
CS 541 — Fall 2021

Programming Assignment 4
CSX_go Semantics Checker

Write member functions and classes that implement a semantics checker for CSX_go
programs. Your main program calls your CSX_go parser. If the parse succeeds, it calls
the semantics checker. The CSX_go source program to be compiled is named on the
compiler’s command line. Your program writes error messages to standard output. A
skeleton for the semantics checker module may be found in the directory ~raphael/-
courses/cs541/public/proj4/startup.

The Semantics Checker
The semantics checker is an AST member function, operating on the abstract syntax tree
built by the CSX_go parser. The semantics checker produces an error message for each
scoping and type error in the program represented by the AST and returns a Boolean
value indicating whether the AST has any type or scoping errors.

The scope rules of CSX_go are similar to those of C++, Java, and Go. A program
consists of a single named package. All declarations within the package (variables and
functions) are static (in the Java sense). All members must have distinct names. Local
declarations (within a function or statement block) override any global declaration, but
any one identifier may be declared only once in any particular scope. Parameters of a
function are local declarations within that function’s body.

Functions and variables must be declared before they are used. The last function
must be named main with no parameters and no return type. As in Java, execution
commences with this function.

Your type checker must print an error message if the CSX_go program uses an
undeclared identifier or if it redeclares an identifier within the same scope (top-level,
function body, or statement block). The package name is external to all other scopes; it
never conflicts with any other declaration.

An identifier may denote a package name, a label, a variable (which can be declared
const), a function, a parameter of a function, or a local variable. Local variables, global
variables, value-returning functions, and parameters may be of type int, bool, or
char. Except for value-returning functions, they may also be may be arrays of int,
bool, or char .

The type and scope rules of the CSX_go language require the following:
1. Arithmetic operators may be applied to int or char values; the result is of type int.
2. Logical operators (&&, ||, and !) may be applied only to bool values; the result is of

type bool.
3. Relational operators (==, <, >, !=, <=, >=) may be applied only to a pair of arithmetic

values (int or char) or to a pair of bool values; the result is of type bool.
4. Relational operators may be applied to bool values; by definition, false is less than

true.
5. The scope of a global variable comprises all variables and functions that follow it.
6. The scope of a function comprises its own body and all functions that follow it.

Recursive calls are allowed, but calls to functions not yet declared are not allowed.
7. The scope of a local variable declared in a function or block comprises all variables and

statements that follow it in the function or block; forward references to locals not yet
declared are not allowed.

8. A formal parameter of a function is considered local to the body of the function.
9. An identifier may only be declared once within a scope. However, an identifier already

declared outside a scope may be hidden by a local declaration.
10. The type of a variable declared const is the type of the expression that defines the

variable’s value.
11. The type of a control expression (in an if or for construct) must be bool.
12. int, bool and char values, char arrays, and string literals may be actual

parameters in print statements.
13. Only int and char values may be actual parameters in read statements.
14. The types of the left- and right-hand sides of assignment statements and initialized

variables must be identical. Entire arrays may be assigned if they are have the same size
and component type. A string literal may be assigned to a char array only if both
contain the same number of characters.

15. The size of an array parameter is not known at compile time. Hence all size restrictions
involving the assignment of array parameters are enforced at run time.

16. The types of an actual parameter and its corresponding formal parameter must be
identical.

17. Arrays may be passed as parameters.
18. Assignment to constant identifiers (global or local) is invalid.
19. Only identifiers denoting procedures (funcs without a result type) may be called in

statements.
20. Only identifiers denoting true functions (funcs with a result type) may be called in

expressions. The type of a function call is the result type of the function.
21. return statements with an expression may only appear in functions. The expression

returned by a return statement must have the same type as the function within which
it appears.

22. return statements without an expression may only appear in procedures (functions
without a result type).

23. If necessary, an implicit return statement is assumed at the end of a procedure (but
not a function).

24. Any expression (including variables and literals) of type int, char, or bool may be
type-cast to an int, char or bool value. These are the only type casts allowed.

25. An identifier that labels a for statement is a local declaration in the scope immediately
containing the for statement. No other declaration of the identifier in the same scope is
allowed.

26. An identifier referenced in a break or continue statement must denote a label (on a
for statement). Moreover, the break or continue statement must appear within
the body of the for statement that is selected by the label.

27. A function of no parameters and no return type named main must be the last function
declared in the CSX_go program.

28. The size of an array (in a declaration) must be greater than zero.
29. Only expressions of type int or char may be used to index arrays.

30. Declarations are permitted in blocks that form the body of if and for statements; they
obey usual block structure.

31. It is invalid to use the value of a local variable if there is no earlier assignment to that
variable.

To prevent one type error from causing multiple error messages, you may assume that the result
of an arithmetic operation is always int and that the result of a logical or relational operation is
always bool, even when an operand is type-incorrect. For example, the following expression
should produce only one error message:
(true + 3) + 4

Use the line and column numbers contained in AST nodes to improve the specificity of
your error messages; try to make them as informative as possible. For instance, the
following messages are fairly informative:

Error (line 69): Can only read into a variable, not a constant.

Error (line 76): Cannot apply subscript to non-array aa.

How to Proceed
To implement the type checker, you may consider the following a set of hints, not
requirements. Use the block-structured symbol table classes you implemented in
project 1. Walk the AST recursively, executing the member function
checkSemantics(). When you encounter identifiers in declarations, create symbol-
table entries for them. When you encounter uses of identifiers, look them up in the
symbol table. In this way, all uses of an identifier b access the declaration corresponding
to b, even though that declaration may be far removed from the uses.

The skeleton in ~raphael/courses/cs541/public/proj4/startup
contains a complete type checker for CSX_lite, extended to include variable declarations and
display statements. Look over ast.java to see how it organizes type checking. Note that
checkSemantics() for each particular AST node simply enforces the scope and type rules
that pertain to the construct the AST node represents. The coding practices in this type checker
are not up to standard; you should make use a a style checker to improve the coding.

The root node of an AST (a csxLiteNode or classNode) contains a special Boolean-
valued member function isSemanticsCorrect(). This function calls its own
checkSemantics() function, which recursively walks the entire AST. After
checkSemantics() completes, isSemanticsCorrect() checks to see if any
scoping or type errors have been discovered and returns a corresponding Boolean value.

If an AST node has subtrees, those subtrees are usually recursively type-checked as part of
type-checking a parent node. For nodes that represent constructs that are expected to have a type,
(expressions, identifiers, literals), it is convenient to add type and kind fields to the node.

Possible values for type include Integer (int), Boolean (bool), Character
(char), String, Void, Error and Unknown. Void represents objects that have no
declared type (a label or func). Error represents objects that should have a type but don’t
(because of type errors). Unknown is an initial value before the type of an object is determined.
You might want to use a Java enumeration instead of integers for types.

Possible values for kind include Var (a local or global variable that may be assigned to),
Constant (a value that may be read but not changed), Array, ScalarParm (a by-value
scalar parameter), ArrayParm (a by-reference array parameter), Function,and Label.

Again, you may prefer to use a Java enumeration.
Most combinations of type and kind represent something in CSX_go. Hence

type==Boolean && kind==Value represents a bool expression. type==Void and
kind==Function represents a function that does not return a value.

Type-checking procedure and function declarations and calls requires some care. When a
function is declared, you might build a list of (type,kind) pairs, one for each formal
parameter. When a call is type-checked, you could build a second linked list of (type,kind)
pairs for the actual parameters of the call. Compare the lengths of the lists of formal and actual
parameters to check that the correct number of parameters have been passed. Then compare
corresponding formal and actual parameter pairs to check that each individual actual parameter
matches its corresponding formal parameter.

For example, if we have the declaration
 p(int a, bool b[]){ ... }

and the call
 p(1,false);

we create the parameter list (Integer, ScalarParm), (Boolean, Array-
Parm) for p’s declaration and the parameter list (Integer, Value),(Boolean,
Value) for p’s call. Since a Value can’t match an ArrayParm, we determine that the
second parameter in p’s call is invalid.

What to hand in
As before, your program should take the name of a CSX_go file on the command line.
Your program first parses this file and then, if the parse succeeds, type-checks the
resulting abstract syntax tree.
Test your type checker using the test programs in ~raphael/-
courses/cs541/public/proj4/tests. These programs are named test-
00.csx_go, test-01.csx_go,.... You should also run your own tests, as always.
In addition to your code and documentation, turn in the output produced by your type
checker in a file TestResults.

