8 HASKELL 45

8 o HASKELL

Haskell was designed by a committee whose job was to create a pure
functional language. The language is named for Haskell Curry (whose
name came up earlier in the discussion of ML) and is based loosely on
Miranda. It uses a type mechanism similar to ML, has higher-order
functions, allows polymorphism, and uses pattern matching. Unlike
ML, Haskell is frequently compiled. Haskell has various input forms;
my examples use syntactically correct code for the Gofer Haskell inter-
preter. Nonetheless, I use in: and out: to indicate values of expressions
as if Haskell were interpreted. Because Haskell is a pure functional
language, it has no pointers. Scoping is dynamic. Any function with
more than one parameter is automatically curried. (ML also provides a
mechanism for automatic currying that I didn’t describe in the preced-
ing section.) Some other differences between the two languages will be-
come clear in the following examples.

In Haskell, we define functions in a way that is similar to ML, al-
though Haskell has an unusual syntax in which indentation determines
scope.'? A typical Haskell definition looks like the one in Figure 1.54.

Figure 1.54 Max :: Int -> Int -> Int 1
Max a b 2

| a>=Db = a 3

| otherwise = Db 4

We may specify the type of the function Max before defining it, as in line
1. Haskell can infer the type of a function from its definition, just like
ML. This example shows the standard structure of Haskell function def-
initions: a series of conditional expressions and conclusions. When Max
is invoked, it evaluates the conditional expressions until it finds one
that holds; the value returned by the function is the associated conclu-
sion. The expression otherwise is always true.

8.1 Lazy evaluation and enumeration

Haskell provides some extensions to ML. Haskell always uses lazy
evaluation to evaluate expressions. I discuss lazy evaluation in more
detail in Chapter 4; for now, let me just say that no term of an expres-
sion is evaluated until its value is actually needed, and then the term is
evaluated as little as possible to provide any needed values. Figure 1.55

2 This convention is not unique to Haskell; Miranda and ABC also use indentation
to indicate grouping.

46

Figure 1.55

Figure 1.56

Figure 1.57

CHAPTER 1 TYPES

illustrates lazy evaluation by defining a function that only evaluates one
of two parameters, depending on a conditional parameter.

Cond boolValue x y 1
| boolValue = X 2
| otherwise =y 3
in: let x = 0 in Cond (x == 0) @ (1/x) 4
out: 0 5

On line 4, the expression (1/x) should raise an exception. However,
because its value is never needed, the expression is never evaluated and
no exception is raised.

Haskell provides an operator that enumerates the values of certain
types. For example, to create a list of integers from 1 to 10, we can use
the notation in Figure 1.56.

in: [1..10] 1
out: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 2

The type of an integer lists is denoted [Int]. The empty list is ex-
pressed as [], and the cons operator is denoted by : . Lazy evaluation
and enumerations make is easy to define infinite lists, which are not
possible in ML.

naturalNumbers = [0..] 3
ones = 1 : ones 4

Both lists in Figure 1.57 have type [Int]. The list naturalNumbers con-
tains all natural numbers, and ones is an infinite list all of whose ele-
ments are 1. If we try to print out either list, Haskell will print as much
of the list as we can tolerate before cancelling the display.

8.2 Comprehensions

Lists are often used to represent sets. Zermelo-Fraenkel set theory
builds sets by extracting elements of other sets and manipulating the re-
maining elements. For example, the set of cubes of odd natural num-
bers is built from the set of natural numbers by extracting the odd
numbers and then cubing them. Haskell comprehensions provide ex-
actly this facility, as shown in Figure 1.58. A comprehension is an ex-
pression (which performs the manipulation), a list of generators (which
build the base sets), and Boolean expressions (extractors). A generator
isof the forma <- [..... 1.

8 HASKELL

Figure 1.58

Figure 1.59

47

Squares = [n*n | n <- [1..5]] 1
Fermat = [(a,b,c,n) | a <- [3..], b <- [3..], c <- [3..], 2
n <- [3..], (@n) + (b"n) = (c"n))] 3
QuickSort [1 = [] 4
QuickSort (a:rest) = 5
QuickSort [b | b <- rest, b <= a] ++ 6

[a]l ++ 7
QuickSort [b | b <- rest, b > a] 8

The list Squares (line 1) evaluates to [1,4,9,16,25]. The list Fermat
evaluates to [], but evaluation will never terminate! On lines 4-8 is a
definition of Quicksort that uses list comprehensions and pattern
matching (as in ML); ++ is the append operator.

The standard recursive algorithm for calculating Fibonacci numbers
takes factorial time and is only good as an example of recursion. In-
stead, we should use dynamic programming (also called memoization),
caching previous results and using them in later calculations. Lazy
evaluation, comprehension, and infinite lists let us create an infinite
cache that is only evaluated as needed. Figure 1.59 gives the code for
generating the Fibonacci sequence.

Cache = [Fib x | x <- [0..]] 1
Fib :: Int -> Int 2
Fibo =1 3
Fib 1 =1 4
Fib n = Cache!!(n-1) + Cache!!(n-2) 5

The list Cache (line 1) is a list of all Fibonacci numbers. The Fib func-
tion (lines 2—5) looks up the appropriate values in the cache and returns
their sum. The !! operator (line 5) is the subscript operator. The chart
in Figure 1.60 shows the order of events in evaluating Fib 4.

48

Figure 1.60

Figure 1.61

CHAPTER 1 TYPES

Fib 4
Cache!!3
Cache!!0
Fib 0 returns 1; Cache!!0 becomes 1
Cache!!l
Fib 1 returns 1; Cache!!l becomes 1
Cache!!2
Fib 2
Cache!!l returns 1
Cache!!0 returns 1
Fib 2 returns 2; Cache!!2 becomes 2
Fib 3

Cache!!2 returns 2

Cache!!l returns 1

Fib 3 returns 3; Cache!!3 becomes 3
Cache!!2 returns 2
returns 5

OCooNOOVTDh WNRE

10
11
12
13
14
15
16
17

Another way to express dynamic programming for computing Fibonacci
numbers is described in Chapter 9 in the section on mathematics lan-

guages.

8.3 Polymorphic types

Haskell allows polymorphic data types much like those in ML. Some ex-

amples are shown in Figure 1.61.

data Tree a = Nil | Node a (Tree a) (Tree a)
bigTree = Node 7 bigTree bigTree

type BinOp a = a -> (a -> a)

f :: BinOp Int
fxy=x+y

type Matrix a

= [[al]
type BoolMatrix =

Matrix Bool

aMatrix :: BoolMatrix
aMatrix = [[True,False], [False,False]]

firstRow :: BoolMatrix -> [Bool]
firstRow [] = []
firstRow (rowOne:otherRows) = rowOne

N =

10
11
12

8 HASKELL

Figure 1.62

49

in: firstRow aMatrix 13
out: [True, False] 14

Tree (line 1) is a polymorphic type with a type parameter a. The defini-
tion of the infinite bigTree in line 2 looks much like the definition of
ones in Figure 1.57. BinOp (line 3) is a polymorphic type with type pa-
rameter a. The function f (lines 4-5) is a function of type BinOp Int. A
matrix can be defined as a list of lists (line 6) and can be specialized to a
Boolean matrix (line 7). The function firstRow (lines 10-12) uses the
underlying definition of Boo1Matrix to return the first row of a matrix.
If we didn’t specify the type of firstRow in line 10, Haskell would infer
its type as [[a]]->[a], which is a generalization of the type we want.
ML would infer the same type (denoted ’a Tist 1ist -> ’a Tist).

8.4 Interfaces

What should be the inferred type of QuickSort in Figure 1.58 on page
47? ML requires that QuickSort be given an explicit type, because ML
can’t unify the use of the <= operator, which is only defined on integers
and floats and cannot be unified. Haskell uses a different type scheme
that allows it to infer the type of QuickSort completely.

Haskell lets the programmer define an interface, which is a set of
types.’® An interface is defined by its signature, which is a list of func-
tions whose parameters and return values match the types in the inter-
face. Each member of the interface must satisfy its signature, and any
type that satisfies the signature is automatically a member of the inter-
face. For example, any type for which equality (==) is defined is a mem-
ber of the Eq interface. The definition of Eq is shown in Figure 1.62.

interface Eq t where 1
(=), (/=) :: t -> t -> Bool 2

a /= b = not (a==b) 3
member Eq Bool where 4
True == True = True 5
False == False = True 6

== = False 7

Eq has two functions (line 2): equality (==) and inequality (/=), both of

13 Unfortunately, interfaces are called “classes” in Haskell, which conflicts with the
use of the term in object-oriented programming languages (Chapter 5). I will use the term
“interface” here for clarity; I am borrowing the term from Java, which uses it for a similar
purpose.

50

Figure 1.63

CHAPTER 1 TYPES

type t -> t -> Bool. The functions are placed in parentheses to indicate
that they are infix operators. An interface can include default defini-
tions for some functions. The /= operator (line 3) has a default defini-
tion based on == . In lines 4-7, I make Bool a member of the Eq
interface by defining the == operator. Integers and floats are automati-
cally members of the Eq interface. Figure 1.63 illustrates more basic
definitions.

member x [] = False 1
member y (first:rest) = (y == first) || member y rest 2
-- inferred type: member :: Eq a => a -> [a] -> Bool 3
interface Pair t where 4
PairFn :: t > t > t 5
PairTester x y = (PairFn x y) + X 6
-- inferred type: 7
- PairTester :: (Num a, Pair a) = a -> a -> a 8
instance Pair Int where 9
PairFn x y = x * vy 10
in: PairTester 3 4 11
out: 15 12
multipleContext x y z = ((x == 2), (y +Vy)) 13
-- inferred type: multipleContext :: (Num b, Eq a) => 14
- a->b ->a-> (Bool, b) 15

The member function (lines 1-3) takes a list and an element as parame-
ters and returns True if and only if the element is in the list. Its in-
ferred type is polymorphic, as we might expect, but a -> [a] -> Bool
doesn’t completely describe that polymorphic type. In addition, equality
must be defined on type a; that is, a must be an member of interface Eq,
as shown in line 3.

Haskell can infer multiple interfaces as the context. In lines 4-5, I
define my own interface Pair, whose signature is a single binary func-
tion, PairFn. When I define the function PairTester (line 6), Haskell in-
fers the context Pair a and Num a, because PairTester requires both
PairFn and + . I then make Int a member of Pair by defining PairFn
for integers (lines 9-10) and then applying PairTester to a pair of inte-
gers (lines 11-12). In lines 13-15, Haskell infers one context for type a
and a different context for type b.

Now we can describe the type of QuickSort (Figure 1.58, page 47).
The interface Ord provides the ordering operators > and <=. (Ordis a

8 HASKELL

Figure 1.64

51

subinterface of Eq; that is, all members of Ord also belong to Eq.) The
type of QuickSort is therefore QuickSort :: Ord a => [a] -> [a].

I can now use algebraic data types and interfaces to define my own
integer type, MyInt. (Algebraic data types are discussed in more detail
in Chapter 8.) I'll define an integer as either 0, the predecessor of an in-
teger, or the successor of an integer, as shown in Figure 1.64.

data MyInt = Zero | Pred MyInt | Succ MyInt 1
reduce (Pred (Succ n)) =n 2
reduce (Succ (Pred n)) =n 3
reduce (Pred n) = Pred (reduce n) 4
reduce (Succ n) = Succ (reduce n) 5
reduce n =n 6
-- inferred type: reduce :: MyInt -> MylInt 7
in: reduce (Pred (Pred (Succ (Zero)))) 8
out: Pred Zero 9
intToMyInt a 10
| a == = Zero 11
| a <@ = Pred (intToMyInt (a+1)) 12
| a >0 = Succ (intToMyInt (a-1)) 13
-- inferred type: intToMyInt :: Int -> MyInt 14
in: intToMyInt (-3) 15
out: Pred (Pred (Pred Zero)) 16
instance Eq MyInt where 17
Zero == Zero = True 18
(Pred a) == (Pred b) = (a == b) 19
(Succ a) == (Succ b) = (a == b) 20

_ == _ False 21

52 CHAPTER 1 TYPES

instance Ord MyInt where 22
Zero < a = case (reduce a) of 23

Succ x -> True 24

_ -> False 25

a<b = case (reduce a) of 26

Zero -> Zero < reduce b 27

Pred x -> X < reduce (Succ b) 28

Succ x -> X < reduce (Pred b) 29

a<=b =(a==Db) || (a<b) 30
instance Enum MyInt where 31
enumFrom a = a : (enumFrom (reduce (Succ a))) 32

in: Zero > (Pred Zero) 33
out: False 34
in: [(intToMyInt (-2)) .. (intToMyInt (2))] 35
out: [Pred (Pred Zero), Pred Zero, Zero, Succ Zero, 36
Succ (Succ Zero)] 37

in: [(intToMyInt (0))..] 38
out: [Zero, Succ Zero, Succ (Succ Zero), ... 39
in: (Pred Zero) /= Zero 40
out: True 41

The function reduce (lines 2-6) simplifies a value of type MyInt. Mi-
randa, a predecessor of Haskell, lets a program specify simplification
rules to be executed automatically every time a new member of the type
is created; in Haskell, we invoke reduce explicitly when we need it, as in
line 8. In lines 10-13, I define a conversion function from integer to
MyInt.

The most interesting part of Figure 1.64 is lines 17-30, in which I
make MyInt a member of the Eq, Ord, and Enum interfaces. You have
seen the first two interfaces already. Members of the Enum interface al-
low enumerations, as in Figure 1.56. To make all the functions in the
three signatures work, I only have to define a few primitive functions
and take advantage of the default definitions of the other functions. The
[a..] notation is a shorthand for the enumFrom function (line 32). The
Enum interface includes a default definition of the .. operator, used in
lines 35 and 38, based on enumFrom.

