
This appendix lists the languages mentioned in the text, along with information you may find helpful if you
want to investigate further. Many of the language names are registered trademarks.

When I say a language is “based on” another, I mean to say that it is in the same general family, even
though it may have evolved a great distance from its forebear. Many languages include features from dis-
parate language families and are therefore difficult to categorize. Someare clearly extensions or hybrids of
other languages.

Whenever I can, I provide not only pointers to the literature but also URLs (universal resource loca-
tors) for getting more information via WWW (the World-Wide Web). Thesepointers direct you to docu-
mentation, examples, compilers, and other language-related information.Several URLs of general interest
arehttp://union.ncsa.uiuc.edu/HyperNews/get/computing/lang-list.html ,
which lists many languages with pointers to more information for each, and
http://cuiwww.unige.ch/langlist , which lets you interactively search for particular languages.
Unfortunately, the WWW changes constantly, so the pointers I provide here may not be valid when you try
them.

In a few cases, I describe the syntax and some helpful routines in the language so that you can write
small programs and run them.

ABC. Small, interactive, strong typing, indentation for grouping, strings, and exact arithmetic.In use1.
http://www.cwi.nl/˜guido/ftp/steven/www/abc.html .

Ada. Large, imperative, compiled, strong typing, concurrent; based on Pascal. Inslowly increasing use.
Has an ANSI standard.A revision called Ada 95 was published in 1995 (ISO 8652:1995); it includes
object orientation2. http://lglwww.epfl.ch/Ada/9X/9X.html .

AL. Imperative, control of a robot arm.Experimental; in use during the 1970s and 1980s at Stanford
University3.

ALBA. Object-oriented, concurrent.Experimental4.

ALF. Multiparadigm: object-oriented and logic; based on Smalltalk.Experimental5.
ftp://ftp.germany.eu.net/pub/programming/languages/LogicFunctional .

Algol. Imperative, static types, modern control structures.Pioneered free format, compound statements,
variables declared with type, recursion, value-mode parameters.Hoare says that Algol-60 was ‘‘a language
so far ahead of its time, that it was not only an improvement on its predecessors, but also on nearly all its
successors’’6. In use in the 1960s, particularly in Europe.Algol-68, Algol-W, and Jovial are independent
developments that grew out of Algol-60; they were in moderate use in the 1960s and 1970s7, 8.

Alphard. Strongly typed, imperative, pre- and postconditions for procedures.Experimental9.

Amber. Strongly typed, dynamic and static typing, structural equivalence. Experimental10.

APL. Matrices, interpreted.In widespread but sparse use since the 1960s11, 12, 13.
http://www.acm.org/sigapl .

Argus. Imperative, concurrent, strongly typed, compiled, transactions; based on CLU.Experimental14, 15.

Awk. Strings, interpreted.In widespread use, particularly on Unix16. Available in the GNU software suite
asgawk. ftp://netlib.att.com/research/awk* .

C. Imperative, systems programming; based on Algol.In heavy and increasing use since the 1970s.Has
an ANSI standard17, 18. http://www.cis.ohio-state.edu/hypertext/faq/usenet/C-faq/top.html .
Av ailable in the GNU software suite and ported to a great number of platforms.

C++. Object-oriented, extends C.In heavy use19, 20. Available in the GNU software suite.For MS-DOS,
a nice and inexpensive implementation is available from Borland International, 1800 Green Hills Road,
Box 660001, Scotts Valley, CA 95067.

Canopy. Concurrent, extends C.In use at Fermilab in Illinois21.

Charm. Concurrent, extends C.Experimental, primarily at the University of Illinois22.
ftp://a.cs.uiuc.edu/pub/CHARM .

CLP(R). “Constraint Logic Programming (Real domain).” Extends Prolog.In use; available on internet23,

24. http://www.cs.cmu.edu/Web/Groups/AI/html/faqs/ai/constraints/top.html .

CLOS. “Common LISP Object System.” Object-oriented, extends Common LISP25.
http://www.cis.ohio-state.edu/hypertext/faq/usenet/lisp-faq/part5/faq.html .

CLU. Imperative, strongly typed; based on Algol.Pioneered iterators.In occasional use, particularly at
MIT26. ftp://ftp.lcs.mit.edu/pub/pclu .

Concurrent C. Imperative, concurrent; based on C.Includes Ada rendezvous, with guards that can refer-
ence formal parameters and sorting expressions. Inincreasing use27.

CSP. “Communicating Sequential Processes.” Concurrent. Notimplemented (but see Occam)28.
http://www.comlab.ox.ac.uk/archive/csp.html .

CST. Concurrent Smalltalk.Object-oriented, concurrent, extends Smalltalk.Experimental29.

dBASE. Database. Several dialects (dBASE II, dBASE III, dBASE IV) in heavy use30.

DC++. Concurrent, object-oriented, extends C++.Experimental31.

DP. “Distributed Processes.” I mperative, concurrent. Notimplemented32.

Edison. Imperative, concurrent; based on DP. Experimental33.

Eiffel. Object-oriented, statically typed, has assertions for axiomatic correctness checking.In use34, 35.
http://www.eiffel.com/doc/eiffel.html . Available from Interactive Software Engineering (ISE).

Eiffel Linda. Object-oriented, concurrent, extends Eiffel and Linda.Experimental36.

Euclid. Imperative, strongly typed, for systems programming and formal verification; based on Pascal.
Several dialects (April Euclid, Small Euclid) in use during the 1980s37.

Distributed Eiffel. Object-oriented, concurrent, extends Eiffel. Experimental38.

FORTRAN. “Formula Translator.” Imperative, typed, no block structure, weak control structures.
Designed at IBM in 1954 under the direction of John Backus.Pioneered arrays,for loops, and branching
if statements. Various dialects (FORTRAN II, FORTRAN IV, WatFor, WatFive, FORTRAN 66 (ANSI
X3.9-1966), FORTRAN 77 (ANSI X3.9-1978), FORTRAN 90 (ISO 1539-1991, ANSI X3.198-1992)) in
heavy use since the late 1950s, especially for scientific computing.

http://www.cis.ohio-state.edu/hypertext/faq/usenet/fortran-faq/faq.html .

FP. Functional. Someexperimental dialects (FP*, FP*/88N, Berkeley FP) have been implemented39, 40,

41. http://www.nectec.or.th/pub/archives/comp.sources.unix/volume20/fpc .

G-2. Multiparadigm, dynamically typed, compiled.Experimental42.

Gedanken. Clear separation of functional and imperative parts. Notimplemented43.

Logic. Experimental44. ftp://ftp.cs.kuleuven.ac.be/pub/logic-prgm/goedel .

Icon. Imperative, strings, backtracking.In use45, 46. http://www.cs.arizona.edu/icon/www/-

index.html .

[incr Tcl]. Scripting, strings, object-oriented, interpreted.Extension of Tcl.In use.
http://www.wn.com/biz/itcl .

Intercal. Humorous. Implemented47. http://www.nectec.or.th/pub/archives/comp.sources.misc/-

volume16/intercal.programming language .

Io. Continuations. Notimplemented48.

Leda. Multiparadigm, strongly typed, compiled.Experimental49. http://www.cs.orst.edu/˜budd/-

leda.html .

Linda. Concurrent, meant to be embedded in other languages.Embedded in various packages and in
use50. http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html .

LISP. “List Processing Language.” Functional, homoiconic.Pioneered garbage collection.In widespread
use since the 1960s51, 52, 53, 54, 55. There are many dialects of LISP, such as MacLISP, InterLISP, Common
LISP, and Scheme.Scheme was designed by Guy Steele and Gerald Sussman.
http://www-swiss.ai.mit.edu/scheme-home.html . It has an exceptionally clear and simple semantics
and few different ways to form expressions. CommonLISP, also developed by Guy Steele, contains a great
deal that is not mentioned in Chapter 0, including default parameters, exception handling, a type mecha-
nism, and data structures like strings, arrays, records, and hash tables.http://www.cs.rmit.edu.au/-

docs/cltl/cltl2.html . Like Scheme, Common LISP uses static, not dynamic, scope rules.The form for
defining a function is(defun name (param list) (body)) . Lambda forms should be quoted:’(lambda (x)

(+ x 1)) ; they are invoked by thefuncall form. Commentsstart with ; and continue to the end of the
line. Theprint function outputs its parameter. Static scope rules are like those in ML; a scope looks like
(let ((var1 val1) ...) (body)) ; uselet* for recursive declarations.

Lucid. Functional with iteration.Lucid started as a simple, nonprocedural temporal language; it has devel-
oped into a programming paradigm calledintensional programming56. http://www.csl.sri.com/-

Lucid.html .

Lucinda. Linda-Russell hybrid. Experimental57.

Lynx. Imperative, concurrent, strongly typed; based on Algol.Experimental58.

Macsyma. Mathematical, interactive. Heavily used during the 1970s and 1980s; still in use and commer-
cially available. http://www.macsyma.com/ 59.

Madcap. Experimental. Adescendent, Modcap, is in use at New Mexico State University60.

Maple. Mathematical, interactive. Widely used; commercially available61.
http://www.maplesoft.com/Maple/ .

Mathematica. Mathematical, interactive. Widely used.Commercially available62, 63.
http://www.wri.com/ .

Mesa. Imperative, strongly typed, concurrent; based on Pascal. Usedheavily at Xerox Palo Alto Research
Center during the 1970s and 1980s64.

Metafont. Font specification.Widely used65. http://etna.mcs.kent.edu/TeX/TeX-FAQ . Part of almost
ev ery TeX distribution.

Miranda. Functional, polymorphic types, lazy evaluation. Experimental,in increasing use; commercially
available66, 67, 68. http://www.cs.nott.ac.uk/Department/Staff/mpj/faq.html#Miranda(TM) .

ML. “MetaLanguage.” Functional, type inference with polymorphic types, interactive; based on Edin-
burgh Logic for Computable Functions (LCF).Pioneered type inference.Experimental, in increasing use.
ML has evolved into Standard ML69, 70, 71, 72, 73. ftp://pop.cs.cmu.edu/usr/rowan/sml-archive/-

faq.txt . New Jersey Standard ML is interactive, expecting the user to type in expressions, just as shown in
Chapter 0.Each expression is terminated by; . Comments are surrounded by(* and *) . Some useful
predefined functions are: use =fn : (stringlist) -> unit print = ’a -> ’a Use allows you to
read in a program from a list of files.Print allows you to output values. Unit is a type with one value,
used asvoid in C is used.The unary negation operator is˜ .

Modula. Imperative, concurrent, compiled, strong typing; based on Pascal. Nolonger used74.

Modula-2. Imperative, concurrent, compiled, strong typing; based on Modula and Pascal. Inwidespread
use75. http://www.cis.ohio-state.edu/hypertext/faq/usenet/Modula-2-faq/faq.html .

Modula-3. Imperative, concurrent, compiled, strong typing with structural equivalence, objects; based on
Modula-2. Experimental,in increasing use76. http://www.research.digital.com/SRC/modula-3/-

html/home.html .

Oberon. Imperative, strong typing, for students; based on Modula-2.In increasing use77.
http://www.cis.ohio-state.edu/hypertext/faq/usenet/Oberon-Lang-FAQ/faq.html ; also,
http://huxley.inf.ethz.ch/˜marais/Spirit.html .

Occam. Concurrent, extension of CSP. In use78. http://www.comlab.ox.ac.uk/archive/occam.html .

OPS5. Rule-based. Inuse79. http://www.nectec.or.th/pub/archives/comp.sources.unix/-

volume12/ops5 .

Pascal. Imperative, typed, block-structured; based on Algol-60.In heavy use since the 1970s.Has an
ANSI standard80, 81. http://www.yahoo.com/Computers/Languages/Pascal .

Perl. “Practical Extraction and Report Language.” Scripting, strings, interpreted.In use82, 83.
http://www.cis.ufl.edu/perl .

Post. Dataflow. Not fully implemented84.

Prolog. Declarative, logic, patterns, backtrack.In widespread use85. http://www.cs.cmu.edu/afs/-

cs.cmu.edu/Web/Groups/AI/html/faqs/lang/prolog/top.html . SICStus Prolog 2.1 is a portable imple-
mentation of Prolog; inquiries can be addressed tosicstus-request@sics.se . SWI-Prolog comes from
the University of Amsterdam.SWI-Prolog is interactive. It begins in query mode, showing a prompt?- .
To switch to a mode in which facts can be entered, give the query[user] . To return to query mode, type an
end-of-file. To read facts from a file, give the query[filename] . The querytrace causes prolog to show
the rules it tries as the evaluator solves queries.The unary predicateprint outputs its parameter. The com-
ment delimiters are/* and */ . To get a bag of all solutions to a query, try bagof ((list of output vari-
ables), query, bagname).

Russell. Types as first-class values. Experimental86, 87. ftp://arisia.xerox.com/pub/russell/-

russell.tar.Z .

SAIL. Imperative with some AI structures; based on Algol-W and Leap (a language with associative
store). Heavily used at Stanford in the 1970s.

SAL. Imperative, systems administration, database.In use, primarily at the University of Kentucky88.

Sed. A stream editor standard with all Unix implementations.

Simula. Imperative, types, classes, coroutines; based on Algol.Pioneered abstract data types and object
orientation. Various dialects (starting with Simula 67) in heavy use in the 1970s89.
http://remarque.berkeley.edu/˜muir/free-compilers/TOOL/Simula67-1.html .

Sisal. “Streams and Iteration in a Single-Assignment Language.” Dataflow; based on Val. inuse90.
http://www.llnl.gov/sisal/ .

Smalltalk. Object-oriented. Various dialects (mainly of Smalltalk-80) are in use91, 92, 93.
http://st-www.cs.uiuc.edu/other_st.html . A version of Smalltalk 1.0 is available in the Gnu software
suite. Itis interactive, expecting the user to type in expressions as if they were the body of an anonymous
method. Thebody is terminated by! . Comments are surrounded by double quotes.Some useful prede-
fined classes and methods: (FileStreamopen: ’file name’mode: ’r ’) fileIn !1

"read and execute a program from a file"2 anObjectclass inspect !3
"show class, superclass, subclasses, methods,4
variables"5 anObjectprintNl !6
"print the object with a trailing newline"7 Version 3 of Little Smalltalk is a portable implementation

intended for a wide range of machines.It is in the public domain and can be distributed; it is available in
msdos/misclang/stv3-dos.zip from many sites. Detailsare available from Tim Budd, Department of
Computer Science, Oregon State University, Corvallis, OR 97331.Smalltalk-80 Version 2 is available from
ParcPlace Systems, 999 E. Arques Avenue, Sunnyvale, CA 94086-4593, which markets implementations
for a wide variety of machines.

SNOBOL. “StriNg Oriented symbOLic Language.” Strings, patterns, dynamic typing, dynamic scope.
Pioneered pattern matching.Various dialects (mainly SNOBOL4 and Spitbol) in widespread use in the
1970s94. ftp://cs.arizona.edu/snobol4 .

Specint. Logic, goal-directed.Experimental95.

SR. Imperative, concurrent; based on Algol.Experimental, in increasing use96. ftp://cs.arizona.edu/-

sr/sr.tar.Z .

SQL. “Structured Query Language.” Relational database.Has an ANSI standard (X3.135-1992).In
widespread use.http://waltz.ncsl.nist.gov/˜len/sql_info.html .

Tcl. Scripting, strings, interpreted.In use97. http://www.x.co.uk/of_interest/tcl/Tcl.html .

Val. Dataflow. Obsolete98, 99.

References

1. STEVEN PEMBERTON, “A short introduction to the ABC language,” ACM SIGPLAN Notices26(2) pp.
11-16 (February 1991).

2. UNITED STATES DEPARTMENT OF DEFENSE, “Reference Manual for the Ada Programming Lan-
guage,” ANSI/NIL-STD 1815A-1983, (1983).

3. RAPHAEL A. FINKEL , Constructing and debugging manipulator programs,Stanford AI Laboratory
memo AIM-284, Stanford Computer Science Department report STAN-CS-76-567 (August 1976).

4. J.HERNÁNDEZ, P. DE MIGUEL, M. BARRENA, J. M. MARTÍNEZ, A. POLO, AND M. NIETO, “ALBA, a
parallel language based on actors,” ACM SIGPLAN Notices28(4) pp. 11-20 (April 1993).

5. FRED MELLENDER, “An integration of logic and object-oriented programming,” ACM SIGPLAN
Notices23(10) pp. 181-185 (October 1988).

6. C. A. R. HOARE, “Hints on Programming Language Design,” Stanford CS Department Technical
Report STAN-CS-73-403 (December 1973).

7. PETERNAUR, “Revised report on the algorithmic language Algol 60,” CACM 6(1) pp. 1-17 (1963).

8. A. VAN WIJNGAARDEN, B. J. MAILLOUX , J. L. PECK, C. H. A. KOSTER, M. SINTZOFF, C. H. LINDSEY,
L. G. L. T. MEERTENS, AND R. G. FISKER, “Revised report on the algorithmic language ALGOL 68,”
Acta Informatica5(1-3) pp. 1-236 (1975).

9. W. A. WULF, R. L. LONDON, AND MARY SHAW, “Abstraction and verification in Alphard: Defining
and specifying iteration and generators,” CACM 20(8) pp. 553-563 (August 1977).

10. LUCA CARDELLI , “Amber,” in Combinators and Functional Programming Languages, ed. G.
Cousineau, P. L. Courien, and B. Robinet, Springer-Verlag, New York (1986).

11. KENNETH E. IVERSON, A Pro gramming Language,John Wiley and Sons, New York (1962).

12. KENNETH E. IVERSON, “A Dictionary of APL,” (ACM) APL Quote Quad18(1)(September 1987).

13. IBM CORPORATION, APL2 Programming: Language Reference, SH20-9227 1987.

14. BARBARA LISKOV AND R. SCHEIFLER, “Guardians and actions:Linguistic support for robust, dis-
tributed programs,” ACM Transactions on Programming Languages and Systems5(3) pp. 381-404
(July 1983).

15. BARBARA LISKOV, “Preliminary Argus reference manual,” Programming Methodology Group Memo
39 (et. al.), MIT Laboratory for Computer Science, Cambridge, MA (October 1983).

16. ALFRED V. AHO, BRIAN W. KERNIGHAN, AND PETER J. WEINBERGER, AWK: A Pattern Scanning and
Processing Language, Bell Laboratories, Murray Hill, NJ (September 1978).Gov’t. ordering no.
et. al. 2nd edition

17. BRIAN W. KERNIGHAN AND DENNIS M. RITCHIE, The C Programming Language, Prentice-Hall,
Englewood Cliffs, NJ (1988).Gov’t. ordering no. et. al.2nd edition

18. SAMUEL P. HARBISON AND GUY L. STEELE, C: A Reference Manual,Prentice-Hall, Englewood
Cliffs, NJ (1987).Gov’t. ordering no. et. al.2nd edition

19. MARGARET ELLIS AND BJARNE STROUSTRUP, The Annotated C++ Reference Manual,Addison-Wes-
ley, Reading, MA (1990).Gov’t. ordering no. et. al.

20. SCOTT MEYERS, Effective C++,Addison-Wesley, Reading, MA (1992).Gov’t. ordering no. et. al.

21. GEORGEHOCKNEY, PAUL MACKENZIE, AND MARK FISCHLER, “Canopy Version 5.0,” Fermi National
Accelerator Laboratory (et. al.) (February 1992).

22. L. V. KALÉ, “The Chare-Kernel parallel programming language and system,” Proceedings of the
International Conference on Parallel Processing, pp. 17-25 (August 1990).

23. N.HEINTZE, J. JAFFAR, AND S. MICHAYLOV, The CLP(R) Programmer’s Manual, Version 1.2,IBM
Thomas J. Watson Research Center (1992).Gov’t. ordering no. et. al.

24. T. FRUHWIRTH, A. HEROLD, AND V. KUCHENHOFF, Constraint Logic Programming — An informal
introduction,Springer-Verlag, Berlin (1992).Gov’t. ordering no. et. al.

25. DANIEL G. BOBROW, LINDA G. DEMICHIEL, RICHARD P. GABRIEL, SONYA E. KEENE, GREGOR

KICZALES, AND DAVID A. MOON, “Common LISP object system specification,” ACM SIGPLAN
Notices23(9)(September 1988).

26. BARBARA LISKOV, R. ATKINSON, T. BLOOM, E. MOSS, J. C. SCHAFFERT, R. SCHEIFLER, AND A. SNY-

DER, CLU Reference Manual,Springer-Verlag, Berlin (1981).Gov’t. ordering no. et. al.

27. NAHRAIN H. GEHANI AND W. D. ROOME, The Concurrent C programming language,Silicon Press,
Summit, NJ (1989).Gov’t. ordering no. et. al.

28. C.A. R. HOARE, “Communicating Sequential Processes,” CACM 21(8) pp. 666-677 (August 1978).

29. W. J. DALLY AND A. A. CHIEN, “Object-oriented concurrent programming in CST,” Proceedings of
the ACM SIGPLAN Workshop on Object-Based Concurrent Programming: ACM SIGPLAN Notices
24(4) pp. 28-31 (April 1989).

30. ALAN SIMPSON, dBASE III Programmer’s Reference Guide, Sybex, Inc., Alameda, CA (1987).
Gov’t. ordering no. et. al.

31. HAROLD CARR, ROBERT KESSLER, AND MARK SWANSON, “Distributed C++,” ACM SIGPLAN
Notices28(1) p. 81 (January 1993).

32. PER BRINCH HANSEN, “Distributed processes: A concurrent programming concept,” CACM
21(11) pp. 934-941 (November 1978).

33. PER BRINCH HANSEN, “Edison: A Multiprocessor Language,” Technical Report (et.al.), University of
Southern California Computer Science Department (September 1980).

34. BERTRAND MEYER, Object-Oriented Software Construction,Prentice Hall, Englewood Cliffs, NJ
(1988). Gov’t. ordering no. et. al.

35. BERTRAND MEYER, Eiffel: The language,Prentice Hall, Englewood Cliffs, NJ (1992).Gov’t. order-
ing no. et. al.

36. ROBERT JELLINGHAUS, “Eiffel Linda: An object-oriented Linda Dialect,” ACM SIGPLAN Notices
25(12) pp. 70-84 (December 1990).

37. BUTLER W. LAMPSON, JIM J. HORNING, R. L. LONDON, JAMES G. MITCHELL, AND GARY J. POPEK,
“Report on the programming language Euclid,” Sigplan Notices12(2) pp. 1-79 (February 1977).

38. L. GUNASEELAN AND RICHARD J. LEBLANC, JR., “Distributed Eiffel: A language for programming
multi-granular distributed objects on the Clouds operating system,” Proceedings IEEE 1992 Interna-
tional Conference on Computer Languages, (April 1992).

39. JOHN W. BACKUS, “Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs,” Communications of the ACM 21 pp. 613-641 (1978).

40. A. RADENSKY, “Lazy evaluation and nondeterminism make Backus’ FP-systems more practical,”
ACM SIGPLAN Notices22(4) pp. 33-40 (April 1987).

41. SCOTT BADEN, “Berkeley FP User’s Manual,” pp. 2.359-2.391 inUltrix-32 Supplementary Docu-
ments, Volume II, Digital Equipment Corporation, Merrimack, NH (1984).Revised

42. JOHN PLACER, “Integrating destructive assignment and lazy evaluation in the multiparadigm language
G-2,” ACM SIGPLAN Notices27(2) pp. 65-74 (February 1992).

43. JOHN C. REYNOLDS, “Gedanken,” CACM 13(5) pp. 308-319 (May 1970).

44. P. M. HILL AND J. W. LLOYD, The Programming Language, MIT Press, Cambridge, MA (1994).
Gov’t. ordering no. et. al.

45. RALPH E. GRISWOLD AND DAVID R. HANSON, “An alternative to the use of patterns in string process-
ing,” ACM TOPLAS2(2) pp. 153-172 (April 1980).

46. RALPH E. GRISWOLD AND M. T. GRISWOLD, The Icon Programming Language,Prentice-Hall, Engle-
wood Cliffs, NJ (1990).Gov’t. ordering no. et. al.2nd edition

47. DONALD R. WOODS AND JAMES M. LYON, The Intercal Programming Language Reference Manual,
Not published 1973.

48. RAPHAEL L. LEVIEN, “Io: A new programming notation,” ACM SIGPLAN Notices24(12) pp.24-31
(December 1989).

49. TIMOTHY A. BUDD, Multiparadigm Programming in Leda,Addison-Wesley, Reading, MA (1995).
Gov’t. ordering no. et. al.

50. DAVID GELERNTER, “Generative communication in Linda,” ACM TOPLAS7(1) pp.80-112 (January
1985).

51. JOHN MCCARTHY, “Lisp 1.5 Programmer’s Manual,” (et al), MIT Press, Cambridge, MA (1962).

52. SHEILA HUGHES, Lisp,Pitman Publishing Limited, London (1986).Gov’t. ordering no. et al

53. WARREN TEITELMAN AND LARRY MASINTER, “The Interlisp programming environment,” IEEE Com-
puter14(4) pp. 25-33 (1981).

54. GUY L. STEELE JR., Common Lisp — The Language, Digital Press, Bedford, MA (1990).Gov’t.
ordering no. et al 2nd edition

55. H. ABELSON AND GERALD J. SUSSMAN, Structure and Interpretation of Computer Programs,MIT
Press, Cambridge, MA (1985).Gov’t. ordering no. et al

56. E. A. ASHCROFT AND W. W. WADGE, “Lucid, a nonprocedural language with iteration,” CACM
20(7) pp. 519-526 (July 1977).

57. PAUL BUTCHER AND HUSSEINZEDAN, “Lucinda — An overview,” ACM SIGPLAN Notices26(8) pp.
90-100 (August 1991).

58. MICHAEL L. SCOTT AND RAPHAEL A. FINKEL , “LYNX: A dynamic distributed programming lan-
guage,” 1984 International Conference on Parallel Processing, (August 1984).

59. HELLER, MACSYMA for Statisticians,John Wiley and Sons, New York (1991). Gov’t. ordering no. et
al

60. MARK B. WELLS, “Recent improvements in Madcap,” CACM 6(11) pp. 674-678 (June 1963).

61. CHAR, GEDDES, GONNET, LEONG, MONOGAN, AND WATT, Maple V Language Reference Manual,
Springer-Verlag, New York (1993). Gov’t. ordering no. et al

62. GAYLORD, KAMIN , AND WELLIN , Introduction to Programming with Mathematica,Springer-Verlag,
New York (1993). Gov’t. ordering no. et al

63. SHAW AND TIGG, Applied Mathematica, Getting Started, Getting It Done, Addison-Wesley, Reading,
MA (1994). Gov’t. ordering no. et al

64. BUTLER W. LAMPSON AND D. D. REDELL, “Experience with processes and monitors in Mesa,”
CACM 23(2) pp. 105-117 (February 1980).

65. DONALD E. KNUTH AND DUANE R. BIBBY , The METAFONTbook,American Mathematical Society
(1986). Gov’t. ordering no. et al volume C ofComputers and Typesetting

66. DAVID A. TURNER, “Miranda: A non-strict functional language with polymorphic types,” Proceed-
ings IFIP International Conference on Functional Programming Languages and Computer Architec-
ture, (September 1985).In Springer Lecture Notes in Computer Science, vol. 201

67. DAVID A. TURNER, “An Overview of Miranda,” ACM SIGPLAN Notices21(12) pp.158-166 (Decem-
ber 1986).

68. S.J. THOMPSON, “Laws in Miranda,” Proceedings of the 4th ACM International Conference on LISP
and Functional Programming, (August 1986).

69. ROBERT HARPER, ROBIN MILNER, AND MADS TOFTE, The Definition of Standard ML, MIT Press,
Cambridge, MA (1989).Gov’t. ordering no. et al Version 2

70. CHRIS READE, Elements of Functional Programming, Addison-Wesley, Reading, MA (1989).Gov’t.
ordering no. et al

71. ANDREW W. APPEL AND DAVID B. MACQUEEN, “Standard ML of New Jersey,” Third International
Symposium on Programming Language Implementation and Logic Programming, (August 1991).

72. LAWRENCE C. PAULSON, ML for the Working Programmer, Cambridge University Press, Cambridge
(1992). Gov’t. ordering no. et al

73. NORMAN RAMSEY, “Concurrent Programming in ML,” CS-TR-262-90 (et al), Princeton University,
Department of Computer Science (1990).

74. NIKLA US WIRTH, “Modula: A language for modular multiprogramming,” Software Practice and
Experience7(1) pp. 3-35 (1977).

75. NIKLA US WIRTH, Programming in Modula-2,Springer-Verlag, New York (1985). Gov’t. ordering no.
et al 3rd corrected edition

76. GREG NELSON, Systems Programming with Modula-3,Prentice Hall, Englewood Cliffs, NJ (1991).
Gov’t. ordering no. et al

77. MARTIN REISER ANDNIKLA US WIRTH, Programming in Oberon — Steps Beyond Pascal and Modula,
Addison-Wesley, Reading, MA (1992).Gov’t. ordering no. et al

78. D. MAY , “OCCAM,” ACM SIGPLAN Notices18(4) pp. 69-79 (April 1983). Relevant correspon-
dence appears in volume 19, number 2 and volume 18, number 11

79. L. BRO WNSTON, R. FARRELL, F. KANT, AND N. MARTIN, Programming Expert Systems in OPS5,
Addison-Wesley, Reading, MA (1986).Gov’t. ordering no. et al

80. K. JENSEN AND NIKLA US WIRTH, “Pascal: Usermanual and report,” Lecture Notes in Computer Sci-
ence, (18)Springer-Verlag, (1974).

81. ANSI, American National Standard Pascal Computer Programming Language, American National
Standards Institute, New York (1983). Gov’t. ordering no. et al ANSI/IEEE 770X3.97

82. LARRY WALL AND RANDAL I. SCHWARTZ, Programming Perl, O’Reilly and Associates, Sebastopol,
CA (1991). Gov’t. ordering no. et al

83. RANDAL L. SCHWARTZ, Learning Perl, O’Reilly & Associates, Inc., Sebastopol, CA (August 1994).
Gov’t. ordering no. et al

84. CHINYA V. RAVISHANKAR AND RAPHAEL FINKEL , “Linguistic Support for Dataflow,” Computer Sci-
ences Technical Report 136-89 (et al), University of Kentucky−Lexington (January 1989).Also The
University of Michigan Electrical Engineering and Computer Science Technical report CSE-
TR-14-89, February 1989

85. W. F. CLOCKSIN AND C. S. MELLISH, Programming in PROLOG,Springer-Verlag, New York (1981).
Gov’t. ordering no. et al

86. ALAN DEMERS AND J. DONAHUE, “Revised Report on Russell,” Cornell CS Department Technical
Report TR 79-389 (et al) (1979).

87. HANS-JUERGAN BOEHM AND ALAN DEMERS, “Implementing Russell,” ACM SIGPLAN Notices
21(7)(July 1986).

88. BRIAN STURGILL AND RAPHAEL FINKEL , “System Administration Tools: The SAT Package,” Com-
puter Sciences Technical Report 147-89 (et al), University of Kentucky−Lexington (July 1989).

89. G. M. BIRTWISTLE, OLE-JOHAN DAHL , B. MYHRHAUG, AND KRISTEN NYGAARD, Simula Begin,
Auerback Press, Philadelphia (1973).Gov’t. ordering no. et al

90. JAMES R. MCGRAW AND STEPHEN SKEDZIELEWSKI, “SISAL: Streams and Iteration in a Single-
Assignment Language,” L awrence Livermore National Laboratories, Report M-146 (et al) (July
1983).

91. DANIEL H. INGALLS, “The Smalltalk-76 programming system design and implementation,” Fifth
Annual ACM Symposium on Principles of Programming Languages, (1978).

92. ADELE GOLDBERG AND DAVID ROBSON, Smalltalk-80, The Language and Its Implementation,Addi-
son-Wesley, Reading, MA (1983).Gov’t. ordering no. et al

93. WILF R. LALONDE AND JOHN R. PUGH, Inside Smalltalk,Prentice-Hall, Englewood Cliffs, NJ
(1990). Gov’t. ordering no. et al

94. RALPH E. GRISWOLD, J. POAGE, AND I. POLONSKY, The Snobol4 Programming Language,Prentice-
Hall, Englewood Cliffs, NJ (1971).Gov’t. ordering no. et al 2nd edition

95. JARED L. DARLINGTON, “Search direction by goal failure,” ACM TOPLAS12(2) pp.224-252 (April
1990).

96. GREGORY R. ANDREWS, RONALD A. OLSSON, MICHAEL COFFIN, IRVING ELSHOFF, K. NILSEN, TITUS

PURDIN, AND G. TOWNSEND, “An overview of the SR language and implementation,” ACM Transac-
tions on Programming Languages and Systems10(1) pp. 51-86 (January 1988).

97. JOHN OUSTERHOUT, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA (1994).Gov’t. ordering
no. et al

98. JAMES R. MCGRAW, “The VAL language: Description and analysis,” ACM TOPLAS4(1)(January
1982).

99. NAHRAIN GEHANI AND C. WETHERELL, Denotational Semantics for the Dataflow Language VAL,
Internal memo, Bell Laboratories, Murray Hill, NJ (July 1980).Gov’t. ordering no. et al

