
CS 541 — Fall 2021

Programming Assignment 2
CSX_go Scanner

Your next project step is to write a scanner module for the programming language
CSX_go (Computer Science eXperimental: Go-like syntax). Use the JFlex scanner-
generation tool (based on Lex). Future assignments will involve a CSX parser, type
checker and code generator.

The CSX Scanner
Generate the CSX_go scanner, a member of class Yylex, using JFlex. Your main task is
to create the file csx_go.jflex, the input to JFlex. The jflex file specifies the regular
expression patterns for all the CSX_go tokens, as well as any special processing required
by tokens.

When a valid CSX token is matched by member function yylex(), it returns an object
that is an instance of class java_cup.runtime.Symbol (the class our parser ex-
pects to receive from the scanner). Symbol contains an integer field sym that identifies
the token class just matched. Possible values of sym are identified in the class sym1.

Symbol also contains a field value,which contains token information beyond the
token’s identity. For CSX_go, the value field references an instance of class
CSXToken (or a subclass of CSXToken). CSXToken contains the line number and
column number at which each token was found. This information is necessary to frame
high-quality error messages. The line number on which a token appears is stored in
linenum. The column number at which a token begins is stored in colnum. The
column number counts tabs as one character, even though they expand into several
blanks when viewed.

You must also store auxiliary information for identifiers, integer literals, character
literals and string literals. For identifiers, class CSXIdentifierToken, a subclass of
CSXToken, contains the identifier’s name in field identifierText. For integer liter-
als, class CSXIntLitToken, a subclass of CSXToken, contains the literal’s numeric

1 Java class names normally are capitalized. However, certain classes created by the tool Java CUP ignore this
convention.

value in field intValue. For character literals, class CSXCharLitToken, a subclass
of CSXToken, contains the literal’s character value in field charValue. For string
literals, class CSXStringLitToken, a subclass of CSXToken, contains a field
stringText, the full text of the string (with enclosing double quotes and internal
escape sequences included as they appeared in the original string text that was
scanned).

CSX_go Tokens

The CSX_go language uses the following classes of tokens:

• The reserved words of the CSX_go language:

bool break char const continue else for func if int
package print read return var

The break and continue reserved words are optional; compilers that include
them receive extra credit.

• Identifiers. An identifier is a sequence of ASCII letters and digits starting with a
letter, excluding reserved words.

Id = (A | B | … | Z | a | b | … z) (A | B | … | Z | a | b | … z | 0 | 1 | … 9)* - Reserved

• Integer Literals. An integer literal is a sequence of digits, optionally preceded by a ~.
A ~ denotes a negative value.

 IntegerLit = (~ | l) (0 | 1 | … | 9)+

• String Literals. A string literal is any sequence of printable ASCII characters,
delimited by double quotes. A double quote within the text of a string must be
escaped (as \”) to avoid being misinterpreted as the end of the string. Tabs and
newlines within a string must be escaped (\n is newline and \t is tab). Backslashes
within a string must also be escaped (as \\). No other escaped characters are
allowed. Strings may not cross line boundaries.

StringLit = " (Not(" | \ | UnprintableChar) | \" | \n | \t | \\)* "

• Character Literals. A character literal is any printable character, enclosed within
single quotes. A single quote within a character literal must be escaped (as \') to
avoid being misinterpreted as the end of the literal. A tab or newline must be
escaped ('\n' is a newline and '\t' is a tab). A backslash must also be escaped (as
'\\'). No other escaped characters are allowed.

CharLit = ' (Not(' | \ | UnprintableChar) | \' | \n | \t | \\) '

• Boolean Literals. The two Boolean literals are true and false (case insensitive).
• Other Tokens. These are miscellaneous one- or two-character symbols representing

operators and delimiters.

() [] = ; + - * / == != && || < > <= >= , ! { } :

The colon (:) is only required if you do the extra-credit break and continue.

• End-of-File (EOF) Token. The EOF token is automatically returned by yylex()
when it reaches the end of file while scanning the first character of a token.

Comments and white space, as defined below, are not tokens because they are not re-
turned by the scanner. Nevertheless, they must be matched (and skipped) when they
are encountered.

• A Single Line Comment. As in C++, Java, and Go, this style of comment begins
with a pair of slashes and ends at the end of the current line. Its body can include
any character other than an end-of-line.

LineComment = // Not(Eol)* Eol

• A Multi-Line Comment. This comment begins with the pair @@ and ends with the
pair @@. Its body can include any character sequence other than two consecutive @’s.

BlockComment = @@ ((@|l) Not(@))* @@

• White Space. White space separates tokens; otherwise it is ignored.

WhiteSpace = (Blank | Tab | Eol) +

Any character that cannot be scanned as part of a valid token, comment or white space
is invalid and should generate an error message.

Considerations/Requirements
• Because reserved words look like identifiers, you must be careful not to miss-scan

them as identifiers. You should include distinct token definitions for each reserved
word before your definition of identifiers.
• Upper- and lower-case letters are equivalent in reserved words but not in identifiers.

When you print a reserved word, print its conversion to lower case.
• Print character and string literals as they are input, that is, with the escaped

characters shown as \n, \\, or whatever, and with the surrounding quotes. However,
you should also store the effective values of character and string literals, in which
escaped characters are replaced by their meaning, and surrounding quotes are
removed.
• You can use the Unix command “man ascii” for a list of ASCII characters in order to

build a regular expression for printable ASCII characters.

• You should not assume any limit on the length of identifiers.
• You should not assume any limit on the length of input lines that are scanned.
• You may use Java API classes to convert strings representing integer literals to their

corresponding integer values. Be careful though; in Java a minus sign, -, and not ~
represents a negative value. You must detect and report overflow in a system-
independent fashion, perhaps using the constants MIN_VALUE and MAX_VALUE in
class Integer. Do not halt on overflow; print an error message and return
MAX_VALUE or MIN_VALUE as the “value” of the literal.

An online reference manual for JFlex may be found in the “Useful Programming Tools”
section of the class homepage.
• Although JFlex’s regular expression syntax is designed to be very similar to that of

Lex or Perl, it is not identical. Read the JFlex manual carefully.
◦ A blank should not be used within a character class (i.e., [and]). You may use \
040 (which is the character code for a blank).
◦ A double quote is meaningful within a character class (i.e., [and]).
◦ You should not use yybegin or any explicit states.

• As was the case in project 1, javac requires an environment variable CLASSPATH
to define the directories to be searched to find .class files stored in libraries. JFlex
and JavaCup (in the next assignment) use CLASSPATH to tell Java where to find the
classes that they use. Once again, the Makefile we supply places all .class files in
subdirectory classes.

• Skeleton files and a Makefile are in the directory ~raphael/-
courses/cs541/public/proj2/startup.; they are also available through the
class homepage. Do not assume that the Java coding is up to modern standard; use a
style checker to improve the code.

What to hand in

Submit your project electronically by uploading proj2.tar.gz to Canvas. Please run
make clean first to remove all .class files. Your tarball (or zip file or other archive)
should contain: (1) the csx_go.jflex file you create, (2) any other classes you create,
(3) the test data you use to test your scanner, (4) the outputs produced using your test
data, (4) a README file, (5) a Makefile , and (6) all source files necessary to build an
executable version of your program (.java files and a csx_go.jflex file). Name the
class that contains your main()routine P2.java.

Your scanner test program should act like the test program illustrated below, reading a
stream of characters from the command line file and printing out the tokens matched to
the standard output, one per line in the following format:

line:column token

For identifiers, include the text of the identifier; for integer literals, include the literal’s
numeric value; for character and string literals, include the literal’s full text (with

enclosing quotes and escape sequences). Use the following format

line:column token (value)

For example, if the contents of the file is:

var T {
// hello, This is

 // a test
coNst
 cnst
"hello\n"
^
~10;

You should produce:

1:1 Reserved (var)
1:5 Identifier (T)
1:7 Symbol ({)
4:1 Reserved (const)
5:4 Identifier (cnst)
6:1 String literal ("hello\n")
7:1 Invalid token (^)
8:1 Integer literal (-10)
8:4 Symbol (;)

Your program should try to follow this format to ease grading. A significant fraction of
your grade will be based on the quality of your test data. Please exercise your program
in every possible way. Your program should print an appropriate error message and
continue if it scans an invalid token. You may handle strings that attempt to cross a line
boundary either by refusing to accept the initial double-quote, which will lead to a
cascade of error messages, or by returning an error token that contains all the input up
to the line boundary.

