
CS 541 — Fall 2021

Programming Assignment 1
Symbol Table

Introduction
You are to write a set of Java classes that implement a block-structured symbol table.
You must also write a test driver and create test data that thoroughly test your symbol
table implementation.

You should implement the following six Java classes: Symb, SymbolTable,
TestSym, DuplicateException, EmptySTException and P1.

• Subclasses of the Symb class will eventually be used in your compiler to store
information about each identifier that appears in a program (such as the
variable and function names). The only information stored in a Symb is the
name of the identifier (a String); more information appears in subclasses
of Symb. Java’s subclassing rules allow any subclass of Symb to be used
where a Symb object is expected. The symbol table methods we develop in
this project accept all subclasses of Symb. TestSym is a subclass of Symb
that contains a single String field. It is used to test the operation of the
SymbolTable class.

• The SymbolTable class implements a block-structured symbol table. It can be
built using a List of Java HashMap objects, one for each open scope.

• The DuplicateException and EmptySTException classes are
exceptions that can be thrown by methods of the SymbolTable class.

• Class P1 (for Program1) implements an interactive test driver used to test your
SymbolTable class.

Class Specifications
You don’t have to follow these specifications precisely, but you should have a

good reason to diverge from them.
class Symb
Symb(String s) The class constructor; initialize Symb to have name s.
String name() Return the name of this Symb object.
String toString() Return a string representation of this Symb object.

class TestSym
TestSym(String s, String
i)

The class constructor; initialize TestSym to have name s
and value i.

String value() Return the value of this TestSym object.
String toString() Return a string representation of this TestSym object.

class SymbolTable
SymbolTable() The class constructor; initialize SymbolTable to

contain no scopes.
void openScope() Add a new, initially empty scope to the list of scopes

contained in this SymbolTable.
void closeScope() If the list of scopes in this SymbolTable is empty,

throw an EmptySTException. Otherwise,
remove the current (front) scope from the list of scopes
contained in this SymbolTable.

void insert(Symb s) If the list of scopes in this SymbolTable is empty,
throw an EmptySTException. If the current
(first) scope contains a Symb whose name is the same
as that of s (including case), throw a
DuplicateException. Otherwise, insert s into
the current (front) scope of this SymbolTable.

Symb localLookup(String n) If the list of scopes in this SymbolTable is empty,
return null. If the current (first) scope contains a Symb
whose name is n (including case), return that Symb.
Otherwise, return null.

Symb globalLookup(String n) If any scope contains a Symb whose name is n
(including case), return the first matching Symb
found (in the scope nearest to the front of the scope
list). Otherwise, return null.

void dump(PrintStream p) This method is for debugging. The contents of this
SymbolTable are written to Printstream p
(System.out is a Printstream).

String toString() Return a string representation of this SymbolTable.

class P1
void main(String[] args) The test driver used to test your SymbolTable

implementation.

class DuplicateException and class EmptySTException
These two classes, which extend java.lang.Exception, are empty. They are used
to signal duplicate-insertion and empty symbol-table errors.

Getting Started
The MultiLab supports the javac Java compiler, OpenJDK version 11, which
compiles a recent version of Java, including generic classes. You may also use other
quality Java compilers or integrated development environments. (Eclipse is free and
highly regarded).

You can find partial implementations of the required classes, along with a Makefile
and sample test data for all five projects, in ~raphael/courses/cs541/public
(or use the tarball h ttp://www.cs.uky.edu/~raphael/courses/ -
CS541/ public .tar.gz). You will certainly need to edit and extend the
SymbolTable and P1 classes. You may leave the other classes (which are quite
simple) mostly as they are. The Makefile allows you to easily compile and test your
solution to this assignment. You should use make to speed and simplify program
development. The command

make

recompiles classes as needed after any changes you make. The command

make test

recompiles as necessary and then tests your solution by calling P1.main with the
commands in testInput. (You should edit this file to more thoroughly test your
implementation). This command invokes the compiler with warnings enabled; your
code should generate no warnings. The command

make clean

removes all class files created by the compiler. All class files reside in the classes
subdirectory to avoid cluttering your top-level project directory. The command

make style

runs a style checker on your code and suggests improvements. Take them seriously!

Use the standard Java utility class java.util.HashMap in implementing your
block-structured symbol table. HashMap<K,V> defines a hash table in which all
keys have class K and all table entries have class V. Explicit casting is not required.
You might also find java.util.Scanner useful. You can find details of all Java
library routines at http://download.oracle.com/ javase/ 8 /docs/api/ .

The Test Driver

You’ll need to create an interactive test driver, in method main() of class P1, to test
the operation of your block structured symbol table. Your test driver should accept the
following commands from standard input (case-insensitive). Initially no scope is open.
Command Operation
Open Open a new scope

http://www.cs.uky.edu/~raphael/courses/%C2%ADCS541/public.tar.gz%C2%AD
http://download.oracle.com/javase/8/docs/api/
http://download.oracle.com/javase/8/docs/api/
http://download.oracle.com/javase/8/docs/api/
http://www.cs.uky.edu/~raphael/courses/%C2%ADCS541/public.tar.gz%C2%AD
http://www.cs.uky.edu/~raphael/courses/%C2%ADCS541/public.tar.gz%C2%AD
http://www.cs.uky.edu/~raphael/courses/%C2%ADCS541/public.tar.gz%C2%AD
http://www.cs.uky.edu/~raphael/courses/%C2%ADCS541/public.tar.gz%C2%AD
http://www.cs.uky.edu/~raphael/courses/%C2%ADCS541/public.tar.gz%C2%AD

Close Close the top (innermost) scope.
Dump Dump the contents of symbol table.
Insert Read two strings (each line-end

delimited). The first is the key, the
second is the value. Insert the (key,
value) pair into the innermost
scope. Case is significant.

Lookup Read a string and look it up as a key
in the top (currently open) scope.
Case is significant. Print the value
in the symbol table entry found or
display an error message if it is not
found.

Global Read a string and look it up as a key
in the nearest scope that contains an
entry. Case is significant. Print the
integer in the symbol table entry
found or display an error message if
it is not found.

Quit Exit the test driver.

 One-letter abbreviations of the commands should be allowed.

The following illustrates the operation of the test driver (text entered by the user is
printed in bold face). This example is only meant to illustrate our testing interface; it
does not by itself represent an exhaustive test set. To facilitate automatic grading,
please make your wording of responses to commands similar to that shown below.

open
New scope opened.
insert
Enter symbol: kentucky
Enter associated value: 1848
(kentucky:1848) entered into symbol table.
insert
Enter symbol: Florida
Enter associated value: wet
(florida:wet) entered into symbol table.
lookup
Enter symbol: kentucky
(kentucky:1848) found in top scope.
lookup
Enter symbol: Florida
(Florida:wet) found in top scope.

lookup
Enter symbol: Kentucky
Kentucky not found in top scope.
insert
Enter symbol: kentucky
Enter associated value: bluegrass
kentucky already entered into top scope.
open
New scope opened.
insert
Enter symbol: kentucky
Enter associated value: palisades
(kentucky:palisades) entered into symbol table.
lookup
Enter symbol: kentucky
(kentucky:palisades) found in top scope.
dump
Contents of symbol table:
{(kentucky:palisades)}
{(Florida:wet), kentucky:1848)}
lookup
Enter symbol: Florida
Florida not found in top scope.
global
Enter symbol: Florida
(Florida:wet) found in symbol table.
close
Top scope closed.
lookup
Enter symbol: kentucky
(kentucky:1848) found in top scope.
lookup
Enter symbol: Florida
(Florida:wet) found in top scope.
close
Top scope closed.
lookup
Enter symbol: kentucky
Kentucky not found in top scope.
quit
Testing done

What To Hand In
Submit your project electronically as a single file (tar.gz, rar, zip, or equivalent) via

Canvas. Please run make clean first to remove all class files. Include your version
of testInput that comprises the tests you used to verify the operation of your
symbol table routines. Include testOutput, which is the output generated by your
program in response to your testInput file. Include a README file to hold external
documentation. We’ll run your program on our own test data.

We will grade your program on the basis of the completeness of your testing (as
shown in the testInput and testOutput files) as well as the error-free
compilation and correct operation of your symbol table routines.

The quality of your documentation is also important. Make sure that you provide
both external documentation (in the README file) and internal documentation (in the
source files). Check your spelling and grammar. It should be easy to understand the
organization and structure of your program. We may exact significant penalties if we
find your program poorly documented or difficult to understand.

