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Abstract. Autarkies arise in studies of satisfiability of CNF theories. In this pa-
per we extend the notion of an autarky to arbitrary propositional theories. We
note that in this general setting autarkies are related to the 3-valued logic. Most
of our results are concerned with algorithmic properties of autarkies. We prove
that the problem of the existence of autarkies is NP-complete and that, as in the
case of SAT, if an autarky exists then it can be computed by means of polyno-
mially many calls to an oracle for the decision version of the problem. We also
prove that, while intractable in general, the problem of the existence of autarkies
is in P for several classes of propositional theories for which the SAT problem is
in P. In particular we present normal form results for autarkies of special cases of
SAT, a problem stated in Section 9 of [6].

1 Introduction

Autarkies arise in studies of propositional satisfiability. They were introduced in [7]
in order to establish sufficient conditions for pruning the search for a satisfying truth
assignment of a CNF theory.

Let T be a collection of propositional clauses (a CNF theory). A nonempty and
consistent setv of literals is anautarkyfor T if every clauseC ∈ T that contains a dual
of a literal fromv contains also a literal fromv (is subsumed byv). Pure literals are
simplest examples of autarkies. Namely, if a literall is pure in a CNF theoryT , that is,
T contains no occurrence of the dual literal tol, then the set{l} is an autarky forT .

Let us denote byT−v the set of all clauses inT that contain neither a literal fromv
nor the dual of a literal inv. The following simple result gives a fundamental property
of autarkies that makes them useful in satisfiability research.

Theorem 1. LetT be a CNF theory. Ifv is an autarky forT thenT is satisfiable if and
only if T−v is satisfiable.

Theorem 1 implies that ifv is an autarky for a CNF theoryT then testing whether
T is satisfiable can be reduced to testing whetherT−v is satisfiable. This latter task is
easier asT−v has|v| fewer atoms thanT . We note that ifv consists of a pure literal, the
simplification described by Theorem 1 is known as thepure-literalpruning rule.

Using Theorem 1, researchers designed algorithms testing satisfiability of 3CNF
theories with the worst-case running times exponentially better than the trivial bound of
O(2n), wheren is the number of atoms in the input theory1. The first such algorithm,

1 We provide worst-case estimates of the running times of satisfiability solvers modulo a poly-
nomial in the size of the input theory.



with the worst-case running time ofO(1.619n), was presented in [7]. The line of re-
search it started culminated with an algorithm running in timeO(1.497n), described in
[9,4].

A most direct use of autarkies to decide satisfiability of a theory consists of re-
peatedly computing an autarky and using its literals to reduce the theory. The problem
with this pruning mechanism is that computing autarkies is hard as the correspond-
ing decision problem was reported to be NP-complete [5]. To circumvent that problem
[5] introduced the notion of alinear autarky, defined in terms of a certain linear pro-
gramming problem. Linear autarkies can be computed in polynomial time. Using linear
autarkies in place of general ones makes the reduction method described above poly-
nomial. Moreover, [5] shows that the class of theories for which the method actually
decides satisfiability contains, in particular, some well-known classes of theories for
which the satisfiability problem is polynomial: 2CNF theories and (renameable) Horn
theories.

In this paper we study the class of general autarkies. We first show that the concept
of an autarky can be extended to the case of theories consisting of arbitrary propositional
formulas. That generalization emphasizes and exploits a connection to 3-valued logic,
already present in the original setting of CNF theories but obscured by the syntactic
simplicity of clauses. We then focus on algorithmic properties of autarkies and show
that the problem to decide the existence of autarkies is NP-complete, a fact reported
without proof in [5]. We also show explicitly the property of self-reducibility — the
existence of a reduction from a search problem for autarkies to its decision version.
Next, we prove that for several classes of theories, for which the satisfiability problem
is in the class P, the existence of autarkies can also be decided in polynomial time. In
addition, we obtain results concerning the structure of the set of autarkies of theories
in these classes. In the conclusions, we offer some more comments on the role of the
3-valued logic for the concept of an autarky.

The fact that computing autarkies is hard limited their role in the design of satis-
fiability solvers (and as we noted, prompted research of special autarkies that can be
computed efficiently). The situation may be different, however, when we consider the
problem of deciding the truth of a quantified boolean formula (QBF). This problem is
PSPACE-complete in general and even those pruning techniques that require exponen-
tial time may be beneficial, as demonstrated in [8]. Autarkies may provide such pruning
techniques, as we have the following general version of Lemma 2.4 from [1], concerned
with simplifications by pure literals whose atoms are existentially quantified.

Lemma 1. LetQ1x1 . . . QnxnE be a QBF, whereE is a formula in CNF. Ifv is an
autarky forE such that every atom that appears inv is existentially quantified, then
Q1x1 . . . QnxnE is true if and only ifQ1x1 . . . QnxnE

−
v is true.

The theoryE−v contains no atoms that appear inv and the corresponding quanti-
fiers can be dropped from the prefix. Thus, the QBFQ1x1 . . . QnxnE

−
v constitutes a

simplification of the original original one. If the cost of finding autarkies can be offset
by gains in the search time resulting from better pruning, autarkies will prove useful in
the design of fast QBF solvers and deserve further study.



2 Preliminaries

We consider the language of propositional logic determined by a set of atomsAt , two
constants⊥ and>, and the boolean connectives¬,∨,∧,→ and⊕ (the last one denoting
theexclusive or).

A literal is an atom or the negation of an atom. In the first case, the literal is called
positiveand in the second case —negative. A clauseis a disjunction of literals. We
view the constant⊥ as theemptyclause.

For a formulaϕ, we writeAt(ϕ) for the set of atoms that appear inϕ andLit(ϕ)
for the set of literals one can built of these atoms. We extend this notation to sets of
literals and theories.

A 3-valued interpretationof a set of atomsAt is a functionv : At → {t, f,u},
wheret, f andu represent truth valuestrue, falseandunknown. There is a one-to-one
correspondence between 3-valued interpretations and consistent sets of literals. It maps
a 3-valued interpretationv to the set of literals

{p : v(p) = t} ∪ {¬p : v(p) = f}.

Therefore, we identify 3-valued interpretation and consistent sets of literals, and use the
same symbols (typicallyu, v andw) to denote them.

We define the truth value of a formulaϕ in a 3-valued interpretationv, which we
denote by[v(ϕ)]3, in a standard way by using the 3-valued truth tables for the logical
connectives in the language [3, Section 64]. They are shown in Table 1. When[v(ϕ)]3 =
t, we say thatv 3-satisfiesϕ.

Whenv evaluates all atoms tot andf (equivalently, whenv is a complete and con-
sistent set of literals), the truth value of every formulaϕ is the same underv, regardless
of whether we viewv as a 3-valued or a 2-valued truth assignment. In such case, when-
ever[v(ϕ)]3 = t (which is precisely whenv(ϕ) = t in the 2-valued logic), we say that
v satisfiesϕ.

p ¬p
f t
t f
u u

p q p ∧ q p ∨ q p→ q p⊕ q
f f f f t f
f u f u t u
f t f t t t
u f f u u u
u u u u u u
u t u t t u
t f f t f t
t u u t u u
t t t t t f

Table 1.3-valued truth tables

We will now introduce autarkies of arbitrary propositional theories. We say thatv
touchesϕ if At(ϕ) ∩At(v) 6= ∅.



Definition 1. LetT be a set of propositional formulas. A consistent setv of literals is
anautarkyfor T if everyϕ ∈ T that is touched byv is 3-satisfied byv.
An autarky ispositiveif it consists of positive literals (atoms), andnegativeif it consists
of negative literals.

Our general definition of autarkies, when limited to clauses, is equivalent to the def-
inition we presented in the introduction. Indeed, a consistent setv of literals 3-satisfies
a clauseC if and only if C contains a literal fromv. In addition, we can extend to the
general case the fundamental property of autarkies, Theorem 1. Letv be a consistent set
of literals andT a set of formulas. We defineT−v to be the set of all formulas inT that
are not touched byv (contain no atom fromAt(v)). This notation is a direct extension
of the notation we introduced for CNF theories in the introduction. We now have the
following result.

Theorem 2. Let v be a consistent set of literals andT a set of formulas. Ifv is an
autarky forT , thenT is satisfiable if and only ifT−v is satisfiable.

Next, we gather some basic properties of autarkies that we refer to later. The proofs
are straightforward and we omit them.

Proposition 1. LetT be a propositional theory.

1. If v is a consistent and complete set of literals that satisfiesT thenv is an autarky
for T

2. If v an autarky forT then for every set of formulasT ′ ⊆ T , v ∩ Lit(T ′) is an
autarky forT ′.

Finally, we state and prove a result, which allows us to reduce a theory when search-
ing for autarkies. Letϕ be a formula of propositional logic and letA ⊆ At(ϕ). We
denote byϕA the formula obtained fromϕ by replacing all positive occurrences of
atoms fromA with⊥ and all negative occurrence of atoms fromA with>. We have the
following general property of 3-valued logic.

Proposition 2. Let ϕ be a propositional formula,v a consistent set of literals over
At(ϕ) andA a set of atoms,A ⊆ At(ϕ) \ At(v). Then,v 3-satisfiesϕ if and only ifv
3-satisfiesϕA.

We extend the notationϕA to theories. Given a propositional theoryT and a set
of atomsA ⊆ At(T ), we defineTA = {ϕA : ϕ ∈ T}. We have now the following
reduction result.

Proposition 3. Let T be a set of formulas,A ⊆ At(T ) a set of atoms andv a set of
literals such thatAt(v) ∩ A = ∅. Thenv is an autarky forT if and only if v is an
autarky forTA.

Proof: If v is an autarky forT thenv is nonempty and consistent. Let us assume that
v touches a formulaψ ∈ TA, (we haveψ = ϕA, for some formulaϕ ∈ T ). Since
At(ψ) ⊆ At(ϕ), v touchesϕ. Sincev is an autarky forT , v 3-satisfiesϕ. By Proposi-
tion 2,v 3-satisfiesϕA = ψ. Thus,v is an autarky forTA (asϕ was chosen arbitrarily).



The converse implication can be proved similarly, once we observe that if a setv of
literals such thatAt(v) ∩ A = ∅ touches a formulaϕ ∈ T then it touches the formula
ϕA ∈ TA. 2

In the case of CNF theories, we will use an alternative reduction, which also pre-
serves autarkies, but is more explicit. LetT be a CNF theory and letA be a set of
atoms. ByTA we denote the theory obtained fromT by removing every clauseC such
thatAt(C) ⊆ A and by removing literalsa and¬a from all the remaining clauses in
T . Proposition 3 holds for this notion of reduction, as well (assumingT is clausal).
Consequently, we use the same symbol,TA, to denote it.

3 Decision and search problems for autarkies

The main objective of this section is to establish the complexity of the problem of
the existence of autarkies. We will also consider asearchversion of the problem (to
compute an autarky or determine that none exists).

Definition 2. AUTARKY EXISTENCE: Given a propositional theoryT , decide whether
T has an autarky.

First, we note the following obvious property that follows directly from the defini-
tion of an autarky.

Proposition 4. Let T be a propositional theory andv a consistent set of literals,v ⊆
Lit(T ). The question whetherv is an autarky forT can be decided in polynomial time
in the size ofT .

Proposition 4 implies that the AUTARKY EXISTENCE problem is in the class NP.
Our goal now is to show that it is NP-complete.

Theorem 3. TheAUTARKY EXISTENCE problem is NP-complete.

Proof: By the comments above, we focus on the NP-hardness only. The proof is by
the reduction from a variant of the propositional satisfiability problem, in which we
restrict input theories to those that do not contain the empty clause. Clearly this decision
problem is also NP-complete.

Let T be a CNF theory and letpi, 0 ≤ i ≤ n− 1, be all atoms that appear inT . We
introducen newatomsqi, 0 ≤ i ≤ n− 1, and define a CNF theoryA(T ) to consist of
three groups of clauses:

1. all clauses inT
2. clausespi ∨ qi and¬pi ∨ ¬qi, where0 ≤ i ≤ n− 1
3. clauses¬pi∨pi+1∨qi+1, pi∨pi+1∨qi+1,¬qi∨pi+1∨qi+1, andqi∨pi+1∨qi+1,

where0 ≤ i ≤ n− 1, and the addition of indices is modulon.

The theoryA(T ) can be constructed in linear time in the size ofT . We will show that
T is satisfiable if and only ifA(T ) has an autarky.



(⇒) SinceT is satisfiable, there is a setv ⊆ Lit(T ) such that for everyi, 0 ≤ i ≤ n−1,
exactly one ofpi and¬pi belongs tov, andv satisfiesT (indeed, each 2-valuation
satisfyingT can be represented by such set of literals). We definev′ as follows:

v′ = v ∪ {¬qi : pi ∈ v, i = 0, 1, . . . , n− 1} ∪ {qi : ¬pi ∈ v, i = 0, 1, . . . , n− 1}.

We will show thatv′ is an autarky forA(T ). To this end, it is enough to show that every
clause inA(T ) contains a literal fromv′.

Sincev satisfiesT andT consists of clauses, every clause inT contains a literal
from v and so, also a literal fromv′. By the definition ofv′, every clause of type (2)
contains a literal fromv′, as well. Since all clauses of type (3) are subsumed by clauses
of type (2), every clause of type (3) also contains a literal fromv′.
(⇐) Let us assume thatv′ is an autarky forA(T ). By the definition,v′ is consistent and
contains at least one literal. Due to the symmetry of the clauses of types (2) and (3),
without loss of generality we can assume that it is one ofp0, q0,¬p0, or¬q0. Since the
proof in each case is the same, let us assume thatp0 ∈ v′. Since¬p0 ∨ ¬q0 is inA(T )
and is touched byv′, it follows that¬q0 ∈ v′. Let us consider the clause

¬p0 ∨ p1 ∨ q1

fromA(T ). It is touched byv′. Consequently, it is satisfied byv′, which in turn implies
thatv′ containsp1 or q1. In the first case, sincev′ touches and so, satisfies the clause
¬p1 ∨ ¬q1, ¬q1 ∈ v′. In the second case, for the same reasons,¬p1 ∈ v′. Continuing
this argument, we show thatv′ is a complete set of literals overAt(A(T )).

Let v = v′∩Lit(At(T )). Let us consider a clauseC ∈ T . It follows thatC ∈ A(T ).
SinceT does not contain the empty clause and sincev′ is a complete set of literals over
At(A(T )), v′ touchesC. Consequently,v′ satisfiesC. It follows thatC contains a
literal fromv′. Since every literal inC belongs toLit(At(T )),C contains a literal from
v. Thus,v satisfiesT . 2

We will now show that the AUTARKY SEARCH problem, where the goal is tocom-
putean autarky or determine that none exists, can be solved directly by means of poly-
nomially many calls to an algorithm for the AUTARKY EXISTENCE problem. While
every NP-complete search problem can be solved by means of polynomially many calls
to an oracle for its decision version, we show here anexplicit reduction of AUTARKY

SEARCH to AUTARKY EXISTENCE. Our reduction is based on two lemmas of separate
interest.

Lemma 2. LetT be a CNF theory andv a consistent set of literals.

1. If a ∈ At(T ), thenv is an autarky forT anda,¬a /∈ v if and only ifv is an autarky
for T ∪ {a,¬a}

2. If for everya ∈ At(T ), T ∪ {a,¬a} has no autarkies then every autarky forT is a
complete set of literals overAt(T ).

Proof: Part (1) of the assertion follows directly from the definition of an autarky.
(2) Let v be an autarky forT . By (1) it follows that for everya ∈ At(T ), a ∈ v or
¬a ∈ v. Thus,v is a complete set of literals. 2



Lemma 3. Let T be a CNF theory such that every autarky forT is a complete set of
literals overAt(T ). Then, for every literall ∈ Lit(T ), a set of literalsv ⊆ Lit(T ) is
an autarky forT ∪ {l} if and only ifv is an autarky forT andl ∈ v.

Proof: Sincev is an autarky forT andl ∈ v, v is an autarky forT ∪ {l}.
Conversely, let us assume thatv is an autarky forT ∪ {l}. Thenv is an autarky for

T (Proposition 1(2)). Thus,v is a complete set of literals overAt(T ) and so, it touches
the unit clausel. Consequently,v satisfiesl, that is,v containsl. 2

We are now ready to show how a procedure to decide the existence of autarkies can
be used to compute them. LetT be an input CNF theory

1. If T has no autarkies, output ‘no autarkies’ and terminate.
2. As long as there is an atoma ∈ At(T ) such thatT ∪ {a,¬a} has an autarky, we

replaceT by T{a} and continue. We denote byT ′ the theory we obtain when the
process terminates.

3. We fix an enumeration of atoms inAt(T ′), sayAt(T ) = {a1, . . . , an}, and define
T0 := T ′.
For i = 1, . . . , n, we proceed as follows. IfTi−1 ∪ {ai} has an autarky, we set
li := ai. Otherwise, we setli := ¬ai. We then setTi := Ti−1 ∪ {li}. When the
loop terminates, we setv = {l1, . . . , ln} and output it as an autarky ofT .

Let us analyze Step 2. Leta ∈ At(a) be an atom such thatT ∪ {a,¬a} has an
autarky. Then, by Lemma 2(1),T has an autarky that contains neithera nor ¬a. By
Proposition 3,T{a} has an autarky and every autarky ofT{a} is an autarky ofT . Since
the input theoryT has an autarky (we moved past Step 1),T ′ has an autarky and every
autarky ofT ′ is an autarky forT . Moreover, for no atoma ∈ At(T ′), T ′ ∪ {a,¬a}
has an autarky. Thus, by Lemma 2(2), every autarky ofT ′ is a complete set of literals.
Using that fact, we find one autarky ofT ′ in Step 3 of the algorithm. As we noted it is
also an autarky forT .

We prove the correctness of Step 3 by showing that for everyi, 1 ≤ i ≤ n, Ti has
an autarky, that every autarky ofTi is a complete set of literals overAt(T ′), and that
every autarky ofTi is an autarky ofTi−1. In particular, the claim implies thatTn has
a complete autarky. SinceTn contains unit clausesl1, . . . , ln, v = {l1, . . . , ln} is an
autarky forTn. By the claim, it is also an autarky forT ′ and so, forT .

To prove the claim, we note that the claim holds fori = 1. Indeed,T0 = T ′ and
so,T0 has an autarky and every autarky forT0 is a complete set of literals. Thus, every
autarky forT0 containsa1 or ¬a1. By Lemma 3, it follows thatT1 has an autarky.
Moreover, sinceT0 ⊆ T1, every autarky forT1 is an autarky forT0. It also follows then
that every autarky forT1 is a complete set of literals. Assuming that the claim holds for
somei, 1 ≤ i < n, we prove in the same way as in the case ofi = 1, that the claim
holds fori+ 1. Thus, the claim follows by induction.

It is clear that the method described above requires linear number of calls to a pro-
cedure deciding the AUTARKY EXISTENCE problem.

We now discuss the relation of Theorem 3 with one of the results of [6].
Let S be a set of clauses. A clauseC ∈ S is lean in S if for some resolution

refutationT with premises fromS, C is one of premises ofT . A subsetL of S is lean
in S if it consists of clauses that are lean inS. Clearly, for every setS of clauses,S has



a largest lean subset; it consists of all clauses that are lean inS. We denote this set by
LS .

A nonemptysubsetA ⊆ S is anautarkof S with awitnessv if v is an autarky inS
andA is the set of all clauses touched (thus satisfied) byv. There is an operation◦ on
the set of partial valuations. This operation is defined by

v1 ◦ v2 = v1 ∪ {l : l ∈ v2 andl̄ /∈ v1}

One can check that if bothv1, v2 are autarkies forS then so isv1 ◦ v2. Moreover, if
Ai is an autark subset for whchvi is a witness,i = 1, 2, thenv1 ◦ v2 is a witness for
A1 ∪A2.

We also note that the collection of autarkies ofS is closed under the unions of
increasing chains. Thus, ifS has autarkies, it has maximal autarkies. Letv be a maximal
autarky ofS and letA be the set of all clauses inS touched byv. Clearly,A is an autark
of S (v is its witness). We claim thatA is a largest autark inS. Indeed, letA′ be an
autark inS and letv′ be its witness. By our comments above,v ◦ v′ is an autarky ofS.
Sincev is a subset ofv ◦ v′, the maximality ofv implies thatv ◦ v′ = v. Consequently,
v is a witness of the fact thatA ∪A′ is an autark. In other words,A ∪A′ consists of all
clauses inS touched byv. By the definition ofA,A ∪A′ = A and so,A′ ⊆ A.

This argument shows that ifS has autarks, it has a largest autark. We denote this
largest autark ofS by AS . In the case whenS has no autarks, we setAS = ∅. Since
autarks are nonempty,S has autarks if and only ifAS 6= ∅. In [5] Kullmann shows the
following elegant result.

Proposition 5 ([5]). For every set of clausesS,AS ∪ LS = S,AS ∩ LS = ∅.

Thus, assumingS 6= ∅, the fact thatAS 6= ∅ is equivalent to the fact thatS has
an autarky. But, of course, by Proposition 5,AS 6= ∅ if and only if S 6= LS . Now, let
LEAN be the language consisting of those sets of clauses for whichS = LS . Then
Kullmann’s result implies that for every nonempty finite set of clausesS, S ∈ AU-
TARKY EXISTENCE if and only ifS /∈ LEAN. Since AUTARKY EXISTENCE
is NP-complete (Theorem 3), we get the following result of Kullmann from [6], Lemma
5.7.

Proposition 6 ([6]). The problemLEAN is co-NP-complete.

It should be observed, however, that by the same observation (complementarity of
languages AUTARKY EXISTENCE and LEAN), Proposition 6 can be used as an
alternative argument to show Theorem 3.

4 Easy cases for finding autarkies

It is well known that the problem of the propositional satisfiability problem is in P for
the following classes of theories:

1. Theories satisfied by the all-true assignment and theories satisfied by the all-false
assignment



2. 2CNF theories
3. Horn theories, dual Horn theories and renameable Horn theories
4. Linear theories

We will show that for each of these classes the problem of the existence of autarkies
is also in P. In some cases, we will also identify minimal autarkies and characterize
the structure of the family of autarkies of a theory. This may form a solution to a gen-
eral problem (How the structure of a set of formulasF is reflected in its collection of
autarkies?) formulated in Section 9 of [6].

The case of theories satisfied by the all-true assignment and theories satisfied by
the all-false assignment is straightforward. Namely, we have a general property that for
each satisfiable theoryT , the satisfying assignment (the corresponding complete set of
literals, to be precise) is an autarky forT . In each of the two cases discussed here, one
satisfying assignment is given directly and so, finding an autarky is trivially in P. Thus,
in the remainder of this section we focus on all the remaining cases.

4.1 The class of 2CNF theories

The results of this section are related to the results from [5], because one can show that
every autarky of a 2CNF theory is a linear autarky. Here we study the connection of
autarkies with boolean constraint propagation and obtain results on the structure of the
set of autarkies of 2CNF theories.

Let T be a CNF theory and letl be a literal. The key tool in studying autarkies of
2CNF theories is a version of the well known boolean constraint (or unit) propagation.
Let T be a CNF theory and letl be a literal,l ∈ Lit(T ). We setL0 := {l}. We define
Li+1 to consist of those literalsl′ that are inLi or that can be derived by resolving
literals inLi with a clause inT . If the resolution results in the empty clause⊥, we
include it inLi+1, too. We setBCP(T, l) =

⋃∞
i=0 Li. We note that in the version of

unit-propagation we presented here we do not include inBCP(T, l) literals that form
unit clauses inT . In order to include a literal other thanl in BCP(T, l), it must be de-
rived from a non-unit clause inT by resolving it against literals included inBCP(T, l)
earlier.

Proposition 7. LetT be a 2CNF theory andv an autarky forT . If l ∈ v thenBCP(T, l)
⊆ v.

Proof: We use the notation introduced above. By the definition,L0 ⊆ v. Let us assume
thatLi ⊆ v. Let l′ be a literal such thatl′ ∈ Li+1 \ Li. It follows that there is a literal
l ∈ Li such that the clauseC = l′ ∨ l̄ belongs toT . Sincel ∈ v, v touchesC. Thus,v
satisfiesC. Sincel̄ /∈ v, it follows thatl′ ∈ v. Next, let us assume that⊥ ∈ Li+1. Since
Li ⊆ BCP(T, l), Li is consistent and, in particular,⊥ /∈ Li. It follows that there is a
literal l ∈ Li such thatC = l̄ is a clause inT . Sincel ∈ v, v touchesC but does not
satisfy it, which yields a contradiction. Thus,⊥ /∈ Li+1. Consequently,Li+1 consists
of literals only and so,Li+1 ⊆ v. By induction,BCP(T, l) ⊆ v. 2

Proposition 8. LetT be a 2CNF theory and letl ∈ Lit(T ). If BCP(T, l) is consistent
then it is an autarky ofT .



Proof: SinceBCP(T, l) is consistent, it is a set of literals (that is, it does not contain
⊥). Moreover, by the definition,BCP(T, l) 6= ∅. LetC be a clause touched by a literal
l′ ∈ BCP(T, l). If l′ is a literal ofC, BCP(T, l) satisfiesC. So, let us assume thatl̄′ is
a literal ofC. Since⊥ /∈ BCP(T, l), C contains a literall′′ that is different from̄l′. It
follows thatl′′ ∈ BCP(T, l) and so,BCP(T, l) satisfiesC in this case, too. 2

These two results form the basis for a necessary and sufficient condition for the ex-
istence of autarkies for 2CNF theories, and for a characterization of minimal autarkies.
Specifically, Propositions 7 and 8 imply the following result.

Theorem 4. LetT be a 2CNF theory.

1. T has an autarky if and only if for some literall ∈ Lit(T ) the setBCP(T, l) is
consistent

2. Every autarky ofT is the union of a nonempty family of autarkies of the form
BCP(T, l).

It is now clear that in order to decide whether a 2CNF theoryT has an autarky, it
is enough to computeBCP(T, l) for every literall ∈ Lit(T ). If in at least one case,
we obtain a consistent set of literals, this set is an autarky forT . Otherwise,T has no
autarkies. Clearly this method can be implemented to run in polynomial time in the size
of T .

Theorem 4 also implies a method to compute minimal autarkies of a 2CNF theory
T . To this end, we observe that minimal autarkies are precisely minimal consistent sets
of the form BCP(T, l). To compute them all we need to do is to identify minimal
elements in the family ofconsistentsets of the formBCP(T, l), the task that can be
accomplished in polynomial time.

4.2 The class of Horn theories and related classes

We focus now on the classes of Horn theories, dual Horn theories and renameable Horn
theories. We first consider the key case of Horn theories. As in the previous subsection,
the results we present here are related to those presented in [5]. Unlike [5] however, our
focus is on the structure of autarkies and we do not impose restrictions on the class of
Horn theories that we consider.

A clause isHorn if it contains at most one non-negated literal. A Horn clause is
definiteif it contains exactly one non-negated literal. Otherwise, it is anindefiniteclause
or aconstraint. A Horn clause is afact if it is a positive unit clause (consists of a single
literal and this literal is an atom).

A Horn theory is a collection of Horn clauses. We denote the set of constraints
and the set of facts of a Horn theoryT by T c andT f , respectively. IfT contains no
constraints (T c = ∅), it is definite. If T contains no facts (T f = ∅), it is dual definite.
We note that the set of all atoms of a definite Horn theory is a 2-valued model of that
theory. Similarly, the set of all literals obtained by negating all atoms appearing in a
dual definite Horn theory is a 2-valued model of that theory.

We first discuss the existence of and computingpositiveautarkies of Horn theories,
that is, autarkies that consist of atoms only.



Proposition 9. A definite nonempty Horn theory has a positive autarky.

Proof: LetT be a definite Horn theory such thatAt(T ) 6= ∅. Since every clause inT
contains at least one (non-negated) atom,At satisfies every clause inT . SinceAt(T ) 6=
∅, At(T ) is an autarky forT . 2

The following lemma provides a crucial property of positive autarkies of Horn the-
ories.

Lemma 4. Let T be a Horn theory and letv be a set of atoms. Thenv is a positive
autarky forT if and only ifv is an autarky forTA, whereA = At(T c).

Proof: (⇒) We have thatv consists of atoms only. Thus, it does not satisfy any con-
straint. Sincev is an autarky forT , v does not touch any constraint inT , that is,
v ∩ A = ∅. Thus, by Proposition 3,v is an autarky forTA. The converse implication
follows directly from Proposition 3. 2

Let T be a Horn theory. Let us iterate the reduction described in Lemma 4 as long
as it is possible and let us denote the resulting Horn theory byT+. Lemma 4 implies the
following result.

Proposition 10. LetT be a Horn theory. IfT+ 6= ∅, thenT+ is definite. Moreover,T+

andT have the same positive autarkies.

Propositions 9 and 10 imply a simple polynomial-time algorithm to decide whether
a Horn theoryT has a positive autarky. Namely, we first computeT+. If T+ = ∅ it has
no positive autarky and, consequently,T has no positive autarky either. IfT+ 6= ∅ then
it is definite and the set of its atoms is its positive autarky and so, also a positive autarky
for T . SinceT+ can be computed in polynomial time in the size ofT (in fact, even in
linear time in the size ofT ), the algorithm we outlined can also be implemented to run
in polynomial (even linear) time in the size ofT .

Next, we move on to the problem of computingnegativeautarkies of Horn theories,
that is, autarkies that consist of negated atoms only. The problem is dual to the one we
considered above.

Proposition 11. A dual definite Horn theory has a negative autarky.

Proof: Since every clause inT contains a negative literal, the set of literals obtained by
negating all atoms inT is a negative autarky forT . 2

The duality extends further. As in the case of positive autarkies, also for negative
autarkies we have a reduction result.

Lemma 5. Let T be a Horn theory and letv be a set of negated atoms. Then,v is an
autarky forT if and only ifv is an autarky forTA, whereA = At(T f ).

Proof:(⇒) Sincev does not satisfy any atom,v does not touch any clause inT f . Thus,
At(v) ∩ A = ∅. Consequently, by Proposition 3,v is an autarky forTA. The converse
implication follows directly from Proposition 3. 2

Let T be a Horn theory. We iterate the reduction of Lemma 5 until it is no longer
possible and we denote the resulting theory byT−. The following result is a straight-
forward consequence of Lemma 5.



Proposition 12. LetT be a Horn theory. IfT− 6= ∅, thenT− is dual definite. Moreover,
T− andT have the same negative autarkies.

Propositions 11 and 12 imply a polynomial-time algorithm to decide whether a
Horn theoryT has a negative autarky. The first step is to computeT−. If T− = ∅, it
has no negative autarkies. Consequently,T has no negative autarkies either. IfT− 6= ∅
then it is dual definite and the set of literals obtained by negating atoms inT− is its
negative autarky and so, also a negative autarky forT . SinceT− can be computed in
polynomial (in fact, linear) time in the size ofT , the algorithm we just described can
also be implemented to run in polynomial (linear) time in the size ofT .

The following theorem implies that the two algorithms described above suffice to
decide the existence of an autarky for a Horn theory. The following notation will be
useful. Letv be a set of literals. Byv+ we denote all positive literals inv. Likewise, we
write v− for the set of negative literals inv.

Theorem 5. LetT be a Horn theory. IfT has an autarky then it has a positive autarky
or a negative autarky.

Proof: Let us assume thatT does not have a positive autarky. Then, every autarky ofT
contains negative literals.

SinceT has an autarky, letv be any autarky forT . Without loss of generality, we
may assume thatv is chosen so thatv+ be minimal among all autarkiesw such that
w− = v−. We will show thatv+ = ∅. To this end, let us assume thatv+ 6= ∅. We
define a directed graphG on v+ as follows. Leta, b ∈ v+. If there is a clauseC in T
such thata and¬b are literals inC, we include the edge(b, a) inG. Letw be a strongly
connected component ofG such that no edge starting in another component ends inB
(such components exist in every nonempty directed graph).

We claim thatu = v \ w is also an autarky forT . By our assumption,v contains
a negative literal. Sinceu contains every negative literal inv, u 6= ∅. Thus, all that
we need to show is that every clause touched byu is satisfied byu. To this end, let
us consider a clauseC ∈ T that is touched byu. ThenC is touched byv and so,C
is satisfied byv. If a common literal toC andv is of the form¬a, then¬a ∈ u and
u satisfiesC. Thus, let us assume that the common literal ofC andv is an atoma. If
a /∈ w, thena ∈ u andu satisfiesC. Let us assume then thata ∈ w. Thena /∈ u.
Moreover,a ∈ v and so,¬a /∈ v (v as an autarky is a consistent set of literals). Thus,
¬a /∈ u. Sinceu touchesC there is an atom, say b, on whichu touchesC and it follows
thatb 6= a. In addition, we have that¬b is a literal ofC (b cannot be a literal ofC asC
contains exactly one positive literal, namelya). We also have that either¬b or b is in u
(asu touchesC on b). In the first case,u satisfiesC. In the second case,b ∈ v+. Since
a and¬b are both literals inC, it follows that(b, a) is an edge ofG. By the choice of
w, we haveb ∈ w. Thus,b /∈ u, a contradiction.

It follows thatu satisfiesC and so,u is an autarky forT (asC is an arbitrary clause
from T ). Sinceu− = v− andu+ is a proper subset ofv+, this contradicts our choice
of v. Consequently,v+ = ∅. Thus,v consists of negative literals only. 2

To decide whether a Horn theoryT has an autarky we can use first the algorithm
outlined above to find a positive autarky ofT . If we succeed, we return this autarky and
stop. Otherwise, we use the second algorithm outlined above to find a negative autarky.



If we succeed, we return this autarky and stop. Otherwise, we return thatT has no
autarkies and stop. Theorem 5 implies that the algorithm is correct. It is evident that it
can be implemented to run in polynomial (in fact, linear) time.

We now turn attention to minimal autarkies of Horn theories. We note that the proof
of Theorem 5 implies the following result.

Theorem 6. If v is a minimal autarky of a Horn theoryT thenv is positive orv is
negative.

Proof: Let us assume thatv is not positive. Sincev is a minimal autarky forT , the
method used in the proof of Theorem 5 applies tov (sincev has the property that
v+ ⊆ w+ for every autarkyw such thatw− = v−). Thus,v+ = ∅. 2

Positive autarkies of Horn theories have a characterization based on a certain effi-
cient computational procedure with a flavor of a bottom-up constraint propagation. Let
T be a Horn theory and leta be an atom. We setA0 = {a}. Next, given a set of atoms
Ai, we defineAi+1 to contain every atom fromAi and in addition, every atomb such
that there is a clauseC = b∨¬b1∨ . . .∨¬bk in T , with at least onebj inAi. Finally, we
setAP(T, a) =

⋃∞
i=0Ai (AP stands forautarky propagation). We have the following

basic result. We use in it the notationT+, which was introduced earlier.

Proposition 13. LetT be a Horn theory anda an atom inAt(T ).

1. If T+ 6= ∅, then the set of atomsAP(T+, a) is an autarky forT
2. If v is a positive autarky forT anda ∈ v thenAP(T+, a) ⊆ v
3. Every positive autarky ofT is the union of sets of the formAP(T+, a).

Proof: (1) We recall that ifT+ 6= ∅, then theoriesT andT+ have the same positive
autarkies (Proposition 10). Consequently, sinceAP(T+, a) consists of atoms only, it
suffices to show thatAP(T+, a) is an autarky forT+. Let C be a clause inT+ such
thatAP(T+, a) touchesC. Let us assume thatC = b∨¬b1 ∨ . . .∨¬bk (we recall that
T+ is definite). Ifb ∈ AP(T+, a), thenAP(T+, a) satisfiesC. So, let us assume that
bj ∈ AP(T+, a) and, more specifically thatbj ∈ Ai, for some non-negative integeri.
By the definition,b ∈ Ai+1 and so,b ∈ AP(T+, a). Thus,AP(T+, a) satisfiesC in
this case, too.
(2) Let v be a positive autarky forT . Then,v is an autarky forT+ (Proposition 10).
Sincea ∈ v, A0 = {a} ⊆ v (we use the notation introduced above). Let us assume
thatAi ⊆ v and let us consider an atomb ∈ Ai+1 \ Ai. It follows that there is a clause
C ∈ T+ such thatC = b ∨ ¬b1 ∨ . . . ∨ ¬bk and for somej, bj ∈ Ai. Hencebj ∈ v
and so,v touchesC. Sincev is an autarky forT+, v contains a literal fromC. Sincev
consists of atoms,b ∈ v.
(3) This part of the assertion is a direct consequence of (2). 2

Let us observe that similar effective characterizations of negative autarkies are un-
likely to exist, as negative autarkies are related to hitting sets of hypergraphs, a connec-
tion that implies the following result.

Proposition 14. The following problem is NP-complete: given a Horn theoryT and an
integerk, decide whetherT has a negative autarky with no more thank elements.



Proof: The membership in the class NP is evident. To prove NP-hardness, we construct
a reduction from thehitting set problem: given a familyH of finite sets and an integer
k, decide whetherH has a hitting set with at mostk elements. This problem is known
to be NP-complete [2]. LetX =

⋃
H. We define a Horn theoryT (H) as follows. For

everya ∈ X, we include inT (H) all clauses of the form

a ∨ ¬a1 ∨ . . . ∨ ¬am (1)

where{a1, . . . , am} is a set inH. We observe that the theoryT (H) can be constructed
in polynomial time.

Let H be a hitting set forH. Then,v = {¬h : h ∈ H} is an autarky forT (H),
as it 3-satisfiesT (H). Conversely, letv be a negative autarky forT (H). Then,v =
{¬h : h ∈ H}, for someH ⊆ X. Let us choosea ∈ H (sincev is an autarky,H is not
empty). Then,v touches and so, satisfies all clauses of the form (1), where{a1, . . . , am}
ranges over all sets inH. Sincev is negative, it follows thatH is a hitting set forH.

Thus,H has a hitting set with at mostk elements if and only ifT (H) has a negative
autarky with at mostk elements, and the hardness follows. 2

We conclude with a result on autarkies of a certain subclass of Horn theories.

Proposition 15. Every autarky of a Horn theory consisting of facts and constraints
contains a pure literal.

Proof: Letv be an autarky for such a theory, sayT . If v contains a negative literall, l
does not touch facts inT . Thus,l is pure inT .

So let us suppose thatv consists of positive literals only. Thenv does not satisfy
any constraint inT , and so all literals inv are pure. 2

The results we obtained for Horn theories extend to the cases of dual Horn and
renameable Horn theories. A permutationπ of a set of literals is arenamingif for
every literalsl, π(l) andπ(l̄) are each other duals. The operation of a renaming can be
extended to clauses and theories. A theoryT is a renameable Horn theoryif there is
a renamingπ such thatπ(T ) is a Horn theory. It is well known that renameable Horn
theories can be recognized in polynomial time and, given a renameable Horn theory, an
appropriate renaming can be constructed in polynomial time, too.

A theory is adual Horn theoryif its every clause contains at most one negative
literal. Equivalently, a theoryT is adual Horn theoryif by applying toT a renaming
which maps each literal to its dual we obtain a Horn theory. Thus, dual Horn theories
can be regarded as special case of renameable Horn theories.

We have the following general property of autarkies.

Proposition 16. Let T be a propositional theory and letπ be a renaming of the set
Lit(T ). Thenv is an autarky forT if and only ifπ(v) is an autarky forπ(T ).

Proposition 16 allows us to extend all results concerning autarkies of Horn theories
to the classes of renameable and dual Horn theories.



4.3 Linear theories

In this subsection, we study linear theories. These theories do not consist of clauses and
our generalization of autarkies to the case of arbitrary theories becomes essential.

A propositional formula is linear if it is of the form

C = x1 ⊕ x2 ⊕ . . .⊕ xk

wherex1, . . . xk−1 are propositional variables andxk is a propositional variable or a
boolean constant> or⊥.

Let v be a set of literals. Let us observe thatv 3-satisfies a linear formulaϕ =
x1 ⊕ x2 ⊕ . . .⊕ xk if and only if At(ϕ) ⊆ At(v) andv satisfiesϕ in 2-valued logic.

Let T be a linear theory. A set of atomsX ⊆ At(T ) is acomponentof T if X is
a minimal nonempty subset ofAt such that for every formulaC ∈ T , At(C) ⊆ X
or At(C) ∩X = ∅. Alternatively, letG(T ) be the graph with the vertex setAt(T ), in
which two vertices are connected with an edge if they appear in the same formula ofT .
Then, components ofT are precisely the vertex sets of connected components ofG(T ).
It follows that components of a linear theoryT form a partition of the setAt(T ).

Proposition 17. LetT be a linear theory and letv be an autarky forT . Then

1. For everyC ∈ T , eitherAt(C) ⊆ At(v) or At(C) ∩At(v) = ∅
2. For every componentX of T , eitherX ⊆ At(v) or X ∩At(v) = ∅.
3. For every componentX of T such thatX ⊆ At(v), v satisfies{C : At(C) ⊆ X}

(in 2-valued logic).

Proof: (1) LetC ∈ T . If v does not touchC thenAt(C) ∩ At(v) = ∅. If v touchesC
then,v 3-satisfiesC. By our earlier observation, it follows thatAt(C) ⊆ At(v).
(2) Let us assume thatX\At(v) 6= ∅ andX∩At(v) 6= ∅. ThenX\At(v) is a nonempty
proper subset ofX and so, it is not a component. Thus, there is a formulaC such that
At(C) ∩ (X \ At(v)) 6= ∅ andAt(C) \ (X \ At(v)) 6= ∅. SinceAt(C) ∩ X 6= ∅,
At(C) ⊆ X. Thus,At(C) ∩ At(v) 6= ∅. It follows thatC is touched byv but not
3-satisfied byv, a contradiction with (1).
(3) Sincev touches every formula in{C : At(C) ⊆ X}, v 3-satisfies every formula in
{C : At(C) ⊆ X}. By our earlier observation,v satisfies every formula in{C : At(C) ⊆
X} in 2-valued logic. 2

Corollary 1. LetT be a linear theory.

1. If for every componentX the theory{C ∈ T : At(C) ⊆ X} is unsatisfiable (in
2-valued logic) thenT has no autarkies

2. If there is a componentX such that{C ∈ T : At(C) ⊆ X} is satisfiable (in
2-valued logic), then the setv of literals such thatAt(v) = X and v satisfies
{C ∈ T : At(C) ⊆ X} is a minimal autarky forT

3. Every autarky forT is the union of minimal autarkies ofT of the kind described in
(2).



Thus, to decide the existence of autarkies of a linear theoryT we first find all com-
ponents ofT (one can accomplish that in polynomial time, as finding connected compo-
nents of graphs is in P) and we use a polynomial-time algorithm deciding satisfiability
of linear theories, to find a componentX such that{C ∈ T : At(C) ⊆ X} is satisfiable
(in 2-valued logic). If none exists,T has no autarkies. Otherwise,T has a satisfiable
component and, by Corollary 1, has an autarky.

5 Conclusions

The contribution of this paper is twofold. First, we studied computational properties of
autarkies. We proved that the existence problem for autarkies is NP-complete. We have
shown a direct reduction of the search version of the problem to the decision version
in a linear number of calls to the decision version. We also found several classes of
theories for which the problem of autarky existence can be solved in polynomial time.
More importantly, in each of these cases we classified autarkies and obtained the results
on their structure in terms of minimal autarkies. Our results complement those of [5].

Second, we generalized autarkies to the case of arbitrary propositional theories by
exploiting the concept of satisfiability in 3-valued logic. The choice of the logic war-
rants some comments. Let us call a set of literals aweak autarkyof a theoryT if for
every formulaϕ ∈ T that is touched byv, v entailsϕ (in 2-valued logic). It is well
known that if[v(ϕ)]3 = t thenv entailsϕ (in 2-valued logic). Thus, every autarky is
a weak autarky. In addition, a fundamental property of autarkies, Theorem 2, holds for
weak autarkies, as well. Why then not to use weak autarkies rather than autarkies? In
the case of clausal theories, there is no essential difference. Both concepts coincide if
we exclude tautological clauses from considerations, a typical assumption in the satis-
fiability research. However, in the general case, the difference is significant. One can
verify whetherv 3-satisfiesϕ in polynomial time, while the problem to verify whether
v entailsϕ is coNP-complete in general (we stress thatv is not necessarily a complete
set of literals). Thus, the choice of logic in extending the notion of an autarky to the
case of arbitrary theories is closely tied to the difficulty of recognizing autarkies.
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