
This appendix lists the languages mentioned in the text, along with information you may find helpful if you
want to investigate further. Many of the language names are registered trademarks.

When I say a language is “based on” another, I mean to say that it is in the same general family, even
though it may have evolved a great distance from its forebear. Many languages include features from dis-
parate language families and are therefore difficult to categorize. Someare clearly extensions or hybrids of
other languages.

Whenever I can, I provide not only pointers to the literature but also URLs (universal resource loca-
tors) for getting more information via WWW (the World-Wide Web). Thesepointers direct you to docu-
mentation, examples, compilers, and other language-related information.Several URLs of general interest
arehttp://union.ncsa.uiuc.edu/HyperNews/get/computing/lang-list.html ,
which lists many languages with pointers to more information for each, and
http://cuiwww.unige.ch/langlist , which lets you interactively search for particular languages.
Unfortunately, the WWW changes constantly, so the pointers I provide here may not be valid when you try
them.

In a few cases, I describe the syntax and some helpful routines in the language so that you can write
small programs and run them.

ABC. Small, interactive, strong typing, indentation for grouping, strings, and exact arithmetic.In use1.
http://www.cwi.nl/˜guido/ftp/steven/www/abc.html .

Ada. Large, imperative, compiled, strong typing, concurrent; based on Pascal. Inslowly increasing use.
Has an ANSI standard.A revision called Ada 95 was published in 1995 (ISO 8652:1995); it includes
object orientation2. http://lglwww.epfl.ch/Ada/9X/9X.html .

AL. Imperative, control of a robot arm.Experimental; in use during the 1970s and 1980s at Stanford
University3.

ALBA. Object-oriented, concurrent.Experimental4.

ALF. Multiparadigm: object-oriented and logic; based on Smalltalk.Experimental5.
ftp://ftp.germany.eu.net/pub/programming/languages/LogicFunctional .

Algol. Imperative, static types, modern control structures.Pioneered free format, compound statements,
variables declared with type, recursion, value-mode parameters.Hoare says that Algol-60 was ‘‘a language
so far ahead of its time, that it was not only an improvement on its predecessors, but also on nearly all its
successors’’6. In use in the 1960s, particularly in Europe.Algol-68, Algol-W, and Jovial are independent
developments that grew out of Algol-60; they were in moderate use in the 1960s and 1970s7, 8.

Alphard. Strongly typed, imperative, pre- and postconditions for procedures.Experimental9.

Amber. Strongly typed, dynamic and static typing, structural equivalence. Experimental10.

APL. Matrices, interpreted.In widespread but sparse use since the 1960s11, 12, 13.
http://www.acm.org/sigapl .

Argus. Imperative, concurrent, strongly typed, compiled, transactions; based on CLU.Experimental14, 15.

Awk. Strings, interpreted.In widespread use, particularly on Unix16. Available in the GNU software suite
asgawk. ftp://netlib.att.com/research/awk* .



C. Imperative, systems programming; based on Algol.In heavy and increasing use since the 1970s.Has
an ANSI standard17, 18. http://www.cis.ohio-state.edu/hypertext/faq/usenet/C-faq/top.html .
Av ailable in the GNU software suite and ported to a great number of platforms.

C++. Object-oriented, extends C.In heavy use19, 20. Available in the GNU software suite.For MS-DOS,
a nice and inexpensive implementation is available from Borland International, 1800 Green Hills Road,
Box 660001, Scotts Valley, CA 95067.

Canopy. Concurrent, extends C.In use at Fermilab in Illinois21.

Charm. Concurrent, extends C.Experimental, primarily at the University of Illinois22.
ftp://a.cs.uiuc.edu/pub/CHARM .

CLP(R). “Constraint Logic Programming (Real domain).” Extends Prolog.In use; available on internet23,

24. http://www.cs.cmu.edu/Web/Groups/AI/html/faqs/ai/constraints/top.html .

CLOS. “Common LISP Object System.” Object-oriented, extends Common LISP25.
http://www.cis.ohio-state.edu/hypertext/faq/usenet/lisp-faq/part5/faq.html .

CLU. Imperative, strongly typed; based on Algol.Pioneered iterators.In occasional use, particularly at
MIT26. ftp://ftp.lcs.mit.edu/pub/pclu .

Concurrent C. Imperative, concurrent; based on C.Includes Ada rendezvous, with guards that can refer-
ence formal parameters and sorting expressions. Inincreasing use27.

CSP. “Communicating Sequential Processes.” Concurrent. Notimplemented (but see Occam)28.
http://www.comlab.ox.ac.uk/archive/csp.html .

CST. Concurrent Smalltalk.Object-oriented, concurrent, extends Smalltalk.Experimental29.

dBASE. Database. Several dialects (dBASE II, dBASE III, dBASE IV) in heavy use30.

DC++. Concurrent, object-oriented, extends C++.Experimental31.

DP. “Distributed Processes.” I mperative, concurrent. Notimplemented32.

Edison. Imperative, concurrent; based on DP. Experimental33.

Eiffel. Object-oriented, statically typed, has assertions for axiomatic correctness checking.In use34, 35.
http://www.eiffel.com/doc/eiffel.html . Available from Interactive Software Engineering (ISE).

Eiffel Linda. Object-oriented, concurrent, extends Eiffel and Linda.Experimental36.

Euclid. Imperative, strongly typed, for systems programming and formal verification; based on Pascal.
Several dialects (April Euclid, Small Euclid) in use during the 1980s37.

Distributed Eiffel. Object-oriented, concurrent, extends Eiffel. Experimental38.

FORTRAN. “Formula Translator.” Imperative, typed, no block structure, weak control structures.
Designed at IBM in 1954 under the direction of John Backus.Pioneered arrays,for loops, and branching
if statements. Various dialects (FORTRAN II, FORTRAN IV, WatFor, WatFive, FORTRAN 66 (ANSI
X3.9-1966), FORTRAN 77 (ANSI X3.9-1978), FORTRAN 90 (ISO 1539-1991, ANSI X3.198-1992)) in
heavy use since the late 1950s, especially for scientific computing.



http://www.cis.ohio-state.edu/hypertext/faq/usenet/fortran-faq/faq.html .

FP. Functional. Someexperimental dialects (FP*, FP*/88N, Berkeley FP) have been implemented39, 40,

41. http://www.nectec.or.th/pub/archives/comp.sources.unix/volume20/fpc .

G-2. Multiparadigm, dynamically typed, compiled.Experimental42.

Gedanken. Clear separation of functional and imperative parts. Notimplemented43.

Logic. Experimental44. ftp://ftp.cs.kuleuven.ac.be/pub/logic-prgm/goedel .

Icon. Imperative, strings, backtracking.In use45, 46. http://www.cs.arizona.edu/icon/www/-

index.html .

[incr Tcl]. Scripting, strings, object-oriented, interpreted.Extension of Tcl.In use.
http://www.wn.com/biz/itcl .

Intercal. Humorous. Implemented47. http://www.nectec.or.th/pub/archives/comp.sources.misc/-

volume16/intercal.programming language .

Io. Continuations. Notimplemented48.

Leda. Multiparadigm, strongly typed, compiled.Experimental49. http://www.cs.orst.edu/˜budd/-

leda.html .

Linda. Concurrent, meant to be embedded in other languages.Embedded in various packages and in
use50. http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html .

LISP. “List Processing Language.” Functional, homoiconic.Pioneered garbage collection.In widespread
use since the 1960s51, 52, 53, 54, 55. There are many dialects of LISP, such as MacLISP, InterLISP, Common
LISP, and Scheme.Scheme was designed by Guy Steele and Gerald Sussman.
http://www-swiss.ai.mit.edu/scheme-home.html . It has an exceptionally clear and simple semantics
and few different ways to form expressions. CommonLISP, also developed by Guy Steele, contains a great
deal that is not mentioned in Chapter 0, including default parameters, exception handling, a type mecha-
nism, and data structures like strings, arrays, records, and hash tables.http://www.cs.rmit.edu.au/-

docs/cltl/cltl2.html . Like Scheme, Common LISP uses static, not dynamic, scope rules.The form for
defining a function is( defun name (param list) (body)) . Lambda forms should be quoted:’( lambda (x)

(+ x 1)) ; they are invoked by thefuncall form. Commentsstart with ; and continue to the end of the
line. Theprint function outputs its parameter. Static scope rules are like those in ML; a scope looks like
( let ((var1 val1) ... ) (body)) ; uselet* for recursive declarations.

Lucid. Functional with iteration.Lucid started as a simple, nonprocedural temporal language; it has devel-
oped into a programming paradigm calledintensional programming56. http://www.csl.sri.com/-

Lucid.html .

Lucinda. Linda-Russell hybrid. Experimental57.

Lynx. Imperative, concurrent, strongly typed; based on Algol.Experimental58.

Macsyma. Mathematical, interactive. Heavily used during the 1970s and 1980s; still in use and commer-
cially available. http://www.macsyma.com/ 59.



Madcap. Experimental. Adescendent, Modcap, is in use at New Mexico State University60.

Maple. Mathematical, interactive. Widely used; commercially available61.
http://www.maplesoft.com/Maple/ .

Mathematica. Mathematical, interactive. Widely used.Commercially available62, 63.
http://www.wri.com/ .

Mesa. Imperative, strongly typed, concurrent; based on Pascal. Usedheavily at Xerox Palo Alto Research
Center during the 1970s and 1980s64.

Metafont. Font specification.Widely used65. http://etna.mcs.kent.edu/TeX/TeX-FAQ . Part of almost
ev ery TeX distribution.

Miranda. Functional, polymorphic types, lazy evaluation. Experimental,in increasing use; commercially
available66, 67, 68. http://www.cs.nott.ac.uk/Department/Staff/mpj/faq.html#Miranda(TM) .

ML. “MetaLanguage.” Functional, type inference with polymorphic types, interactive; based on Edin-
burgh Logic for Computable Functions (LCF).Pioneered type inference.Experimental, in increasing use.
ML has evolved into Standard ML69, 70, 71, 72, 73. ftp://pop.cs.cmu.edu/usr/rowan/sml-archive/-

faq.txt . New Jersey Standard ML is interactive, expecting the user to type in expressions, just as shown in
Chapter 0.Each expression is terminated by; . Comments are surrounded by(* and *) . Some useful
predefined functions are: use =fn : (stringlist) -> unit print = ’a -> ’a Use allows you to
read in a program from a list of files.Print allows you to output values. Unit is a type with one value,
used asvoid in C is used.The unary negation operator is˜ .

Modula. Imperative, concurrent, compiled, strong typing; based on Pascal. Nolonger used74.

Modula-2. Imperative, concurrent, compiled, strong typing; based on Modula and Pascal. Inwidespread
use75. http://www.cis.ohio-state.edu/hypertext/faq/usenet/Modula-2-faq/faq.html .

Modula-3. Imperative, concurrent, compiled, strong typing with structural equivalence, objects; based on
Modula-2. Experimental,in increasing use76. http://www.research.digital.com/SRC/modula-3/-

html/home.html .

Oberon. Imperative, strong typing, for students; based on Modula-2.In increasing use77.
http://www.cis.ohio-state.edu/hypertext/faq/usenet/Oberon-Lang-FAQ/faq.html ; also,
http://huxley.inf.ethz.ch/˜marais/Spirit.html .

Occam. Concurrent, extension of CSP. In use78. http://www.comlab.ox.ac.uk/archive/occam.html .

OPS5. Rule-based. Inuse79. http://www.nectec.or.th/pub/archives/comp.sources.unix/-

volume12/ops5 .

Pascal. Imperative, typed, block-structured; based on Algol-60.In heavy use since the 1970s.Has an
ANSI standard80, 81. http://www.yahoo.com/Computers/Languages/Pascal .

Perl. “Practical Extraction and Report Language.” Scripting, strings, interpreted.In use82, 83.
http://www.cis.ufl.edu/perl .

Post. Dataflow. Not fully implemented84.



Prolog. Declarative, logic, patterns, backtrack.In widespread use85. http://www.cs.cmu.edu/afs/-

cs.cmu.edu/Web/Groups/AI/html/faqs/lang/prolog/top.html . SICStus Prolog 2.1 is a portable imple-
mentation of Prolog; inquiries can be addressed tosicstus-request@sics.se . SWI-Prolog comes from
the University of Amsterdam.SWI-Prolog is interactive. It begins in query mode, showing a prompt?- .
To switch to a mode in which facts can be entered, give the query[user] . To return to query mode, type an
end-of-file. To read facts from a file, give the query[filename] . The querytrace causes prolog to show
the rules it tries as the evaluator solves queries.The unary predicateprint outputs its parameter. The com-
ment delimiters are/* and */ . To get a bag of all solutions to a query, try bagof ((list of output vari-
ables), query, bagname).

Russell. Types as first-class values. Experimental86, 87. ftp://arisia.xerox.com/pub/russell/-

russell.tar.Z .

SAIL. Imperative with some AI structures; based on Algol-W and Leap (a language with associative
store). Heavily used at Stanford in the 1970s.

SAL. Imperative, systems administration, database.In use, primarily at the University of Kentucky88.

Sed. A stream editor standard with all Unix implementations.

Simula. Imperative, types, classes, coroutines; based on Algol.Pioneered abstract data types and object
orientation. Various dialects (starting with Simula 67) in heavy use in the 1970s89.
http://remarque.berkeley.edu/˜muir/free-compilers/TOOL/Simula67-1.html .

Sisal. “Streams and Iteration in a Single-Assignment Language.” Dataflow; based on Val. inuse90.
http://www.llnl.gov/sisal/ .

Smalltalk. Object-oriented. Various dialects (mainly of Smalltalk-80) are in use91, 92, 93.
http://st-www.cs.uiuc.edu/other_st.html . A version of Smalltalk 1.0 is available in the Gnu software
suite. Itis interactive, expecting the user to type in expressions as if they were the body of an anonymous
method. Thebody is terminated by! . Comments are surrounded by double quotes.Some useful prede-
fined classes and methods: (FileStreamopen: ’file name’mode: ’r ’) fileIn !1

"read and execute a program from a file"2 anObjectclass inspect !3
"show class, superclass, subclasses, methods,4
variables"5 anObjectprintNl !6
"print the object with a trailing newline"7 Version 3 of Little Smalltalk is a portable implementation

intended for a wide range of machines.It is in the public domain and can be distributed; it is available in
msdos/misclang/stv3-dos.zip from many sites. Detailsare available from Tim Budd, Department of
Computer Science, Oregon State University, Corvallis, OR 97331.Smalltalk-80 Version 2 is available from
ParcPlace Systems, 999 E. Arques Avenue, Sunnyvale, CA 94086-4593, which markets implementations
for a wide variety of machines.

SNOBOL. “StriNg Oriented symbOLic Language.” Strings, patterns, dynamic typing, dynamic scope.
Pioneered pattern matching.Various dialects (mainly SNOBOL4 and Spitbol) in widespread use in the
1970s94. ftp://cs.arizona.edu/snobol4 .

Specint. Logic, goal-directed.Experimental95.

SR. Imperative, concurrent; based on Algol.Experimental, in increasing use96. ftp://cs.arizona.edu/-

sr/sr.tar.Z .

SQL. “Structured Query Language.” Relational database.Has an ANSI standard (X3.135-1992).In
widespread use.http://waltz.ncsl.nist.gov/˜len/sql_info.html .



Tcl. Scripting, strings, interpreted.In use97. http://www.x.co.uk/of_interest/tcl/Tcl.html .

Val. Dataflow. Obsolete98, 99.
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