
CS655 class notes

Raphael Finkel

December 8, 2021

1 Intro

Class 1, 8/23/2021

• Handout 1 — My names

• Mr. / Dr. / Professor / —
• Raphael / Rafi / Refoyl
• Finkel / Goldstein

• Extra 5 minutes on every class? What is a good ending time?

• Plagiarism — read aloud from handout 1

• Assignments on web and in handout 1.

• E-mail list: cs655001@cs.uky.edu; instructor uses to reach students.

• All students will have MultiLab accounts, although you may use any
computer you like to do assignments. But your programs must run
on MultiLab computers, because that’s how they will be graded.

• textbook — all homework comes from here

• Oral assignments are end-of-chapter assignments. Assignment for
Chapter 1 exercises (Friday).

2 Software tools

A programming language is an example of a software tool.

1



CS655 Fall 2021 2

Implementation

Use (client)

Spec

Usable?

Compilable?

Elegant?

3 McLennan’s Principles (elicit first)

4 Algol-like languages: review

• First generation: Fortran

• constructs based on hardware
• lexical: linear list of statements
• control: sequence, goto, do, subroutines using reference pa-

rameter mode
• data: arithmetic, including complex; arrays with a 3-d limit
• name: separate scopes; common area

• Second generation: Algol 60

• lexical: free format; keywords
• control: nested; if, while, for, but baroque; subroutines with

value and name parameter modes.
• data: generalized arrays, but no complex
• name: nested scopes with inheritance and local override

• Third generation: Pascal (return to simplicity)

• data: user-defined types; records, enumerations, pointers
• control: subroutines with value and reference parameter modes;
case statement

• Fourth generation: Ada (abstract data types)

• lexical: bracketed syntax
• name: modules with controlled export; generic modules
• control: concurrency with rendezvous

• Fifth generation: Other directions



CS655 Fall 2021 3

• dataflow
• functional. We will study ML and Lisp.
• object-oriented. We will study Smalltalk.
• declarative (logic). We will study Prolog.

5 Theme: binding time

• Class 2, 8/25/2021

• There is a range from early to late.

• language-definition time (example: the fact that constants exist)
• compile time (example: values of constants in Pascal) We call

compile-time bindings static.
• link time (example: version of printf in C)
• elaboration time (example: value of final int in Java)
• statement-execution time (example: value of int variable) We

call execution-time bindings dynamic.

• Early binding is most efficient.

• Late binding is most capable.

6 Block structure

• Adequately difficult example: book 24:21

• Class 3, 8/27/2021 : Discussion of questions from Chapter 1.

• Class 4, 8/30/2021

• Introduced in Algol.

• A block is a nestable name scope.

• Identifiers can be local, nonlocal, or global with respect to a block.

• Nonlocal identifiers: the language must define whether to

• inherit (typically allowed if there is no conflict)
• override (typically true if there is a conflict)
• require explicit import and export



CS655 Fall 2021 4

• At elaboration time, constants get values, dynamic-sized types are
bound to their size, space is allocated for variables.

• Definition: the non-local referencing environment (NLRE) of a pro-
cedure or block of code is the binding of non-local identifiers (typi-
cally variables, but also constants, types, procedures, and labels) to
values.

• Deep binding: The NLRE of P is determined (bound) at the time
that P is elaborated (and is the RE of the elaborating scope).

• Shallow binding: The NLRE of P is determined at the time that P is
invoked (and is the RE of the calling scope).

7 Imperative languages

• Class 5, 9/1/2021

• Imperative languages involve statements that modify the current state
by changing the values of variables.

• A variable is an identifier bound (usually statically) to a type, having
a value that can change over time. The L-value of a variable is the use
of a variable on the left side of an assignment (think of “address”);
the R-value of a variable is its use on the right side (think of “current
value”).

• A type is a set of values, associated (mostly statically) with opera-
tions defined on those values. Type conversion means expressing a
value of one type as a value of another type.

• coercion: implicit conversion
• cast: explicit conversion
• non-converting cast: rarely needed. qua operator of Wisconsin

Modula, reinterpret cast<> of C++.

• An operation is a function or an operator symbol as shorthand. It
can be heterogeneous.

• operators have arity (example: unary, binary), precedence, as-
sociativity
• operators may be infix (+), prefix (unary -), postfix (->)
• operators may have short-circuit (lazy) semantics



CS655 Fall 2021 5

• An operation is overloaded if its identifier or operator symbol has
multiple visible definitions. Overloading is resolved (usually stati-
cally) by arity, operand types, and return type. Overloading resolu-
tion can be exponentially expensive. For instance, say we have four
versions of +, depending on whether they take integers/floats and
whether they return integers/floats. Then how do you resolve (a +
b) + (c + d)?

• A primitive type (or basic type) has no separately accessible compo-
nents. Examples: integer, character, real, Boolean.

• A structured type has separately accessible components. Examples:
pointer (dereference), record (field select), array (subscript), disjoint
union (variant select). An associative array is an array whose index
type is string.

• A constant is like a variable, but it has no L-value and an unchanging
R-value. In Java, it’s denoted by the modifier final.

8 Iterators

• Iterators allow us to generalize for loops.

• The control variable of the for loop ranges over a set of values
generated piecemeal by an iterator. book 39:9-10 .
• The iterator is like a procedure, taking parameters and return-

ing values of a specified type.
• The iterator uses a yield statement to return a value, but it

maintains its RE (and its program counter) in order to continue
on demand from the for loop.
• A useful language-supplied iterator is int upto(low, high),

which yields all the values in the specified range.

• Iterators are especially useful for generating combinatorial structures.

• Algorithm for generating all binary trees of n nodes: book 41:11
• Same thing in Python, using “generators”:



CS655 Fall 2021 6

1 def binGen(size):
2 if size > 0:
3 for root in range(size):
4 for left in binGen(root):
5 for right in binGen(size - root - 1):
6 yield("cons(" + left + "," + right + ")")
7 else:
8 yield "-"
9

10 for aTree in binGen(3):
11 print(aTree)

• Class 6, 9/3/2021
• Trace of binGen(3).

• Another example: yield all nodes in a tree (in pseudo-Python)

1 def treeNodes(tree):
2 if tree != null:
3 for element in treeNodes(tree.left):
4 yield element
5 yield tree.value
6 for element in treeNodes(tree.right):
7 yield element

• Python 3 gives us a nice shorthand:

1 def treeNodes(tree):
2 if tree != null:
3 yield from treeNodes(tree.left)
4 yield tree.value
5 yield from treeNodes(tree.right)

This construct can improve efficiency. JavaScript also has it: yield*.
It delegates the yielding to another iterator.

• Another example: all combinations C(n, k):



CS655 Fall 2021 7

1 def comb(n,k,start):
2 if k == 0:
3 yield ""
4 elif k+start <= n:
5 for rest in comb(n,k-1,start+1):
6 yield str(start+1) + "," + rest
7 yield from comb(n,k,start+1)
8

9 for result in comb(6,3,0):
10 print(result)

• Same thing, in JavaScript:

1 function* comb(n, k, start) {
2 if (k === 0) {
3 yield ’’;
4 } else if (k+start <= n) {
5 for (const first of comb(n, k-1, start+1)) {
6 yield ‘${start+1},${first}‘;
7 }
8 yield* comb(n, k, start+1);
9 };

10 } // comb
11

12 for (const result of comb(6,3,0)) {
13 console.log(result);
14 }

9 Macro package to embed iterators in C

• Class 7, 9/10/2021

• Macros are IterSTART, IterFOR, IterDONE, IterSUB, IterYIELD.

• Usage: book 48:14

• Implementation

• setjump and longjmp for linkage between for and the con-
trolling iterator, between yield and its controlled loop.



CS655 Fall 2021 8

• Padding between stack frames to let longjmp() be called with-
out harming frames higher on the stack. Three integers is enough
in Linux on an i686.
• A Helper routine to actually call the iterator and act as padding.
• The top frame must be willing to assist in creating new frames.

10 Power loops

• How can you get a dynamic amount of for-loop nesting?

• Application: n queens book 57:29

• Usual solution: single for loop with a recursive call.

• Cannot use that solution in Fortran, which does not allow recursion.

• Solution: Power loops. book 57:28

• Implementation: Only needs branches, no recursion. book 59:31

• How general is this facility?

• Do power loops violate principle 20?

11 General coroutines

• Class 8, 9/13/2021

• Problem: binary-tree node-equality test in symmetric order

• Solution

• Independently advance in each tree book Figure 2.8

• Each coroutine has its own stack; main has its own stack.
• All the stacks are joined via static-chain pointers into a cactus

stack.
• A scope must not exit until all its children exit, or we must use

a reference count. This is an example of the dangling NLRE
problem.

• Syntax (Simula 67)

• Records have initialization code that may execute detach.
• Another coroutine may resume it via explicit call.



CS655 Fall 2021 9

• Ole-Johann Dahl, designer of Simula 67, got the Turing award
in 2001.

• Class 9, 9/15/2021

• Solution in Python using ”generators”. See binEqual.txt from class
web page.

12 IO

• Class 10, 9/17/2021

• Attempt to strip a programming language of all non-essential ele-
ments.

• What’s left: goto with parameters, hence formal-actual bindings.

• Parameters can be integer, anonymous function, or continuation.

• A function is passed by closure: pointer to code, pointer to NLRE.

• A continuation is a function whose parameters have already been
bound. It is passed by a closure along with the parameters.

• Examples book 50:15 and following

• re-work the Io examples io.txt

Class 11, 9/20/2021 Chapter 2 exercises.

13 ML-Introduction

• Class 12, 9/24/2021

• This material is out of order, presented now so students can begin to
work on the next programming assignment.

• ML is functional, but we are particularly interested in its type sys-
tem, with these important aspects.

• The language is strongly typed.
• The compiler infers the types of identifiers if possible.
• Higher-order types are easily represented.
• Types can be polymorphic, that is, expressed with respect to

type identifiers.



CS655 Fall 2021 10

• Examples, from online file examples.ml

• Class 13, 9/27/2021 : Continue ML examples.

• Class 14, 10/1/2021 : Last ML examples: recursive datatypes

14 Parameters

• Nomenclature

• Formal parameter: the identifier that the procedure uses to re-
fer to the parameter; it is elaborated when the procedure is in-
voked.
• Actual parameter: the expression that computes the value of

the parameter; it is evaluated in the environment of the caller.
• Linkage: The machine-oriented mechanism by which the caller

A causes control to jump to the called procedure B, including
initializing B’s stack frame, passing parameters, passing results
back to A, and reclaiming B’s stack frame when it has com-
pleted.

• Parameter-passing modes

• value mode: The formal has its own L-value, initialized to the
R-value of the actual. The language design may restrict the for-
mal to read-only use. Value mode is the only mode available in
C.
• result mode: The formal has its own L-value, not initialized.

When B returns, the formal’s L-value is copied back to the ac-
tual (which must have an L-value, so the actual cannot be an
arbitrary expression). Result mode was introduced in Algol-W.
• value-result mode: The formal has its own L-value, initialized

to the R-value of the actual. As B returns, its value is copied
back to the actual (which must have an L-value). Value-result
mode was introduced in Algol-W.
• reference mode: The formal has the same L-value as the ac-

tual (which must have an L-value, which might be a temporary
location). The language may allow the programmer to specify
read-only use of the formal parameter. Reference mode is the
only mode available in Fortran.



CS655 Fall 2021 11

• name mode: All accesses to the formal parameter re-evaluate
the actual (either for L-value or R-value, depending on the ac-
cess to the formal). This evaluation is in the RE of the caller, typ-
ically by means of a compiled procedure called a thunk. Name
mode was invented for Algol-60 and never used again.
• macro mode: The formal parameter is expanded as needed to

the text of the actual parameter, which by itself need not be syn-
tactically complete. No modern language uses this mode.

15 Types

• A type is a property of an R-value or of an identifier that can hold
R-values.

• The property consists of a set of values.

• Strong typing means the compiler

• knows the type of every R-value and identifier
• enforces type compatibility on assignment and formal-actual

binding

• compatible means type equivalent, a subtype, or convert-
ible

• A subtype consists of a subset of the values

• Assignment and formal-actual binding require a dynamic check.
• Subtype examples: range of integers, subclass of class
• subTypeVar := baseTypeVar

• Class 15, 10/4/2021

• Type equivalence

• structural equivalence: expand type to a canonical string rep-
resentation; equivalence is string equality.

• lax: ignore field names, ignore array bounds, ignore index
type, flatten records.
• pointers require that we handle recursive types (and still

build finite strings)



CS655 Fall 2021 12

• name equivalence: reduce a type to an instance of a type con-
structor

• type constructors: array, pointerTo, enum, struct, derived.
• lax (declaration equivalence): multiple uses of one type

constructor are equivalent

• Implementing structural type equivalence: exercise 3.8 at end of chap-
ter.

16 Dimensions

• Class 16, 10/6/2021

• book Figure 3.7

• www.cs.uky.edu/˜raphael/convert.cgi
• Applies to reals.

• Can be embedded into a strong type system.

Class 17, 10/8/2021 Chapter 3 exercises

17 Unusual first-class values

• A first-class value can be returned from a function. In languages
with variables, a first-class value can be stored in a variable.

• A second-class value can be an actual parameter.

• A third-class value can be used “in its ordinary way”.

• Class 18, 10/11/2021

• Labels and procedures

• Usually third class values; the “ordinary way” is in a goto
statement or a procedure-call statement.
• They could be second class. They must be passed as a closure.

For a label, the closure includes the RE of its target, so the stack
can be unwound to the right place. For a procedure, the closure
includes its NLRE to resolve non-local references.



CS655 Fall 2021 13

• To make them first class, we still need to build a closure, which
we can then store in a variable. But the lifetime of that variable
might exceed the life of the RE stored in the closure. This is the
dangling-NLRE problem. book 76:11

• To resolve the dangling-NLRE problem

• Let it happen and call the program “erroneous”.
• Prevent it from happening by restricting the language.

• Don’t let labels or procedures be first-class: Pascal
• Don’t let scopes nest, so there is no need for closures (for

procedures; labels are still problematic): C
• Only allow top-level procedures (or labels) be first-class:

Modula-2

• Let it happen and make it work: allocate all frames from the
heap and use explicit release (reference counts suffice).

18 Lisp introduction

• Class 19, 10/13/2021

• Lisp is homoiconic: programs and data structures have the same
form, so one can execute data and one can manipulate program.

• Lisp is functional (functions have no side effects, and there are no
variables)

• Lisp has been very influential and was widely used in AI.

• Lisp by examples

• Lisp deep binding (in examples)

• Class 20, 10/15/2021

• The Lisp metacircular interpreter book 135:31 ff , also on web page.

• Pure Lisp (a restriction for Assignment 3): no use of set, rplaca,
rplacd, and a few other non-functional features. Although defun
does change the context (introducing new functions always has a
side effect), we allow it.



CS655 Fall 2021 14

19 Haskell

• Class 21, 10/18/2021

• Haskell is a functional programming language much like ML, with
additional features.

• Haskell uses indentation for grouping, much like Python. This de-
sign makes programs compact, but harder to read (if routines are
long) and very difficult for blind programmers to construct.

• All functions are fully curried.

• Haskell evaluates all expressions lazily.

• Examples online

20 What does polymorphic mean?

People use the term polymorphic to mean various features.

• Class 22, 10/20/2021

• Static procedure overloading with compile-time resolution (Ada, Java).
The type of the procedure (its signature) determines whether it is a
viable candidate for resolving the overloading.

• Dynamic method binding (overriding, with dynamic dispatch. (Java,
Smalltalk, C++ deferred binding). The dynamic type (class) of the
value (object) determines which procedure (method) to invoke.

• Types described by type identifiers (perhaps with the compiler in-
ferring the types of values) (ML, Haskell). Here, the dynamic type
constraints on the parameter and return value determine the effec-
tive type of the function.

• Passing an ADT as a parameter (Russell).

• Generic packages (Ada), templates (C++), generics (Java).

21 Can types be second or first class?

• Letting a type be second-class is a step toward polymorphism.

• Second-class types allow generic packages (Ada), templates (C++).



CS655 Fall 2021 15

• However, we only allow types to be passed at compile time dur-
ing generic-package instantiation.
• One can restrict the range of the actual type (the “type of the

type”) by a Java-like interface (or Haskell-like class).

• An attempt at first-class types: dynamic. book 112:68 Actually, this
idea attempts to extend strong typing to dynamic types; it is not the
same as making types first-class.

• Another attempt at first-class types: Russell.

• But what Russell calls a “type” we would call an ADT (abstract
data type), which is something like a Java class.
• So a Russell “type” actually introduces dynamic class defini-

tions.
• We will see dynamic class definitions in Smalltalk later.

• Java reflection: class Class. Example from Cycle Shop at Home.

22 The Lambda Calculus

• Mathematical foundation of ML and of Lisp.

• Three kinds of term

• identifier, such as x
• abstraction, such as (λ x . (* x 2))

• application, such as (f x)

• Syntax of terms

• parentheses are optional; application and abstraction are left-
associative, and application has a higher precedence.
• Curried functions may be written without currying:
(λ x . (λ y . (λ z . T))) = (λ x y z . T)

• Class 23, 10/22/2021

• Identifiers can be free or bound (or simply missing) in terms.

• x is bound in λ x . T.

• x is free in T if:



CS655 Fall 2021 16

• T is just x
• T is (f p), and x is free in either f or p.
• T is (λ y . T), x is not y, and x is free in T.
• Examples: book 153:49

• Simplification by β reduction: book 153:50 .

• applicative order: evaluate inner λ first.
• normal order: evaluate outer λ first.
• Church-Rosser theorem: if T → S and T → R, then there is

some U such that S → U and R → U

• Renaming by α conversion: book 153:52

• Normal form

• β reduction until no more reduction is possible.

• It is not always possible to reduce to a normal form: book 155:55

• Class 24, 10/27/2021 Exercises, Chapter 4

• Class 25, 10/29/2021

• Combinator: term with no free identifiers. Important combinator Y:
Y = (λ f . (λ x . f (x x)) (λ x . f (x x))) 153:57

• Simplification by η reduction: (λ x . F x)
η→ F

• Connection between Lambda Calculus and ML. book 156:60

23 Smalltalk

• Examples (online)

• Class 26, 11/01/2021

• More examples (online)

• Class 27, 11/03/2021

• More examples (online)

• The two hierarchies of classes in Smalltalk

• class gives the is-a hierarchy.
• superclass gives the subclass-of hierarchy.



CS655 Fall 2021 17

24 Intellectual history of object oriented program-
ming

• Class 28, 11/05/2021

• Records in Cobol, Pascal. Fields are variables, always visible.

• Records (called classes) in Simula67. Fields can also be procedures.
Their NLRE is the record in which they sit. Already some object-
orientation: Subclasses inherit fields with possibility of override, and
there is some control over visibility.

• Abstract data types (ADTs) in languages like CLU (“clusters”), Mod-
ula (“modules”), Ada (“packages”). Separation of specification from
implementation. Typically ADTs export a type and some operations.
Clients then create instances of that type, either on the stack as local
variables or from the heap.

• Monitors, which are ADTs with concurrency control. Unfortunately,
concurrency control protects program, not data. We’ll say more about
monitors later.

• Classes (Smalltalk, C++, Java). Do not export types, only variables
and procedures. The entire class becomes a type.

25 Object-oriented programming: What is it?

• Nomenclature: Objects (values) are instances of classes (types). They
communicate by sending messages (procedure calls) to each other to
invoke methods (procedures). The state of an object is defined by the
values of its instance variables. The set of methods that instances of
a class accepts constitute its protocol. Together, the methods and the
instance variables are called the members of a class.

• Class 29, 11/08/2021

• Data encapsulation: One may only affect the state of an object by in-
voking its methods. (Doesn’t hold if instance variables are exposed.)

• Inheritance: Subclasses (a form of subtype) inherit the members of
their superclass. Programmers introduce subclasses either to spe-
cialize or to reuse code.



CS655 Fall 2021 18

• Overriding — Deferred binding: ”An instance method overrides all
accessible instance methods with the same signature in superclasses,
enabling dynamic dispatch.” [Java Puzzlers, p. 180] Resolution must
be dynamic, at invocation time.

• Overloading — Static binding: ”Methods in a class overload on
another if they have the same name and different signatures. [Java
Puzzlers, p. 181] Resolution is at compile time.

26 Rules for method resolution in Java

• coderanch.com/t/417622/certification/
Golden-Rules-widening-boxing-varargs by Anand Shri-
vastava

• Rules

1. Primitive Widening > Boxing > Varargs.

2. Widening and Boxing (WB) not allowed.

3. Boxing and Widening (BW) allowed.

4. While overloading, Widening + vararg and Boxing + vararg can
only be used in a mutually exclusive manner i.e. not together.

5. Widening between wrapper classes not allowed

• Examples
Overloaded methods Invocation Called Rule(s)
f(Integer i), f(long l) f(5) long 1
f(int...i), f(Integer i) f(5) Integer 1
f(Long l), f(int...i) f(5) int...i 2, 1
f(Long l), f(Integer...i) f(5) Integer...i 2, 1
f(Object o), f(Long l) f(5) Object o 2, 3
f(Object o), f(int...i) f(5) Object o 3, 1
f(Object o), f(long l) f(5) long l 3, 1
f(long...l), f(Integer...i) f(5) ambiguous 4
f(long...l), f(Integer i) f(5) Integer 1
f(Long l) Integer i; error 5

f(i)
f(Long l), f(long...l) Integer i; long... 5, 1

f(i)



CS655 Fall 2021 19

27 Control over information hiding

Class 30, 11/10/2021
language mode other related1 inherited other

instance of by
same class subclass

Smalltalk variable n - y n
Smalltalk method y - y y
C++/Java public y y y y
C++/Java protected y y y n
C++/Java private y y/n n n
Java package-private y y y2 n

(default)
Eiffel (default) y y y y
Eiffel specified y3 y y n
Eiffel none n n y n

28 Unusual abilities of Java

• Interfaces

• The interface provides signatures of methods and declarations
of variables.
• A class can choose to implement a list of interfaces.
• The class is then obligated to provide those methods and vari-

ables.
• Others can assume the class has these methods and variables.

• Effectively homoiconic, but not straightforward

• serialization: instance↔ string
• introspection: class↔ instance of Class

1 ”related” means friend class (C++), class in the same package (Java), or class to which
a member is explicitly exported (Eiffel).

2 y in same package; n in a different package. It is possible to subclass a class from a
different package.

3 y only if explicitly related.



CS655 Fall 2021 20

29 Epilogue about object-oriented programming

• A new view of types: The type of a value is the protocol it accepts.

• Types as first-class values: Smalltalk treats types as values.

• All values are created from the heap.
• Types can outlive the environment in which they are created,

but deep binding of nonlocal variables does not produce dan-
gling pointers, because of heap allocation.
• Methods may be added dynamically to types; these changes af-

fect all existing members of the type. This deferral is cognate to
shallow binding: The protocol of a value is determined at the
time of invocation, not at time of elaboration.
• This deferral seems to be a consequence of the way methods are

introduced; they are not introduced at type-elaboration time.

30 Other object-oriented ideas

• Class 31, 11/12/2021

• Duck typing: if an object satisfies the interface of A, it can be used
wherever an instance of A is expected, including assignment into A
variables.

• Like structural equivalence, but determined dynamically.
• The language go uses a static structural type system.
• Generic templates (such as ”the type must satisfy a given inter-

face”) are applied statically, and the type must fulfil the entire
interface, even if (dynamically) only a portion is needed.
• Objections to duck typing: method names may be ambiguous

in English, so implementing a method by some name is not the
same as providing the expected semantics of that method.
• C#: modifier dynamic on a formal parameter means to defer type

checking to runtime and only ensure that the called methods
exist.
• Java: reflection allows the program to determine at runtime if it

provides the necessary methods.



CS655 Fall 2021 21

• JavaScript and Python use duck typing; any method call is valid
if the object provides it.

• Go disallows overloading of methods and operators, which are “oc-
casionally useful but ... confusing and fragile in practice.”

31 Concurrent programming

• We will not cover this chapter in depth.

• Basic idea: multiple threads of execution.

• Need to be able to start (and maybe stop) threads.

• fork
• cobegin and coend
• process call, like procedure call (Modula, Go)

• Threads might need a nonlocal referencing environment, lead-
ing to cactus stacks (as in Simula).

• Can avoid cactus stacks by requiring that threads start at
top-level procedures.

• Threads that share referencing environments must coordinate
activities.

• Mutual exclusion: Preventing simultaneous execution of
critical regions.
• semaphores: up and down operations.
• Class 32, 11/15/2021
• mutexes: based on semaphores, define critical regions.
• In Java, every object has an implicit mutex; the syn-
chronize(object) syntax lets one acquire/release.
• Java also has a Lock interface.
• conditional critical regions: language forces guarded

access to shared variables and organizes conditional wait-
ing. book p. 222
• monitors: mutually exclusive guarded procedures pro-

tecting shared variables that are packaged into the same
module. book p. 225

• Synchronization: Blocking until a situation is right.



CS655 Fall 2021 22

• semaphores, but initialized to 0 instead of 1.
• eventcounts and sequencers.
• barriers

• Programming errors and remedies

• Not recognizing critical regions.
• Some access to shared variables are atomic; it depends

on the language. In Java, access to int is atomic, but ac-
cess to double is not; all access to volatile variables
is atomic.

• Deadlock: cycle in the waits-for graph. Solution: prevent or
break the cycle.
• Livelock: lack of progress, although no threads are blocked;

they are all responding to each other.
• Starvation: a thread makes no progress, even though oth-

ers do. Standard example: dining philosophers. Solution:
entry control.

• Standard examples for synchronization

• Bounded buffer. Need to apply both mutex and synchroniza-
tion.
• Readers-writers problem. Monitors are too conservative. Solu-

tions are prone to starve readers or writers. Platoon methods
work.

Class 33, 11/17/2021 Exercises, Chapter 5

32 Non-shared memory

• We omit this section this semester.

• Threads that do not share referencing environments must coordinate
activities, typically by passing messages.

• Rendezvous (Ada) book 241:16,18
• Remote procedure call
• Explicit messages (send and receive)

• Hoare’s CSP. book 251:21 .



CS655 Fall 2021 23

• Messages in Go on static-typed channels. Channel param-
eters can be indicated as write-only or read-only (or nei-
ther). There is a select statement, which can read from
the first available channel or make read non-blocking. See
https://gobyexample.com/goroutines.

33 Prolog

• Class 34, 11/19/2021

• Examples online.

• Ideas from other languages

• Lisp: lists are an essential data type.
• Snobol: backtracking is built in.
• Logic, including propositional calculus: implications

• Nomenclature and syntax

• A term is a lower-case functor followed by an optional comma-
separated list of fields. Examples:

a
foo(a, X)

• A field can either be a term or an upper-case variable.
• A rule is a left-hand side term with an optional right-hand side.

Examples:

good(Food) :- edible(Food), nutritious(Food) .
edible(water) .

• A right-hand side is the symbol :- followed by a comma-separated
list of terms.
• If a rule has no right-hand side, we call it a fact.
• A program is a set of rules.
• A query is the symbol ?- followed by a comma-separated list

of terms. Examples:

good(water) .
good(Food) .
good(Food) , liquid(Food).



CS655 Fall 2021 24

• The query-solution algorithm

• Backtrack, controlled by failure and success.
• For each rule, try to match the head with the query (functor and

arity). Fail if no more rules. Failure on next step leads to retry.
• for each match, try to unify the query with the head (might be

0, 1, or more solutions). Fail if no more unifications. Failure on
next step leads to retry.
• for each unification, try to satisfy each term of the right-hand

side recursively. Failure on any term leads to retry. Succeed if
the last term succeeds.
• We did not cover the following items.

• Difference lists: book 282:28

• We did not cover the following items.

• Prolog-like features of other languages

• CLPR example
• Puzzle Lingo examples, smodels
• Other lparse examples, like unattackedQueen or tile.

34 Formalizing programming languages

• Class 35, 11/22/2021

• Formalizing syntax: What is the appearance of a correctly “spelled”
program?

• BNF (introduced for Algol 60)
• Extensions to BNF
• Attributed grammars to cover type correctness

• Formalizing semantics: What is the meaning of a program?

• Axiomatic semantics (Hoare 1967) book 363:11 Based on placing
assertions in the program and providing axioms that allow one to
prove statements of the form {P} S {Q} meaning if predicate P is
true before statement S starts, then after statement S completes, if it
does, then Q must hold.”



CS655 Fall 2021 25

• Axiom of assignment: {Qx→E} x := E {Q}
• Example: {y = 12} x := y + 2 {x = 14}
• Weak and strong predicates

1. if P⇒ Q, we say that P is stronger than Q.

2. Strengthening a precondition P in {P} S {Q} weakens the en-
tire statement; weakening the precondition strengthens the state-
ment.

3. Axioms try to show the strongest statements, that is, the weak-
est preconditions for which the statement always holds.

• Axiom of selection (if statements)
{B ∧ P} S1 {Q}, {¬B ∧ P} S2 {Q} `
{P} if B then S1 else S2 {Q}
• Axiom of iteration (while statements)
{B ∧ I} S {I} `
{I} while B do S {¬B ∧ I}
but no guarantee of completion.



CS655 Fall 2021 26

• Extended example: factorial

1 {true}
2 {1 = 1!}
3 count := 1;
4 {1 = count!}
5 answer := 1;
6 {answer = count!}
7 while count != n do
8 {answer = count!}
9 count := count + 1;

10 {answer = (count-1)!}
11 answer := answer * count;
12 {answer = count!}
13 end;
14 {answer = count! ∧ count = n}
15 {answer = n!}

• But the loop might not terminate: if n < 1.

• Evaluation

• It is possible to prove small programs correct.
• Complex control structures (like break and concurrency) are

very hard to model.
• Designing the proper overall preconditions and postconditions

of a piece of code is at least as hard as designing the code.
• Does not prove termination.
• Only as good as the preconditions and postconditions
• Led to a fad of proving programs correct
• Led to a fad of teaching programming by precondition / post-

condition / loop invariant.

• Extension: weakest preconditions (Dijkstra 1975). Can prove termi-
nation, but hard to discover loop invariants.

35 Formalizing semantics: Denotational seman-
tics

• Class 36, 11/29/2021



CS655 Fall 2021 27

• Components

• Abstract syntax: Already-parsed source program
• Semantic domains: Mathematical sets representing values that

arise in describing program semantics.
• Semantic functions: Functions that take syntax and yield values

in semantic domains

• Simplest language: Binary literals. book 370:23 The semantic func-
tion E gives the denotation of programs.

• Class 37, 12/1/2021

• Expressions. book 379:34

• Range checks and divide-by-zero possibility, including the⊥ symbol
for error. book 381:38

• Class 38, 12/3/2021

• Environments to store initialized constants. Declarations update the
environment. The semantic function E now takes an environment
parameter. book 384:43

• Class 39, 12/6/2021

• Variables. Programs now specify what variable is their final mean-
ing. book 388:46

• Assignment statement.

• Conditional and do-n-times statements. book 390:50

• While loop. Define piu as the environment one gets after checking
the Boolean condition i times, starting in environment u.

correct number of iterations 0 1 2 3 4 ∞
p0 u ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
p1 u u ⊥ ⊥ ⊥ ⊥ ⊥
p2 u u u′ ⊥ ⊥ ⊥ ⊥
p3 u u u′ u′′ ⊥ ⊥ ⊥
. . .
limit u u′ u′′ u′′′ u′′′′ ⊥



CS655 Fall 2021 28

36 APL

• Class 40, 12/8/2021

• APL: Primes example from book, 354:9.66


