lexer specification,
parser specification, blank lines and comments. Blank lines and comments
increase readability within the sources, so I feel it appropriate to include
them. Counting lines of code does not account for the program’s complexity,
but it offers an indication to the relative effort involved between two programs
[11].

14.1 Side Effects
The primary difference between the Java and SML implementations lies in
the treatment of the AST during semantic analysis. We modify the AST in
the Java implementation, but rebuild the AST in the SML implementation.

The CSX AST in the Java implementation provides fields that are unused
until the semantic analysis phase begins. These fields are initialized as type
information is discovered. The CSX AST in the SML implementation uses
type constructors. Unlike Java classes, all fields in an SML type constructor
must be initialized when the value is created, and the field values cannot
change. Because the AST uses immutable data types only, the type checker
creates a new AST as its result. The type checker determines the type of
an expression, decorates any composite parts, and decorates the expression
with the type it determines during analysis:
fun check_expr(expr, table) =

let val tipe = typeof_expr(expr, table) in
Checked(tipe, rebuild_expr(expr, table))

end

The symbol table is based on a HASH TABLE from the Basis library, which
uses a ref internally [12]. We use a ref in the SML implementation only for
the following:
• line and column position in the lexical analyzer

• presence of a semantic error in the type-checker

• label generation for goto support in the code generator

14.2 The SML Community
The SML community is small, and it is difficult to find relevant discussions on
SML programming. For example, there are only 3, 144 questions on Stack-
Overflow relating to SML [13]. However, there are several other emerging

14

and popular functional languages from which to choose for future projects.
For example, Microsoft developed F#, a functional language for the .NET
environment offering a feature set similar to SML [14]. Haskell is a statically
typed functional language with type inferrence, concurrency support, and a
vibrant community [15]. OCaml continues to gain popularity for financial
applications, and it is still under active development [16].

References
[1] Syllabus: CS541, Compiler Design. http://www.cs.uky.edu/

˜raphael/courses/CS541/backgr.html. Accessed 22 May 2015.

[2] Crafting a Compiler. http://www.cs.wustl.edu/˜cytron/cacweb/.
Accessed 22 May 2015.

[3] Standard ML of New Jersey. http://www.smlnj.org/. Accessed 22
May 2015.

[4] Why ML/OCaml Are Good for Writing Compilers. http://flint.cs.
yale.edu/cs421/case-for-ml.html. Accessed 22 May 2015.

[5] Andrew Appel. Modern Compiler Implementation in ML. Cambridge:
Cambridge University Press, 1998.

[6] The SML/NJ Compilation Manager (CM). http://www.smlnj.org/
doc/CM/. Accessed 22 May 2015.

[7] ML-Lex: A Lexical Analyzer Generator for Standard ML. http://www.
smlnj.org/doc/ML-Lex/manual.html. Accessed 22 May 2015.

[8] ML-Yacc User’s Manual version 2.4. http://www.smlnj.org/doc/
ML-Yacc/index.html. Accessed 22 May 2015.

[9] Jasmin Home Page. http://jasmin.sourceforge.net/. Accessed 22
May 2015.

[10] Java SE HotSpot at a Glance. http://www.oracle.com/technetwork/
articles/javase/index-jsp-136373.html. Accessed 15 June 2015.

[11] Robert Zeidman. The Software IP Detective’s Handbook Measurement,
Comparison, and Infringement Detection. Upper Saddle River, NJ:
Prentice Hall, 2011.

15

[12] The Standard ML Basis Library. http://sml-family.org/Basis. Ac-
cessed 22 May 2015.

[13] Stack Overflow. http://stackoverflow.com/search?tab=newest&q=
sml. Accessed 15 June 2015.

[14] Visual F#. https://msdn.microsoft.com/en-us/library/
dd233154.aspx. Accessed 22 May 2015.

[15] Haskell Language. http://www.haskell.org/. Accessed 1 June 2015.

[16] (* Musings from Jane Street’s OCaml Developers *). https://blogs.
janestreet.com/category/ocaml/. Accessed 22 May 2015.

16

