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Abstract. Autarkies arise in studies of satisfiability of CNF theories. In this pa-
per we extend the notion of an autarky to arbitrary propositional theories. We
note that in this general setting autarkies are related to the 3-valued logic. Most
of our results are concerned with algorithmic properties of autarkies. We prove
that the problem of the existence of autarkies is NP-complete and that, as in the
case of SAT, if an autarky exists then it can be computed by means of polyno-
mially many calls to an oracle for the decision version of the problem. We also
prove that, while intractable in general, the problem of the existence of autarkies
is in P for several classes of propositional theories for which the SAT problem is
in P. In particular we present normal form results for autarkies of special cases of
SAT, a problem stated in Section 9 of [6].

1 Introduction

Autarkies arise in studies of propositional satisfiability. They were introduced in [7]
in order to establish sufficient conditions for pruning the search for a satisfying truth
assignment of a CNF theory.

Let T be a collection of propositional clauses (a CNF theory). A nonempty and
consistent set of literals is anautarkyfor 7' if every clause” € T that contains a dual
of a literal fromwv contains also a literal from (is subsumed by). Pure literals are
simplest examples of autarkies. Namely, if a litére purein a CNF theoryT', that is,
T contains no occurrence of the dual literal tehen the sefi} is an autarky foff".

Let us denote by~ the set of all clauses i that contain neither a literal from
nor the dual of a literal in. The following simple result gives a fundamental property
of autarkies that makes them useful in satisfiability research.

Theorem 1. LetT be a CNF theory. b is an autarky forl" thenT is satisfiable if and
only if T~ is satisfiable.

Theorem 1 implies that if is an autarky for a CNF theor¥ then testing whether
T is satisfiable can be reduced to testing whefhgris satisfiable. This latter task is
easier ag,” has|v| fewer atoms thaf". We note that ifv consists of a pure literal, the
simplification described by Theorem 1 is known asphes-literal pruning rule.

Using Theorem 1, researchers designed algorithms testing satisfiability of 3CNF
theories with the worst-case running times exponentially better than the trivial bound of
O(2"), wheren is the number of atoms in the input thebrifhe first such algorithm,

1 We provide worst-case estimates of the running times of satisfiability solvers modulo a poly-
nomial in the size of the input theory.



with the worst-case running time 6(1.619™), was presented in [7]. The line of re-
search it started culminated with an algorithm running in to{&.497™), described in
[9,4].

A most direct use of autarkies to decide satisfiability of a theory consists of re-
peatedly computing an autarky and using its literals to reduce the theory. The problem
with this pruning mechanism is that computing autarkies is hard as the correspond-
ing decision problem was reported to be NP-complete [5]. To circumvent that problem
[5] introduced the notion of &near autarky, defined in terms of a certain linear pro-
gramming problem. Linear autarkies can be computed in polynomial time. Using linear
autarkies in place of general ones makes the reduction method described above poly-
nomial. Moreover, [5] shows that the class of theories for which the method actually
decides satisfiability contains, in particular, some well-known classes of theories for
which the satisfiability problem is polynomial: 2CNF theories and (renameable) Horn
theories.

In this paper we study the class of general autarkies. We first show that the concept
of an autarky can be extended to the case of theories consisting of arbitrary propositional
formulas. That generalization emphasizes and exploits a connection to 3-valued logic,
already present in the original setting of CNF theories but obscured by the syntactic
simplicity of clauses. We then focus on algorithmic properties of autarkies and show
that the problem to decide the existence of autarkies is NP-complete, a fact reported
without proof in [5]. We also show explicitly the property of self-reducibility — the
existence of a reduction from a search problem for autarkies to its decision version.
Next, we prove that for several classes of theories, for which the satisfiability problem
is in the class P, the existence of autarkies can also be decided in polynomial time. In
addition, we obtain results concerning the structure of the set of autarkies of theories
in these classes. In the conclusions, we offer some more comments on the role of the
3-valued logic for the concept of an autarky.

The fact that computing autarkies is hard limited their role in the design of satis-
fiability solvers (and as we noted, prompted research of special autarkies that can be
computed efficiently). The situation may be different, however, when we consider the
problem of deciding the truth of a quantified boolean formula (QBF). This problem is
PSPACE-complete in general and even those pruning techniques that require exponen-
tial time may be beneficial, as demonstrated in [8]. Autarkies may provide such pruning
techniques, as we have the following general version of Lemma 2.4 from [1], concerned
with simplifications by pure literals whose atoms are existentially quantified.

Lemmal. LetQqz1...Q,xz,FE be a QBF, wherer is a formula in CNF. Ifv is an
autarky for E' such that every atom that appearsdns existentially quantified, then
Q171 ... Qury Eistrueifand only ifQz; ... Qnz, E; is true.

The theoryE contains no atoms that appearnirand the corresponding quanti-
fiers can be dropped from the prefix. Thus, the QBF; ... Q,x,E, constitutes a
simplification of the original original one. If the cost of finding autarkies can be offset
by gains in the search time resulting from better pruning, autarkies will prove useful in
the design of fast QBF solvers and deserve further study.



2 Preliminaries

We consider the language of propositional logic determined by a set of atontwo
constantsl and T, and the boolean connectivesv, A, — and® (the last one denoting
theexclusive oy.

A literal is an atom or the negation of an atom. In the first case, the literal is called
positiveand in the second case +egative A clauseis a disjunction of literals. We
view the constant_ as theemptyclause.

For a formulap, we write At() for the set of atoms that appeardnand Lit ()
for the set of literals one can built of these atoms. We extend this notation to sets of
literals and theories.

A 3-valued interpretatiorof a set of atomsAt is a functionv : At — {t,f, u},
wheret, f andu represent truth valugsue, falseandunknown There is a one-to-one
correspondence between 3-valued interpretations and consistent sets of literals. It maps
a 3-valued interpretationto the set of literals

{p:o(p) =t} U{-p:v(p) =f}.

Therefore, we identify 3-valued interpretation and consistent sets of literals, and use the
same symbols (typically, v andw) to denote them.

We define the truth value of a formulain a 3-valued interpretation, which we
denote by[v(p)]s, in a standard way by using the 3-valued truth tables for the logical
connectives in the language [3, Section 64]. They are shown in Table 1. WMk =
t, we say thav 3-satisfiesp.

Whenv evaluates all atoms toandf (equivalently, when is a complete and con-
sistent set of literals), the truth value of every formgles the same under, regardless
of whether we view as a 3-valued or a 2-valued truth assignment. In such case, when-
ever[v(p)]s =t (which is precisely when(¢) = t in the 2-valued logic), we say that
v satisfiesp.
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Table 1.3-valued truth tables

We will now introduce autarkies of arbitrary propositional theories. We say:that
touchesy if At(p) N At(v) # 0.



Definition 1. LetT be a set of propositional formulas. A consistentsef literals is
anautarkyfor 7' if everyy € T that is touched by is 3-satisfied by.

An autarky igpositiveif it consists of positive literals (atoms), anégativeif it consists
of negative literals.

Our general definition of autarkies, when limited to clauses, is equivalent to the def-
inition we presented in the introduction. Indeed, a consistent eétiterals 3-satisfies
a clause” if and only if C' contains a literal fromv. In addition, we can extend to the
general case the fundamental property of autarkies, Theorem & blest consistent set
of literals andl" a set of formulas. We defirE,~ to be the set of all formulas i that
are not touched by (contain no atom fromd¢(v)). This notation is a direct extension
of the notation we introduced for CNF theories in the introduction. We now have the
following result.

Theorem 2. Let v be a consistent set of literals arid a set of formulas. Ib is an
autarky forT', thenT’ is satisfiable if and only if’, is satisfiable.

Next, we gather some basic properties of autarkies that we refer to later. The proofs
are straightforward and we omit them.

Proposition 1. LetT" be a propositional theory.

1. Ifvis a consistent and complete set of literals that satisfi¢kenwv is an autarky
forT

2. If v an autarky forT then for every set of formuleE’ C T, v N Lit(T") is an
autarky forT”.

Finally, we state and prove a result, which allows us to reduce a theory when search-
ing for autarkies. Letp be a formula of propositional logic and let C At¢(p). We
denote byp 4 the formula obtained fronp by replacing all positive occurrences of
atoms fromA with | and all negative occurrence of atoms frehwith T. We have the
following general property of 3-valued logic.

Proposition 2. Let ¢ be a propositional formulay a consistent set of literals over
At(p) and A a set of atomsA C At(p) \ At(v). Then,w 3-satisfiesp if and only ifv
3-satisfiesp 4.

We extend the notatiop 4 to theories. Given a propositional thedfyand a set
of atomsA C At¢(T'), we defineTy = {pa: ¢ € T}. We have now the following
reduction result.

Proposition 3. Let T be a set of formulasd C At¢(T) a set of atoms and a set of
literals such thatd¢(v) N A = . Thenwv is an autarky forT if and only ifv is an
autarky forT'y.

Proof: If v is an autarky fofl" thenv is nonempty and consistent. Let us assume that
v touches a formula) € T4, (we havey = ¢4, for some formulap € T). Since
At(¢) C At(yp), v touchesp. Sincew is an autarky fofl’, v 3-satisfiesp. By Proposi-
tion 2,v 3-satisfiesp 4, = 1. Thus,v is an autarky fofl’4 (asy was chosen arbitrarily).



The converse implication can be proved similarly, once we observe that ifacfet
literals such thatdt(v) N A = () touches a formulg € T then it touches the formula
YRS Ty. O

In the case of CNF theories, we will use an alternative reduction, which also pre-
serves autarkies, but is more explicit. LEtbe a CNF theory and letl be a set of
atoms. ByT'4 we denote the theory obtained frdfhby removing every claus€ such
that At(C) C A and by removing literala and—a from all the remaining clauses in
T'. Proposition 3 holds for this notion of reduction, as well (assuming clausal).
Consequently, we use the same symidal, to denote it.

3 Decision and search problems for autarkies

The main objective of this section is to establish the complexity of the problem of
the existence of autarkies. We will also considesearchversion of the problem (to
compute an autarky or determine that none exists).

Definition 2. AUTARKY EXISTENCE: Given a propositional theor{’, decide whether
T has an autarky.

First, we note the following obvious property that follows directly from the defini-
tion of an autarky.

Proposition 4. LetT" be a propositional theory and a consistent set of literals, C
Lit(T). The question whetheris an autarky forl’ can be decided in polynomial time
in the size off".

Proposition 4 implies that the WWARKY EXISTENCE problem is in the class NP.
Our goal now is to show that it is NP-complete.

Theorem 3. TheAUTARKY EXISTENCE problem is NP-complete.

Proof: By the comments above, we focus on the NP-hardness only. The proof is by
the reduction from a variant of the propositional satisfiability problem, in which we
restrict input theories to those that do not contain the empty clause. Clearly this decision
problem is also NP-complete.

LetT be a CNF theory and legt;, 0 < i < n — 1, be all atoms that appearin We
introducen newatomsg;, 0 < ¢ < n — 1, and define a CNF theory(T') to consist of
three groups of clauses:

1. all clauses it
2. clause9; Vv ¢; and—p; V —¢;, where0 <i <n —1

3. clausesp; VP41V i1, Di VPit1 V Git1, ¢ V Pit1 V Gir1, andg; V piga V g1,
where0 < i < n — 1, and the addition of indices is moduto

The theoryA(T') can be constructed in linear time in the sizeZofWe will show that
T is satisfiable if and only ifA(T') has an autarky.



(=) SinceT is satisfiable, there is a se{C Lit(T) such that forevery,0 < i <n-—1,
exactly one ofp; and —p; belongs tov, andv satisfiesT' (indeed, each 2-valuation
satisfyingT" can be represented by such set of literals). We defimaes follows:

vV =vU{~g:pi€v,i=0,1,....,n—1}U{qg: -p; €v,i=0,1,...,n—1}.

We will show that’ is an autarky ford(T'). To this end, it is enough to show that every
clause inA(T) contains a literal from’.

Sincew satisfiesT" andT' consists of clauses, every clauseTircontains a literal
from v and so, also a literal from’. By the definition ofv’, every clause of type (2)
contains a literal from’, as well. Since all clauses of type (3) are subsumed by clauses
of type (2), every clause of type (3) also contains a literal fitom
(<) Let us assume that is an autarky ford(7T'). By the definitionp’ is consistent and
contains at least one literal. Due to the symmetry of the clauses of types (2) and (3),
without loss of generality we can assume that it is ongyofy, —po, Or —qq. Since the
proof in each case is the same, let us assumepthatv’. Since—pg V —qq is in A(T')
and is touched by/, it follows that—q, € v'. Let us consider the clause

“poVp1Va

from A(T). Itis touched by’. Consequently, it is satisfied hy, which in turn implies
thatv’ containsp; or ¢;. In the first case, since touches and so, satisfies the clause
-p1 V —q1, q1 € v'. In the second case, for the same reaseps,< v’. Continuing
this argument, we show that is a complete set of literals ovelrt (A(T)).

Letv = v'NLit(At(T)). Let us consider a clauge € T It follows thatC' € A(T).
SinceT does not contain the empty clause and siride a complete set of literals over
At(A(T)), v' touchesC'. Consequentlyy’ satisfiesC'. It follows that C contains a
literal from«’. Since every literal it belongs taLit(At(T")), C contains a literal from
v. Thus,v satisfiesrl". m]

We will now show that the ATARKY SEARCH problem, where the goal is thm-
putean autarky or determine that none exists, can be solved directly by means of poly-
nomially many calls to an algorithm for theUAARKY EXISTENCE problem. While
every NP-complete search problem can be solved by means of polynomially many calls
to an oracle for its decision version, we show heresgplicit reduction of AJITARKY
SEARCH to AUTARKY EXISTENCE. Our reduction is based on two lemmas of separate
interest.

Lemma 2. LetT be a CNF theory and a consistent set of literals.

1. Ifa € At(T), thenv is an autarky forT" anda, —a ¢ v if and only ifv is an autarky
for T'U {a, —a}

2. Ifforeverya € At(T), T U {a, ~a} has no autarkies then every autarky Biis a
complete set of literals ovett(T).

Proof: Part (1) of the assertion follows directly from the definition of an autarky.
(2) Let v be an autarky fofl". By (1) it follows that for everya € At(T), a € v or
—a € v. Thus,v is a complete set of literals. ]



Lemma 3. Let T be a CNF theory such that every autarky fBris a complete set of
literals over A¢(T'). Then, for every literal € Lit(T), a set of literalsv C Lit(T) is
an autarky forT" U {i} if and only ifv is an autarky forT" and! € v.

Proof: Sincev is an autarky fofl’ andl € v, v is an autarky fofl’ U {I}.
Conversely, let us assume thais an autarky fofl” U {l}. Thenv is an autarky for
T (Proposition 1(2)). Thus; is a complete set of literals ovelt(7) and so, it touches
the unit clausé. Consequentlyy satisfied, that is,v containg. |
We are now ready to show how a procedure to decide the existence of autarkies can
be used to compute them. LEtbe an input CNF theory

1. If T has no autarkies, output ‘no autarkies’ and terminate.

2. Aslong as there is an atoine At(T) such thatl’ U {a, —a} has an autarky, we
replaceT” by Ty, and continue. We denote Iy the theory we obtain when the
process terminates.

3. We fix an enumeration of atoms i¢(7"), sayAt(T) = {ay, ..., a,}, and define
T() =T

Fori = 1,...,n, we proceed as follows. IT;_; U {a;} has an autarky, we set
l; := a;. Otherwise, we sdf; := —a;. We then sefl; := T;_; U {l;}. When the
loop terminates, we set= {l;,...,[,} and output it as an autarky @f.

Let us analyze Step 2. Let € At(a) be an atom such th& U {a,—a} has an
autarky. Then, by Lemma 2(1), has an autarky that contains neithenor —a. By
Proposition 37,; has an autarky and every autarkylqf,; is an autarky off". Since
the input theoryl" has an autarky (we moved past StepZl)has an autarky and every
autarky of7” is an autarky fof". Moreover, for no atonu € At(7"), T’ U {a, ~a}
has an autarky. Thus, by Lemma 2(2), every autarky’as a complete set of literals.
Using that fact, we find one autarky @f in Step 3 of the algorithm. As we noted it is
also an autarky fof".

We prove the correctness of Step 3 by showing that for eyenK i < n, T; has
an autarky, that every autarky @f is a complete set of literals ovett(7”), and that
every autarky ofl; is an autarky ofl;_;. In particular, the claim implies th&t, has
a complete autarky. SincE, contains unit clausek, ... ,l,,v = {l;,...,l,} is an
autarky forT},. By the claim, it is also an autarky far and so, forT.

To prove the claim, we note that the claim holds foe 1. Indeed,7, = T’ and
s0,Ty has an autarky and every autarky fris a complete set of literals. Thus, every
autarky forT, containsa; or —a;. By Lemma 3, it follows thatl; has an autarky.
Moreover, sincd| C T, every autarky fofl; is an autarky foflj. It also follows then
that every autarky fof’ is a complete set of literals. Assuming that the claim holds for
somei, 1 < i < n, we prove in the same way as in the case of 1, that the claim
holds fori + 1. Thus, the claim follows by induction.

It is clear that the method described above requires linear number of calls to a pro-
cedure deciding the WTARKY EXISTENCE problem.

We now discuss the relation of Theorem 3 with one of the results of [6].

Let S be a set of clauses. A clause € S is lean in S if for some resolution
refutationT” with premises fronts, C is one of premises df'. A subsetL of S is lean
in S if it consists of clauses that are leandnClearly, for every sef of clausesS has



a largest lean subset; it consists of all clauses that are leSinWe denote this set by
Ls.

A nonemptysubsetd C S is anautarkof S with awitnessv if v is an autarky inS
and A is the set of all clauses touched (thus satisfied) byhere is an operation on
the set of partial valuations. This operation is defined by

viove =vyU{l:l €vyandl ¢ vy}

One can check that if bothy, v, are autarkies foS' then so isv; o vo. Moreover, if
A; is an autark subset for whah is a witness; = 1,2, thenv; o v, is a witness for
Ay U As.

We also note that the collection of autarkies®fis closed under the unions of
increasing chains. Thus,§f has autarkies, it has maximal autarkies. bt a maximal
autarky ofS and letA be the set of all clauses fitouched by. Clearly, A is an autark
of S (v is its witness). We claim thad is a largest autark i%. Indeed, letA’ be an
autark inS and letv’ be its witness. By our comments above; v’ is an autarky of5.
Sincev is a subset of o v/, the maximality ofv implies thatv o v = v. Consequently,
v is a witness of the fact that U A’ is an autark. In other words{ U A’ consists of all
clauses inS touched byv. By the definition ofA, AU A’ = A and so,A’ C A.

This argument shows that § has autarks, it has a largest autark. We denote this
largest autark o5 by Ag. In the case whe$ has no autarks, we sets = (). Since
autarks are nonemptg, has autarks if and only ifls # 0. In [5] Kullmann shows the
following elegant result.

Proposition 5 ([5]). For every set of clauseS, As U Lg = S, AsN Lg = 0.

Thus, assuming # 0, the fact thatds # 0 is equivalent to the fact tha has
an autarky. But, of course, by PropositionAs # () if and only if S # Lg. Now, let
LEAN be the language consisting of those sets of clauses for whieh Lg. Then
Kullmann’s result implies that for every nonempty finite set of clauSes € AU-
TARKY EXISTENCE if and only ifS ¢ LEAN. Since AUTARKY EXISTENCE
is NP-complete (Theorem 3), we get the following result of Kullmann from [6], Lemma
5.7.

Proposition 6 ([6]). The problenLEAN is co-NP-complete.

It should be observed, however, that by the same observation (complementarity of
languages AUTARKY EXISTENCE and LEAN), Proposition 6 can be used as an
alternative argument to show Theorem 3.

4 Easy cases for finding autarkies

It is well known that the problem of the propositional satisfiability problem is in P for
the following classes of theories:

1. Theories satisfied by the all-true assignment and theories satisfied by the all-false
assignment



2. 2CNF theories
3. Horn theories, dual Horn theories and renameable Horn theories
4. Linear theories

We will show that for each of these classes the problem of the existence of autarkies
is also in P. In some cases, we will also identify minimal autarkies and characterize
the structure of the family of autarkies of a theory. This may form a solution to a gen-
eral problem How the structure of a set of formulds is reflected in its collection of
autarkies? formulated in Section 9 of [6].

The case of theories satisfied by the all-true assignment and theories satisfied by
the all-false assignment is straightforward. Namely, we have a general property that for
each satisfiable theof#, the satisfying assignment (the corresponding complete set of
literals, to be precise) is an autarky for In each of the two cases discussed here, one
satisfying assignment is given directly and so, finding an autarky is trivially in P. Thus,
in the remainder of this section we focus on all the remaining cases.

4.1 The class of 2CNF theories

The results of this section are related to the results from [5], because one can show that
every autarky of a 2CNF theory is a linear autarky. Here we study the connection of
autarkies with boolean constraint propagation and obtain results on the structure of the
set of autarkies of 2CNF theories.

Let 7" be a CNF theory and ldtbe a literal. The key tool in studying autarkies of
2CNF theories is a version of the well known boolean constraint (or unit) propagation.
Let T be a CNF theory and létbe a literall € Lit(T'). We setL := {l}. We define
L;.1 to consist of those literalg that are inL; or that can be derived by resolving
literals in L; with a clause inT". If the resolution results in the empty clause we
include it in L1, too. We setBCP(T,1) = J;-, L;. We note that in the version of
unit-propagation we presented here we do not includBdtP (7, 1) literals that form
unit clauses irf". In order to include a literal other thdnn BCP(T, 1), it must be de-
rived from a non-unit clause il by resolving it against literals included BCP (T, )
earlier.

Proposition 7. LetT be a 2CNF theory andan autarky forT". If | € vthenBCP(T,1)
Co.

Proof: We use the notation introduced above. By the definitignC v. Let us assume
thatL; C v. Let!’ be aliteral such thdt € L, \ L;. It follows that there is a literal
1 € L; such that the claus€ = I’ v [ belongs tdl'. Sincel € v, v touchesC. Thus,v
satisfiesC. Sincel ¢ v, it follows thatl’ € v. Next, let us assume that € L, . Since
L; C BCP(T\,1), L; is consistent and, in particulat, ¢ L;. It follows that there is a
literal | € L; such thatC' = [ is a clause irf". Sincel € v, v touchesC but does not
satisfy it, which yields a contradiction. Thus, ¢ L;;;. Consequentlyl;,, consists
of literals only and sol.;+1 C v. By induction,BCP (T, 1) C v. O

Proposition 8. LetT be a 2CNF theory and léte Lit(T). If BCP(T,1) is consistent
then it is an autarky of .



Proof: SinceBCP(T,1) is consistent, it is a set of literals (that is, it does not contain
1). Moreover, by the definitionBCP (T, 1) # (). LetC be a clause touched by a literal
I' € BCP(T,1).f ' is aliteral of C, BCP(T, ) satisfiesC. So, let us assume thatis
aliteral of C. Since L ¢ BCP(T,1), C contains a literal” that is different from’’. It
follows that!” € BCP(T,1) and so,BCP(T,1) satisfies”' in this case, too. O
These two results form the basis for a necessary and sufficient condition for the ex-
istence of autarkies for 2CNF theories, and for a characterization of minimal autarkies.
Specifically, Propositions 7 and 8 imply the following result.

Theorem 4. LetT be a 2CNF theory.

1. T has an autarky if and only if for some literdle Lit(T') the setBCP(T,l) is
consistent

2. Every autarky ofl" is the union of a nonempty family of autarkies of the form
BCP(T,1).

It is now clear that in order to decide whether a 2CNF thébiyas an autarky, it
is enough to comput&CP (T, 1) for every literall € Lit(T). If in at least one case,
we obtain a consistent set of literals, this set is an autark{’f@ddtherwise, " has no
autarkies. Clearly this method can be implemented to run in polynomial time in the size
of T'.

Theorem 4 also implies a method to compute minimal autarkies of a 2CNF theory
T'. To this end, we observe that minimal autarkies are precisely minimal consistent sets
of the form BCP(T, ). To compute them all we need to do is to identify minimal
elements in the family ofonsistensets of the formBCP (T, ), the task that can be
accomplished in polynomial time.

4.2 The class of Horn theories and related classes

We focus now on the classes of Horn theories, dual Horn theories and renameable Horn
theories. We first consider the key case of Horn theories. As in the previous subsection,
the results we present here are related to those presented in [5]. Unlike [5] however, our
focus is on the structure of autarkies and we do not impose restrictions on the class of
Horn theories that we consider.

A clause isHorn if it contains at most one non-negated literal. A Horn clause is
definiteif it contains exactly one non-negated literal. Otherwise, it ixdefiniteclause
or aconstraint A Horn clause is dactif it is a positive unit clause (consists of a single
literal and this literal is an atom).

A Horn theoryis a collection of Horn clauses. We denote the set of constraints
and the set of facts of a Horn thedfyby 7 and T/, respectively. IfT" contains no
constraints ¢ = (), it is definite If T' contains no factsZ(/ = (), it is dual definite
We note that the set of all atoms of a definite Horn theory is a 2-valued model of that
theory. Similarly, the set of all literals obtained by negating all atoms appearing in a
dual definite Horn theory is a 2-valued model of that theory.

We first discuss the existence of and compupngitiveautarkies of Horn theories,
that is, autarkies that consist of atoms only.



Proposition 9. A definite nonempty Horn theory has a positive autarky.

Proof: LetT be a definite Horn theory such that(T") # (). Since every clause i
contains at least one (non-negated) atdmsatisfies every clause . SinceAt(T") #
0, At(T) is an autarky fofT". O

The following lemma provides a crucial property of positive autarkies of Horn the-
ories.

Lemma 4. LetT be a Horn theory and let be a set of atoms. Thanis a positive
autarky forT if and only ifv is an autarky forl's, whereA = At(7T°).

Proof: (=) We have that consists of atoms only. Thus, it does not satisfy any con-
straint. Sincev is an autarky forT, v does not touch any constraint i, that is,
v N A = (). Thus, by Proposition 3; is an autarky fofl’s. The converse implication
follows directly from Proposition 3. ]

Let 7" be a Horn theory. Let us iterate the reduction described in Lemma 4 as long
as itis possible and let us denote the resulting Horn theofl,by emma 4 implies the
following result.

Proposition 10. LetT be a Horn theory. I’y # (), thenT', is definite. Moreovefl.
andT have the same positive autarkies.

Propositions 9 and 10 imply a simple polynomial-time algorithm to decide whether
a Horn theoryT" has a positive autarky. Namely, we first compiite If T, = 0 it has
no positive autarky and, consequenffyhas no positive autarky either.Tt, = () then
it is definite and the set of its atoms is its positive autarky and so, also a positive autarky
for T'. SinceT; can be computed in polynomial time in the siz€lofin fact, even in
linear time in the size df’), the algorithm we outlined can also be implemented to run
in polynomial (even linear) time in the size Bt

Next, we move on to the problem of computinegativeautarkies of Horn theories,
that is, autarkies that consist of negated atoms only. The problem is dual to the one we
considered above.

Proposition 11. A dual definite Horn theory has a negative autarky.

Proof: Since every clause ifi contains a negative literal, the set of literals obtained by
negating all atoms iff’ is a negative autarky for'. |

The duality extends further. As in the case of positive autarkies, also for negative
autarkies we have a reduction result.

Lemma 5. LetT be a Horn theory and let be a set of negated atoms. Theris an
autarky forT" if and only ifv is an autarky forT4, whereA = At(T7).

Proof: (=) Sincev does not satisfy any atom,does not touch any claused . Thus,
At(v) N A = (. Consequently, by Proposition 8,s an autarky fofl’4. The converse
implication follows directly from Proposition 3. |

Let T" be a Horn theory. We iterate the reduction of Lemma 5 until it is no longer
possible and we denote the resulting theorylhy The following result is a straight-
forward consequence of Lemma 5.



Proposition 12. LetT be a Horn theory. Ifl’_ # (), thenT_ is dual definite. Moreover,
T_ andT have the same negative autarkies.

Propositions 11 and 12 imply a polynomial-time algorithm to decide whether a
Horn theoryT' has a negative autarky. The first step is to comfutelf 7 = (), it
has no negative autarkies. Consequefiiljpas no negative autarkies eitherZlf # ()
then it is dual definite and the set of literals obtained by negating atofis iis its
negative autarky and so, also a negative autarky/foBince7_ can be computed in
polynomial (in fact, linear) time in the size @f, the algorithm we just described can
also be implemented to run in polynomial (linear) time in the siz&'.of

The following theorem implies that the two algorithms described above suffice to
decide the existence of an autarky for a Horn theory. The following notation will be
useful. Letv be a set of literals. By™ we denote all positive literals in. Likewise, we
write v~ for the set of negative literals in

Theorem 5. LetT be a Horn theory. IfI" has an autarky then it has a positive autarky
or a negative autarky.

Proof: Let us assume th@tdoes not have a positive autarky. Then, every autarky of
contains negative literals.

SinceT has an autarky, let be any autarky fofl". Without loss of generality, we
may assume that is chosen so that™ be minimal among all autarkies such that
w™ = v~. We will show thatv™ = . To this end, let us assume that # (. We
define a directed grapff onv™ as follows. Leta,b € v*. If there is a claus€' in T
such that: and—b are literals inC', we include the edgé, a) in G. Letw be a strongly
connected component 6f such that no edge starting in another component ends in
(such components exist in every nonempty directed graph).

We claim thatu = v \ w is also an autarky fof". By our assumptiony contains
a negative literal. Since contains every negative literal in « # (. Thus, all that
we need to show is that every clause touched:bg satisfied byu. To this end, let
us consider a clausé € T that is touched by.. ThenC is touched by and so,C
is satisfied byv. If a common literal toC' andv is of the form—a, then—a € « and
u satisfiesC. Thus, let us assume that the common literal’cndv is an atoma. If
a ¢ w, thena € v andu satisfiesC. Let us assume then thate w. Thena ¢ u.
Moreover,a € v and so,~a ¢ v (v as an autarky is a consistent set of literals). Thus,
—a ¢ u. Sinceu touche< there is an atom, say b, on whiehtouche<” and it follows
thatd # a. In addition, we have thatb is a literal ofC' (b cannot be a literal o’ asC
contains exactly one positive literal, namely We also have that eitherb orbis inu
(asu touchesC onb). In the first casey satisfiesC'. In the second casé,c v™. Since
a and—b are both literals inC, it follows that (b, a) is an edge of+. By the choice of
w, we haveb € w. Thus,b ¢ u, a contradiction.

It follows thatu satisfies” and sou is an autarky fofl” (asC' is an arbitrary clause
from T'). Sinceu~ = v~ andu™ is a proper subset aft, this contradicts our choice
of v. Consequentlyy™ = (. Thus,v consists of negative literals only. |

To decide whether a Horn theoffy has an autarky we can use first the algorithm
outlined above to find a positive autarky’5f If we succeed, we return this autarky and
stop. Otherwise, we use the second algorithm outlined above to find a negative autarky.



If we succeed, we return this autarky and stop. Otherwise, we returthas no
autarkies and stop. Theorem 5 implies that the algorithm is correct. It is evident that it
can be implemented to run in polynomial (in fact, linear) time.

We now turn attention to minimal autarkies of Horn theories. We note that the proof
of Theorem 5 implies the following result.

Theorem 6. If v is a minimal autarky of a Horn theory' thenwv is positive orv is
negative.

Proof: Let us assume thatis not positive. Since is a minimal autarky fofl’, the

method used in the proof of Theorem 5 appliesvt¢sincev has the property that

vt C w for every autarkyw such thatv~™ = v~). Thus,v™ = 0. O
Positive autarkies of Horn theories have a characterization based on a certain effi-

cient computational procedure with a flavor of a bottom-up constraint propagation. Let

T be a Horn theory and let be an atom. We set;, = {a}. Next, given a set of atoms

A;, we defineA,,, to contain every atom froml; and in addition, every atosuch

that there is a clausé = bV —b; V...V b in T, with at least oné; in A;. Finally, we

setAP(T,a) = J; Ai (AP stands forutarky propagation We have the following

basic result. We use in it the notati@i , which was introduced earlier.

Proposition 13. LetT be a Horn theory and an atom inA¢(T).

1. If T4 # 0, then the set of atoméP (T, a) is an autarky forT’
2. Ifvis a positive autarky fof” anda € v thenAP (T ,a) Cv
3. Every positive autarky df is the union of sets of the forshP (7, a).

Proof: (1) We recall that iff, # (), then theorie§” andT'. have the same positive
autarkies (Proposition 10). Consequently, siac®(T., a) consists of atoms only, it
suffices to show thatl P(T’, , a) is an autarky forT’,. Let C' be a clause iff’; such
that AP(T,,a) touchesC'. Let us assume th&t = bV —b; V ...V —by, (we recall that
T, is definite). Ifb € AP(T,a), thenAP(T,,a) satisfiesC. So, let us assume that
b; € AP(T4,a) and, more specifically thdt < A;, for some non-negative integer
By the definition,b € A;4; and sop € AP(T4,a). Thus,AP(T},a) satisfiesC in
this case, too.
(2) Letv be a positive autarky fof’. Then,v is an autarky forl’; (Proposition 10).
Sincea € v, Ag = {a} C v (we use the notation introduced above). Let us assume
thatA; C v and let us consider an atobre A, \ A;. It follows that there is a clause
C € Ty such thatC = bV —b; V...V —b; and for somej, b; € A;. Henceb; € v
and sop touchesC. Sincev is an autarky fofl’,, v contains a literal fronC'. Sincev
consists of atomg, € v.
(3) This part of the assertion is a direct consequence of (2). |

Let us observe that similar effective characterizations of negative autarkies are un-
likely to exist, as negative autarkies are related to hitting sets of hypergraphs, a connec-
tion that implies the following result.

Proposition 14. The following problem is NP-complete: given a Horn thefrgnd an
integerk, decide whethef” has a negative autarky with no more thamlements.



Proof: The membership in the class NP is evident. To prove NP-hardness, we construct
a reduction from thditting set problemgiven a family’H of finite sets and an integer

k, decide whetheH has a hitting set with at mogtelements. This problem is known

to be NP-complete [2]. LeX = | JH. We define a Horn theory' () as follows. For
everya € X, we include inT'(H) all clauses of the form

aV-ag V...V oay, (1)

where{as,...,a,} is a setinH. We observe that the theofy(H) can be constructed
in polynomial time.

Let H be a hitting set fof{. Then,v = {=h: h € H} is an autarky fofl'(H),
as it 3-satisfied'(H). Conversely, lety be a negative autarky fdF (). Then,v =
{—-h: h € H}, forsomeH C X. Letus choose € H (sincev is an autarkyH is not
empty). Theny touches and so, satisfies all clauses of the form (1), where . ., a,, }
ranges over all sets K. Sincev is negative, it follows that{ is a hitting set forH.

Thus,H has a hitting set with at mostelements if and only if'() has a negative
autarky with at mosk elements, and the hardness follows. a

We conclude with a result on autarkies of a certain subclass of Horn theories.

Proposition 15. Every autarky of a Horn theory consisting of facts and constraints
contains a pure literal.

Proof: Letv be an autarky for such a theory, sayIf v contains a negative litera] [
does not touch facts ii. Thus,! is pure inT'.

So let us suppose thatconsists of positive literals only. Thandoes not satisfy
any constraint iff", and so all literals irv are pure. O

The results we obtained for Horn theories extend to the cases of dual Horn and
renameable Horn theories. A permutatiorof a set of literals is aenamingif for
every literals, 7(1) and~(l) are each other duals. The operation of a renaming can be
extended to clauses and theories. A theBris arenameable Horn theorif there is
a renamingr such thatr(T) is a Horn theory. It is well known that renameable Horn
theories can be recognized in polynomial time and, given a renameable Horn theory, an
appropriate renaming can be constructed in polynomial time, too.

A theory is adual Horn theoryif its every clause contains at most one negative
literal. Equivalently, a theor{ is adual Horn theoryif by applying to7T" a renaming
which maps each literal to its dual we obtain a Horn theory. Thus, dual Horn theories
can be regarded as special case of renameable Horn theories.

We have the following general property of autarkies.

Proposition 16. Let 7' be a propositional theory and let be a renaming of the set
Lit(T). Thenv is an autarky forT" if and only if7(v) is an autarky forr (7).

Proposition 16 allows us to extend all results concerning autarkies of Horn theories
to the classes of renameable and dual Horn theories.



4.3 Linear theories

In this subsection, we study linear theories. These theories do not consist of clauses and
our generalization of autarkies to the case of arbitrary theories becomes essential.
A propositional formula is linear if it is of the form

C=21®22D... Dy

wherexy,...xz,_1 are propositional variables ang, is a propositional variable or a
boolean constant or L.

Let v be a set of literals. Let us observe thaB-satisfies a linear formula =
1 ®ra® ... 0z ifand only if At(p) C At(v) andv satisfiesp in 2-valued logic.

Let T be a linear theory. A set of atonrd C A¢(T) is acomponendf T if X is
a minimal nonempty subset oft such that for every formul& € T, At(C) C X
or At(C) N X = (. Alternatively, letG(T') be the graph with the vertex sdt(7"), in
which two vertices are connected with an edge if they appear in the same forniula of
Then, components @f are precisely the vertex sets of connected componeri$Bj.
It follows that components of a linear thedfyform a partition of the seti¢(T).

Proposition 17. LetT be a linear theory and let be an autarky fofl". Then

1. ForeveryC € T, either At(C) C At(v) or At(C) N At(v) =0

2. For every componerX of T', eitherX C At(v) or X N At(v) = 0.

3. For every componerX’ of T" such thatX C At(v), v satisfies{C': A¢(C) C X}
(in 2-valued logic).

Proof: (1) LetC € T. If v does not touct’ then At(C) N At(v) = 0. If v touchesC
then,v 3-satisfies”. By our earlier observation, it follows that(C') C At(v).

(2) Letus assume thaf\ A¢(v) # B andXNAt(v) # 0. ThenX \ A¢(v) is a nonempty
proper subset aX and so, it is not a component. Thus, there is a forndtlsuch that
At(C) N (X \ At(v)) # D and At(C) \ (X \ At(v)) # 0. Sincedt(C) N X # 0,
At(C) C X. Thus, At(C) N At(v) # 0. It follows thatC is touched byv but not
3-satisfied by, a contradiction with (1).

(3) Sincewv touches every formula iiC: At(C) C X}, v 3-satisfies every formula in
{C: At(C) C X}.Byour earlier observatiom,satisfies every formula itC': A¢(C) C
X} in 2-valued logic. |

Corollary 1. LetT be alinear theory.

1. If for every componenX the theory{C € T': At(C') C X} is unsatisfiable (in
2-valued logic) therT” has no autarkies

2. If there is a componenX such that{C € T: At(C) C X} is satisfiable (in
2-valued logic), then the set of literals such thatd¢(v) = X andwv satisfies
{C e T: A¢(C) C X} is a minimal autarky fofl"

3. Every autarky fofl" is the union of minimal autarkies @f of the kind described in

(2).



Thus, to decide the existence of autarkies of a linear th€ome first find all com-
ponents of" (one can accomplish that in polynomial time, as finding connected compo-
nents of graphs is in P) and we use a polynomial-time algorithm deciding satisfiability
of linear theories, to find a componekitsuch thaf{C' € T': At(C') C X} is satisfiable
(in 2-valued logic). If none existd has no autarkies. Otherwisg, has a satisfiable
component and, by Corollary 1, has an autarky.

5 Conclusions

The contribution of this paper is twofold. First, we studied computational properties of
autarkies. We proved that the existence problem for autarkies is NP-complete. We have
shown a direct reduction of the search version of the problem to the decision version
in a linear number of calls to the decision version. We also found several classes of
theories for which the problem of autarky existence can be solved in polynomial time.
More importantly, in each of these cases we classified autarkies and obtained the results
on their structure in terms of minimal autarkies. Our results complement those of [5].
Second, we generalized autarkies to the case of arbitrary propositional theories by
exploiting the concept of satisfiability in 3-valued logic. The choice of the logic war-
rants some comments. Let us call a set of literalgeak autarkyof a theoryT" if for
every formulay € T that is touched by, v entailsy (in 2-valued logic). It is well
known that if[v(p)]s = t thenv entailsy (in 2-valued logic). Thus, every autarky is
a weak autarky. In addition, a fundamental property of autarkies, Theorem 2, holds for
weak autarkies, as well. Why then not to use weak autarkies rather than autarkies? In
the case of clausal theories, there is no essential difference. Both concepts coincide if
we exclude tautological clauses from considerations, a typical assumption in the satis-
fiability research. However, in the general case, the difference is significant. One can
verify whethery 3-satisfiesp in polynomial time, while the problem to verify whether
v entailsy is coNP-complete in general (we stress th# not necessarily a complete
set of literals). Thus, the choice of logic in extending the notion of an autarky to the
case of arbitrary theories is closely tied to the difficulty of recognizing autarkies.
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