CS655 class notes

Raphael Finkel
September 9, 2019

1 Intro

Class 1, 8/26/2019|

e Handout 1 — My names

e Mr. / Dr. / Professor / —
e Raphael / Rafi / Refoyl
e Finkel / Goldstein

e Extra 5 minutes on every class? What is a good ending time?

e Plagiarism — read aloud from handout 1

e Assignments on web and in handout 1.

e E-mail list: cs655001@cs.uky.edu; instructor uses to reach students.

o All students will have MultiLab accounts, although you may use any
computer you like to do assignments. But your programs must run
on MultiLab computers, because that’s how they will be graded.

o textbook — all homework comes from here

e Oral assignments are end-of-chapter assignments. Assignment for
Chapter 1 exercises (Friday).

2 Software tools

A programming language is an example of a software tool.

CS655 Fall 2019 2

Use (client) Usable?
Spec — Elegant?
Implementation Compilable?

3 McLennan’s Principles (elicit first)

4 Algol-like languages: review

e First generation: Fortran

e constructs based on hardware
lexical: linear list of statements

control: sequence, goto, do, subroutines using reference pa-
rameter mode

data: arithmetic, including complex; arrays with a 3-d limit

Class 2, 8/28,2019|
® Nname: separate Scopes; common area

Second generation: Algol 60

e lexical: free format; keywords

e control: nested; if, while, for, but baroque; subroutines with
value and name parameter modes.

e data: generalized arrays, but no complex
e name: nested scopes with inheritance and local override

Third generation: Pascal (return to simplicity)

e data: user-defined types; records, enumerations, pointers

e control: subroutines with value and reference parameter modes;
case statement

Fourth generation: Ada (abstract data types)

e lexical: bracketed syntax
e name: modules with controlled export; generic modules
e control: concurrency with rendezvous

Fifth generation: Other directions

CS655 Fall 2019 3

o dataflow

e functional. We will study ML and Lisp.
e object-oriented. We will study Smalltalk.
e declarative (logic). We will study Prolog.

5 Theme: binding time

e There is a range from early to late.

¢ language-definition time (example: the fact that constants exist)

e compile time (example: values of constants in Pascal) We call
compile-time bindings static.

e link time (example: version of print £ in C)

e elaboration time (example: value of £inal int in Java)

e statement-execution time (example: value of int variable) We
call execution-time bindings dynamic.

e Early binding is most efficient.

e Late binding is most capable.

’ Class 3, 8/30/2019 ‘ Exercises from Chapter 1.

6 Block structure

Class 4,9/4/2019|
Introduced in Algol.

A block is a nestable name scope.

Identifiers can be local, nonlocal, or global with respect to a block.

Nonlocal identifiers: the language must define whether to

e inherit (typically allowed if there is no conflict)
e override (typically true if there is a conflict)
e require explicit import and export

e At elaboration time, constants get values, dynamic-sized types are
bound to their size, space is allocated for variables.

CS655 Fall 2019 4

e Definition: the non-local referencing environment (NLRE) of a pro-
cedure or block of code is the binding of non-local identifiers (typi-
cally variables, but also constants, types, procedures, and labels) to
values.

e Deep binding: The NLRE of P is determined (bound) at the time
that P is elaborated (and is the RE of the elaborating scope).

e Shallow binding: The NLRE of P is determined at the time that P is
invoked (and is the RE of the calling scope).

o Adequately difficult example: |book 24:21

7 Imperative languages

e Imperative languages involve statements that modify the current state
by changing the values of variables.

e Avariable is an identifier bound (usually statically) to a type, having
a value that can change over time. The L-value of a variable is the use
of a variable on the left side of an assignment (think of “address”);
the R-value of a variable is its use on the right side (think of “current
value”).

o A type is a set of values, associated (mostly statically) with opera-
tions defined on those values. Type conversion means expressing a
value of one type as a value of another type.

e coercion: implicit conversion

cast: explicit conversion

Class 5,9/6/2019

non-converting cast: rarely needed. qua operator of Wisconsin
Modula, reinterpret_cast<> of C++.

e An operation is a function or an operator symbol as shorthand. It
can be heterogeneous.

e operators have arity (example: unary, binary), precedence, as-
sociativity

e operators may be infix (+), prefix (unary -), postfix (->)

e operators may have short-circuit (lazy) semantics

CS655 Fall 2019 5

e An operation is overloaded if its identifier or operator symbol has
multiple visible definitions. Overloading is resolved (usually stati-
cally) by arity, operand types, and return type. Overloading resolu-
tion can be exponentially expensive. For instance, say we have four
versions of +, depending on whether they take integers/floats and
whether they return integers/floats. Then how do you resolve (a +
b) + (c +d)?

e A primitive type (or basic type) has no separately accessible compo-
nents. Examples: integer, character, real, Boolean.

o A structured type has separately accessible components. Examples:
pointer (dereference), record (field select), array (subscript), disjoint
union (variant select). An associative array is an array whose index
type is string.

e A constant is like a variable, but it has no L-value and an unchanging
R-value. In Java, it’s denoted by the modifier £inal.

8 Iterators

e Iterators allow us to generalize for loops.

e The control variable of the for loop ranges over a set of values

generated piecemeal by an iterator. [book 39:9-10 |

e The iterator is like a procedure, taking parameters and return-
ing values of a specified type.

e The iterator uses a yield statement to return a value, but it
maintains its RE (and its program counter) in order to continue
on demand from the for loop.

o A usefullanguage-supplied iteratoris int upto (low, high),
which yields all the values in the specified range.

e Iterators are especially useful for generating combinatorial structures.

e Algorithm for generating all binary trees of n nodes: | book 41:11

e Same thing in Python, using “generators”:

1 def binGen(size):

2 if size > O0:

3 for root in range(size):

4 for left in binGen (root) :

CS655 Fall 2019 6

5 for right in binGen(size - root - 1):

6 yield("cons (" + left + "," + right + ")")
7 else:

8 yield "-"

9

10 for aTree in binGen (3):
11 print aTree

o |Class 6,9/9/2019|
e Trace of binGen(3).

e Another example: yield all nodes in a tree (in pseudo-Python)

1 def treeNodes (tree):

2 if tree != null:

3 for element in treeNodes (tree.left):
4 yield element

5 yield tree.value

6 for element in treeNodes (tree.right):
7 yield element

e Wouldn't it be nice to have a yieldall construct:

1 def treeNodes (tree):

2 if tree != null:

3 yieldall treeNodes (tree.left):
4 yield tree.value

5 yieldall treeNodes (tree.right) :

This construct might be able to use shortcuts to improve efficiency.
JavaScript actually has it: yieldx. It delegates the yielding to an-
other iterator.

e Another example: all combinations C'(n, k):

1 def comb(n,k,start):

2 if k ==

3 yield ""

4 elif k+start <= n:

5 for rest in comb(n,k-1,start+1):
6 yield str(start+l) + "," + rest
7 for rest in comb (n,k,start+1):

8 yield rest

CS655 Fall 2019 7

9
10 for result in comb(6,3,0):
11 print result

9 Macro package to embed iterators in C

e Macros are IterSTART, IterFOR, IterDONE, IterSUB, IterYIELD.

* Usage:

e Implementation

e setjump and longjmp for linkage between for and the con-
trolling iterator, between yield and its controlled loop.

e Padding between stack frames to let Longjmp () be called with-
out harming frames higher on the stack. Three integers is enough
in Linux on an i686.

e A Helper routine to actually call the iterator and act as padding.
e The top frame must be willing to assist in creating new frames.

10 Power loops

e How can you get a dynamic amount of for-loop nesting?

Application: n queens |book 57:29

Usual solution: single for loop with a recursive call.

Cannot use that solution in Fortran, which does not allow recursion.

Solution: Power loops. |book 57:28
Implementation: Only needs branches, no recursion. | book 59:31

e How general is this facility?

Do power loops violate principle 20?

