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Abstract

It is wellknown that Minker's semantics GCWA for positive digunctive programs P is
H‘Qf’-complete , i.e. to decide if aliteral istrue in al minima models of P. Thisisin
contrast to the same entailment problem for semantics of non-digjunctive programs such
as STABLE and SUPPORTED (both are co-NP-complete) as well as Mp'PP and WFS
(that are even polynomial).

Recently, the idea of reducing digunctive to non-digunctive programs by using so
called shift-operations was introduced independently by the authors and Marco Schaerf.
In fact, Schaerf associated to each semantics SEM for normal programs a corresponding
semantics Weak-SEM for digunctive programs and asked for the properties of these weak
semantics, in particular for the complexity of their entailment relations. While Schaerf
concentrated on Weak-STABL E and Weak-SUPPORTED, we investigate the weak ver-
sionsof Apt, Blair, and Walker’s stratified semantics Mp 'P* and of Van Gelder, Ross, and
Schlipf’s wellfounded semantics WFS.

We show that credulous entailment for both semanticsis NP-complete (consegquently,
sceptical entailment is co-NP—complete). Thus, unlike GCWA, the complexity of these

*This paper is arevised and extended version of [DGM94] which has been presented at ICLP ' 94.



semantics belongs to the first level of the polynomia hierarchy. Note that, unlike Weak-
WFS, the semantics Weak-Mp'PP is not always defined: testing consistency of Weak-
ME PP is aso NP-complete.

We also show that Weak-WFS and Weak-Mp PP are cumulative (but not rational) and
that, in addition, Weak-WFS satisfies some of the well-behaved principles introduced by
Dix.

1 Introduction

One is often tempted to consider as desired models of atheory T only intended models. But
what is an intended model ? Clearly, such model depends on the possible applicationsthat the
programmer has in mind while writing a theory. Various intentions lead to different results.
For instance, the analysis of the frame problem leads to the acceptance of minimal models as
the class of desired modelsand, subsequently to the notion of circumscription ((McC80]). The
analysis of closed systems of beliefs|eads to the acceptance of supported models of programs
([Cla78, MT93]).

In this paper we are looking at logical theories (described by means of a disunctive pro-
gram, possi bly with negationin the body) as expressing apossi ble causal rel ationship between
various atoms of the underlying language. Moreover we want to express the interpretation of
negation as negation by failure to prove. Theideais that when we observe a state of affairs,
we write a program describing it, and we want to find the possible ways of causal interplay of
atoms.

We consider ageneral reduction method to associate to any digjunctive program P a set of
normal programs. Given a semantics SEM for non-digunctive programs, we assign to adis-
junctive program P all SEM-models of the normal programs Pstift,  Pshift These pro-
grams are obtained from P by a series of shift-operationswhich move atomsfrom the head to
the body (and negate them). The procedure is unidirectional —we cannot move alitera from
the body to the head. Therefore we can keegp an additional control over the way the causal
models are produced —if we want an atom not to depend on other atomswe can moveit to the
body (provided it appearsin ahead consisting of a proper disunction). The resulting seman-
ticsiscalled Weak-SEM. This approach has also been followed be Schaerf in [ Sch93, Scho5]
and by Bonatti in an even more general context ([Bon93)).

Thusour ideaisthat sometheoriescarry intheir syntactic form one or more computational
procedures that can be associated with that theory. In this we are taking a position similar
to that of [ABW88, Prz88, vGRS91]. While Schaerf considered Weak-STABLE and Weak-
Supported, we investigate in this paper the two semantics

o Weak-M3™P, and
o Weak-WFS.

Results about properties of Weak-Mp'P have been aready givenin [DGM94]. These results
are now extended to Weak-WFS and more properties of these semantics are investigated.
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Weak-Mp'PP essentially gives astratified interpretation to causality. That is, when a pro-
gram is stratified, it imposes on atoms of the underlying language an ordering; some atoms
are decided earlier than other atoms. Such ordering, together with the program itself leads to
the unigue model which can be viewed as a description of the causal relationship. Theway it
went in the earlier strata (together with the program) determines the way the matters stand in
the next stratum. A theory (that isadisunctive program) may or may not admit atransforma-
tion to a stratified logic program. Weak-Mp'P® is only defined for theories which admit such
representation. Like in the case of stratified normal programs, theories logically equivalent
may be different from the point of view of causality. Weak-Mp'"® has asintended modelsthe
set of all perfect models of all stratified shiftsof P.

Weak-WFS is based on the wellfounded semantics WFS and associates to any program
P the entire collection of shifts of P, no matter whether they are stratified or not. Unlike the
Mp PP semantics, WFS is always defined and therefore no restriction is needed. Weak-WFS
declares as intended model s the set of all wellfounded models of al shifts of P

Tosummarize, our overal ideaisthat adigunctive program can be seen asarepresentation
of aset of computational procedures, each of which hasavery low complexity: linear in the
case of Weak-Mp PP, quadratic in the case of Weak-WFS. The only expensive procedures are
the shift-operationswhich transform adigjunctive programin aset of nondisjunctiveones. But
even then, we stay on thefirst level of the polynomial hierarchy.

The paper is organized as follows. Section 2 contains some terminology used throughout
the paper, the definition of the perfect model for stratified non-disunctive programs and its
complexity. In Section 3 we introduce the shifting-operations and define the class of causal
programs. Thisis the class where Weak-M3'P? is consistent. Its NP-completeness is shown
and asmaller class, simple digunctive programs, is shown to be polynomial. In Section 4 we
formally define Weak-WFS, Weak-M3'P? and investigate their relationship with GCWA. We
al so determine the complexity of their induced entailment rel ations and show someinteresting
abstract properties of them. Section 5 compares our work to the approach of Schaerf, Bonatti
and Ben-Eliyahu/Dechter. We end in Section 6 with some conclusions,

2 Preiminaries

A digunctiveruleisaformulaa; V...V a, < by,..., by, —cy,...,—c;,wheren > 1, m,
1 > 0 and a;, b;, c; are arbitrary propositional atoms. As usual, the comma represents con-
junction. We call such arule positiveif 1 = 0, normal if n = 1. One can think of arule C
as apair of sets (head(C), body(C)), where head(C) = {a;,...,a,} and body(C) =
{by,...,bm, Cy,...,C1}.

A digunctive logic programis a set of digunctive rules: it straightforwardly inherits the
typology of rules. A normal logic program is often also called general logic program. The
Herbrand base induced by a program P is denoted Bp.

Herewe only deal with finitedigunctivelogic programs. Sinceall the clauses of adisjunc-
tive program have non-empty heads, adisunctivelogic program isaways consistent (viewed



as afirst-order theory).
We say that anormal program P isdtratified if thereexistsarank functionrk, rk : At —
IN such that for every rule

C=p<+dqi,. - -,q,S1,---,Sm (P,q1s---,9n,S1, ..., Sm areaoms)

fromP: rk(p) > rk(q;), i < n,andrk(p) > rk(s;), j < m.

Let P beastratified normal logic program. We can assign to P amodel Mp™?, called the
perfect model ([ABW88] as presented in [MT93)) as follows: first, split the program P into
theunion of programs P; according totheranksof heads. Let P = |J,,c P, bethisdecompo-
sition. Define M, to betheleast model of P, (notice that according to stratification condition,
Py, if non-empty, must be a Horn program). Next, assuming that M;, i < j, are already com-
puted proceed as follows: for every clause C in P; perform the following reduction. If some
atom p inU;; M; appears negatively in C then eliminate C. If all the atoms appearing nega-
tively in the body of C do not belong to U;; M; then eliminate all these negated atoms. The
resulting reduced program Q; isaHorn program, and M; is defined as the smallest model of
Qj U {a <— rac Ui<j M,}

The following fact is proved by Apt, Blair and Walker (ABW88]):

Theorem 2.1 (Perfect Model M 3™ for Stratified Normal Programs)

If P isa stratified normal logic program, then its perfect model My isa minimal model of
P. Moreover the perfect model of P does not depend on stratification: every stratification of
P generates the same perfect model.

We a so note the following well-known fact, which follows from careful examination of the
construction of perfect model of logic program, as well as construction of the least model of
aHorn program in linear time ([MT93])

Lemma 2.2 (Linear Complexity of the Perfect Model M5"P)
Let P be a stratified normal logic program. Then the perfect model M3'*® of P can be com-
puted in linear time.

3 Reducing Digunctiveto Normal Programs

Our intention is to define a semantics for digunctive programs (or on a certain subclass of
them) with good computational behaviour. Since the perfect model Mp™P? of a stratified nor-
mal program or the wellfounded model of an arbitrary normal program can be computed in
guadratic time (see Lemma 2.2 in Section 2) it is promising to try to reduce a digunctive pro-
gram to a set of (stratified) non-digunctive programs.

We introduce the shifting operations in Subsection 3.1 and define the class of causal pro-
gramswhichisaproper subclassof theclassof al digunctiveprograms. Section 3.2 solvesthe
complexity problem of testing causality: this has been stated as an open problem in [Sch93].



3.1 The Shift-Operation

The important notion to reduce digunctive into non-dig unctive programsis a shift:

Definition 3.1 (Shift, Complete Shift o)

A shift in a digunctive logic program consists in moving a literal of a rule containing more
than one literals in the head from the head to the body and negating it: A shift of “a;” in
a;V...Va, < by,..., by, —cy, ..., ¢ resultsin the clause

aV...Va, < by,...,by,,—a;, —cy,...,Cy.
We call any sequence of shifts o that transform P into a normal programa complete shift.

Clearly, ashift does not change the classical models of arule (viewed as afirst-order for-
mula). If C isadigunctiveruleand C’ theresult of a shift of some atom from the head to the
body, then every model of C isamodel of C' and conversely. But from a negation-as-failure
viewpoint there is obviously a difference between “a v b” and “a < —b”.

Now theidea of reducing disjunctive to non-disjunctive programsisto appply all possible
shifts until a non-digjunctive programsis reached, i.e. to consider complete shifts.

This means that we can associate to any digunctive program P a set of non-disunctive
programs

{P? : o isacomplete shift }.

Of particular importance are those complete shifts that result in stratified programs:

Definition 3.2 (Causal Program)
A digunctive logic programis called causal if it can be transformed by a sequence of shift
operationsto a stratified normal logic program.

There is asimple syntactic condition to ensure causality. Let us define

b(P):= | {a: aanatomsuchthat a or —a € body(C)}
CeP

Then

Lemma 3.3 Let P be a digunctive logic program such that for every head head(C) of a
clause C € P, head(C) \ b(P) # (). Then P iscausal.

Proof: Shift all the elements of b(P) to the bodies. Notice that such elements may appear
in the heads of clauses from P aswell. Our assumption guarantees that after such sequence
of shifts every clause will have at least one atom in the head. Next, order al the elements of
At\b(P)inorder < of typeat most w. Asbefore, |leave at the head of the modified clause only
the atom highest in the ordering <, shifting all the remaining atoms to the body. Now, assign
to every atom the following rank: the elements of b(P) are assigned the rank 0. Similarly,
the atoms which do not appear in the heads of clauses of P are assigned 0 as well. For the
remaining atoms p (these are precisely the atoms appearing in the heads of clauses after the
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initial shift) areassignedtherank n+1 wheren isthe position of p intheordering <. Weclaim
that the resulting program P’ is stratified. Indeed, let C = p < q1,...,Qn, 7S1, .., S DE
aclause of P’. First of al, the atoms q;, i < n must belong to b(P), and therefore they
have rank 0. Hence their rank is smaller than that of p. Concerning the remaining (negated)
literals: they either come from b(P) and then they have the rank 0 (whereas therank of p is
not zero) or they appear in the ordering < before p and so they also have smaller rank. Thus

P’ is stratified. .

We notice that the program constructed in the proof of Lemma 3.3 isin fact hierarchical (see
[LI087]), not only stratified. A specia instance of the previous Lemmaiis that al programs
whose bodies are empty are causal. But not even every positivedisunctive programis causal:

Example 3.4 (A Non-Causal Positive Digjunctive Program)
Let P,,. bethe following digunctive logic program:

Pu.oe: pVq < 1
pVr < q
rvq < p

Then P, isnot causal. Indeed, by symmetry we can shift p in thefirst clause. Thenrk(p) <
rk(q), and rk(r) < rk(q). Thisforces usto select r for the shift in the third clause. This
impliesthat rk(p) = rk(r) and rk(q) < rk(p). Now, in the second clause, neither p nor
r can be shifted to the body, for one of them has to have smaller rank than the other. On the
other hand, every proper subprogram of P, iscausal.

3.2 Testing Causality

In [Sch93], Schaerf asked (in our terminology) to determine the compl exity of testing causal-
ity and of determining tractable subclasses of programs. Theorem 3.5 and Lemma 3.6 are
solutionsto these problems.

Theorem 3.5 (NP-Completeness of Deciding Causality)
Testing whether a positive digjunctive logic programis causal is NP-complete.

Proof: The problemisobviously in NP: if the given disunctivelogic program is stratifiable
we may nondeterministically guess a correct sequence of shiftsand check in polynomial time
by well-known methods that the resulting normal logic program is stratified. NP-hardness
is shown by a polynomial transformation from EXACT HITTING SET, a well-known NP-
complete problem.

AninstanceI of EXACT HITTING SET consists of afinite set S and afamily of subsets
Si,...,S, of S. The question is whether thereexistsaset H C Ssuchthatvi : 1 < i <
n [HNS;| = 1. If suchaset existsitiscalled an exact hittingset of S, ..., S,..

Toeachinstance {S, S;, ..., S, } of EXACT HITTING SET wedefineadisunctivelogic
program DLP(I) asfollows



e Theatomsof DLP(I) are: S U {q}, where q isanew predicate symbol.
e DLP(I) containsfor each S; arule R; of theform: V, .. x < q.
e Inaddition, DLP(I) contains an extrarule R of theform: q < Axcs x-

We claim that
DLP(I) iscausa if and only if the S; have an exact hitting set.

Let us first show the if-direction. Assumethe S,,..., S, have an exact hitting set H.
Transform the digunctive logic program DLP (I) to a normal logic program P’ by shifting
each atom of each rule R, ..., R, not occurring in H to the right (i.e., to the rule body).
First observe that P’ is effectively anormal logic program, since each rule contains only one
atominitshead (because H is an exact hitting set). Now observethat P’ isstratified. Indeed,
none of the negative literals that occur in the rule bodies occurs aso in the rule head; this al-
lows a stratification of two strata: the top stratum consists of H U {q} and the bottom stratum
consists of all other predicate symbols.

Let us now show the only-if direction. Assume DLP (I) iscausal. Then DLP(I) can be
transformed by shift operationsto astratified normal logic program P’. Obviously the special
rule R remains unaffected by the shifts and is therefore also present in P’. Thus P’ is of the
form{R/,...,R,, R} whereR; isthetransformof R; for 1 <i < n. Let H betheset of all
head-atoms of therules R/, ..., R!. Obviously, H is a hitting set of the family S;, ..., Sy,
since H intersectseach S;. Weclamthat H isan exact hittingset of S, ..., S,. Assumeitis
not. Then for some S; it holdsthat |S; N H| > 2, hence, there are at least two different atoms
p andsin HN S;. Thismeansthat during the shift from DLP(I) to P’, at least one of these
atoms, say p, isshifted from the head to the rule body of R;. Hence p occurs negatively inthe
body of R;. By definition of H, however, theremust exist arule R; whosehead isp. Now itis
easy to seethat the existence of thethreerules R;, R}, and R in P’ constitutes a contradiction
to our assumptionthat P’ isstratified. Indeed, from R} we know that for someatom t (namely
the head of R;), we havet > p; from R we further know that q > t, henceit followsq > p.
But from the existence of R; we deduce that p > q, a contradiction. Therefore, H must be
an exact hitting set.

Observe that the constructed program does not contain any negated literal (if written in
implicational form of course). Thisshowsthat NP-completeness of causality-testing holdsfor
the restricted class of positive disunctivelogic programs. Actually, adding negated literalsto

the rule bodies makes things easier because some choices are prohibited. .

If adigunctive logic program has only negated literals in the rule bodies, then causality
can betested in polynomial time. Let ustherefore call simpledisunctivelogic programsthose
disunctivelogic programs whose rule bodies contain only negated literals.

Lemma 3.6 (Polynomial Complexity of Simple Programs)
There is a polynomial time algorithm for testing causality of simple digunctive logic pro-
grams.



Proof: One first showsthe following two claims:

1. If asmple digunctive logic program P is causal, then there must exist an atom p in
somerule head of P such that —p does not occur in any rule body (exploiting the finite-
ness...). Call such an atom atop-atom.

2. If asimple digunctive logic program P contains a top-atom p then it is causal if and
only if the program P’ C P consisting of al rules of P in which p does not occur is
causal.

These clamsimply that a polynomial algorithm for testing the causality of a ssmple disunc-
tivelogic program P iseasily derived by choosing top-atomsof smaller and smaller programs.
If the algorithm ends-up with the empty program then the input-program is causdl; if the al-
gorithm gets stuck because at some level there is no top-atom, then the input-program is not

causal. .

We mention that in recent work of the first author ([BD95b, BD954]) it has been shown
that under any semantics satisfying two simple properties (Partial Evaluation and Elimina-
tion of Tautologies) a program may be transformed in an equivalent simple program. This
transformation itself is, unfortunately, exponential.

4 Weak-WFS, Weak-M3* and their Properties

In this section we first define the notions of causal and weak wellfounded model and consider
their induced entailment relationstruthinall causal (resp. weak wellfounded) model sby com-
paring them with GCWA (Section 4.1). We then determine their complexity (Section 4.2) and
consider in Section 4.3 abstract properties introduced by Dix ([Dix95a, Dix95h]) into logic
programming.

4.1 Definition of Weak-WFS, Weak-M 3

We have associated to every digjunctive program the set of its complete shifts. This givesus
the following

Definition 4.1 (Weak WFS)
The weak-wellfounded semantics of a disjunctive program P is defined as the set of all well-
founded models of all complete shifts of P (we call these models weakly wellfounded:

Weak-WFS(P) = {WFS(P?) : ¢ isacomplete shift of P}.

A literal 1is sceptically entailed via Weak-WFS from P, if it is true in all weakly well-
founded models of P.



We again note that this definition has already be given in [Sch93].

Of course, one can argue that there is no general agreement about the “right” semanticson
the class of all normal programs and that, therefore, WFS is only one among several candi-
dates. Schaerf for example considered in [ Sch93, Sch95] the supported and the stable models
as competing approaches and discussed their induced weak versions for general disjunctive
programs.

We choose here, sincethereisgeneral agreement about the right semanticsfor the class of
stratified normal programs, the causal models as natural candidates:

Definition 4.2 (Weak-M3"*P)

The weak-M3'PP semantics of a digunctive program P is defined as the set of all wellfounded
modelsof all complete shiftsof P that result in stratified normal programs (we call those mod-
elscausal):

Weak-Mp'PP (P) = {WFS(P?) : o isa complete shift of P and P7 is stratified}.
Literal 1 is sceptically entailed by Weak-M3'PP from P, if it istruein all causal models of P.

Hence, we are looking at the possible stratifications of a digunctive logic program and in
thisfashion a digunctive logic program may possess hone, unigue, or several causal models.
The following observations are obvious:

1. Every Horn program P possesses the unique causal model. This model coincides with
the least model Mp of P.

2. Every dratified normal program P possesses its perfect model My as the unique
causal model. The causal semantics therefore extends the stratified semantics.

3. Thedigunctivelogic program {p V q} possessestwo causal models: {p} and {q}.

Let us compare our semantics with the GCWA (introduced by Minker in [Min82]). For
apositive digunctive program P, the GCWA entails al literalstrue in al minimal models of
P. Note that for atoms it makes no difference between considering (classical) entailment or
minimal entailment. Thisisno longer the case for our causal entailment.

Example 4.3 (Minimal vs. Causal Entailment)
Let P. .ot bethefollowing digunctive logic program:

Pcfent - p —
q —
PvqVr

q
b

Clearly, P, ont possessestwo minimal models, one contains both p and g but not r, the other
containsonly r (but neither p nor q). When we look at the stratified programs obtained from
P, ent by shifts, then we see that there is only one such program, in which both p and q are
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shifted to the right. This is because both p and q are in the same stratum, so the shifts of
the third clause must move them both. Therefore only the second of two minimal modelsisa
causal model of P, ¢nt, and so P, Causally entailsr. On the other hand, P, ., does
not minimally entail any atom: GCWA(P)=0.

In the last example the causal semanticsis stronger than GCWA (more literals are derivable).
On the other hand there are non-causal positive programs (see Example 3.4): for such pro-
grams the causal semanticsis not defined but the GCWA is.

This consistency problem obviously does not occur for Weak-WFS. But Weak-WFS has
other shortcomings. We consider the program P, consisting of “a vV b” and P, obtained from
P, by adding“aVvbVc”. Theweak-wellfounded semanticsof P, consistsof thetwo minimal
models {a} and {b} and therefore coincides with GCWA. The weak-wellfounded semantics
of P, consists not only of the two two-valued models {a}, {b} but it also contains the three-
valued model ((; {c}) where —c istrueand both a and b are undefined. It istherefore weaker
than GCWA. In fact, we cannot even derive a vV b! We have the following easy observations:

Lemma 4.4 (Relationship of Weak-WFS, Weak-M "™ and GCWA)
a) If P ispositive causal: sceptical causal-entailment is stronger than sceptical GCWA.
b) If P ispositive: sceptical GCWA is stronger than sceptical weak-WFS-entail ment.
c) If P iscausal: sceptical causal-ent. isstronger than sceptical Weak-WFS-ent.
L et us define another interesting class of programs:

Definition 4.5 (Strongly Causal Programs)
A digunctive program s called strongly causal if every complete shift resultsin a stratified
normal program.

It is immediate that Weak-WFS and Weak-M3'PP coincide for al strongly causal pro-
grams, because WFS extends the stratified semantics M3'PP and Weak-M3'PP is consistent
on thisclass.

The main reason for the difference of GCWA and the causal or the weak-wellfounded se-
manticsis their complexity: while GCWA is I1¥-complete ([CS90, EG93]), both causal and
weak-welIfounded entailment are located one level below in the polynomial hierarchy aswe
will show in the next section.

4.2 Complexity of the Entailment Problem

In the previous section we introduced causal and weakly-wellfounded entail ment and noticed
that these notions, even for atoms, are different from the usual entailment defined by GCWA.
We also determined in Section 3.2 the complexity of the existence of a causal model. In this
section we use these results to analyze the complexity of causal entailment for positive pro-
grams. A different proof will show that thiscomplexity isidentical to the complexity of causal
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entailment for the class of strongly causal programs. Therefore (since weakly-wellfounded
and causal models coincide for strongly causal programs) we get the same complexity for
Weak-WFS and Weak-Mp'"P.

LetusdefineP ~*¢1(“1followsscepticallyfromP”) to denotethat listruein every causal
model of theory P. Similarly P ~“"1 (“1 follows credulously from P”) denotes that 1 istrue
in some causal model of P.

Theorem 4.6 (Complexity of Causal Entailment for Positive Programs)

a) Determining whether “P ~*¢1" is a co-NP-complete problem even for positive pro-
grams P and 1 being atoms.

b) Determining whether P ~“"1 is an NP-complete problem even for positive programs
P and 1 being atoms.

Proof: First, we need to provethat the problem complementary to our problemisinthe class
NP and that our problem is co-NP-hard.

1. Totest that P ~*“1 can be donein NP timeis done as follows: first we guess a strat-
ification for P. Next, using Lemma 2.2 we compute the corresponding causal model.
Finally we check that the constructed causal model of P does not satisfy 1.

2. " P r*¢a for some atom a not occurring in P” is equivalent to the fact that P is not
causal. Hencethereisatrivial polynomial reduction from the problem complementary
to causality testing to testing of P ~*¢ 1. Thus, by Theorem 3.5 our problemis co-NP-
hard.

Second, we need to prove that our problem belongs to the class NP and that it is NP-hard.

1. Toestablishthat our problemisinthe classINP we proceed as above. We guess a strat-
ification of P, compute the corresponding causal model of P and then check that that
model satisfies1. Thisis, of course, donein polynomial time.

2. Now, itisclear that P possesses a causal modél if and only if “P ~“" a for some atom
occurringin P”. Thuswe get atrivial reduction of the stratifiability problemto the ~*
entailment problem. This, by Proposition 3.5 impliesthat our problem is NP-hard.

The next theorem proves the same result for the class of strongly causal programs. Note
that the proof iscompletely different from the previous one, becauseit is based on areduction
to 3-SAT.

Theorem 4.7 (Complexity of Causal Entailment for Strongly Causal Programs)

a) Determining whether P ~*°1 is a co-NP-complete problem even for strongly causal
programs P and 1 being atoms.
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b) Determiningwhether P ~“" 1isan NP-complete problem even for strongly causal pro-
grams P and 1 being atoms.

Proof: Inview of the proof of Theorem 4.6 we will only show that the problem “P ~*¢ a”
is co-NP-complete because Membership in co-NP (as well as membership of the credulous
versionin NP) isimmediate. In fact, we show that there is a polynomial transformation from
the complement of 3-SAT to this problem.

Aninstancel of 3-SAT consistsof aclauseset Cy, . . ., C,,, over asetof variables{p;, ..., pn}
such that each C; contains at most 3 literals. The question is whether there is an assignment
of the variables such that the whole clause set is satisfiable.

For each instance I of 3-SAT we construct a strongly causal digjunctive logic program
DLP(I) asfollows:

e The2n + 1 atomsof DLP(I) arepy,...,Pn, not_py, ..., n0t_p,, anew-
e DLP(I) containsfor each 1 < i < n therule: p; V not_p; + .

e Inaddition DLP(I) containsthe m rules
Apew < f(l]), f(lg), f(13)

where C = {l;, 15,13} isone of the m clausesin I. Here we denote by f the function
definedon {p1,...,Pn, 7P1,--., Pn} DY

(

P if x = —py,

. pn If X = _‘pn)
fx) := not_p; ifx=p,

not_p, Iifx=p,,

We claim that
Lisunsatisfiable if and only if Weak-M5™*?(DLP(I)) E anew-

First we show that DLP(I) is strongly causal. It suffices to consider only the rules p; v
not_p; «+ becauseall other rulesareaready stratified. But any shift ontheserulesdetermines
astratification (with 2 strata): if p; isshifted then not_p; isin the higher stratum and p; will
be false and not _p; be true in the corresponding model. If not_p; is shifted then p; isin the
higher stratum and not_p; will be false and p; be true in the corresponding model. Thus any
complete shift resultsin a stratified normal program with exactly 2 strata. The bottom stratum
contains all p; that are false and &l not_p; such that p; istrue. The top stratum contains all
other atoms.
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Therefore any complete shift of the program DLP (I) corresponds to a variable assign-
ment to {p1, ..., pn} and vice versa. The atlom a,e iStruein Mp:F? if and only if one of
the clauses apew < f(1;), f(12), f(13) has been applied, i.e. if the complete shift o induced a
variable assignment which falsified the corresponding clause {1;, 1,, 15} of I.

Corollary 4.8 (Complexity of Weak-WFS)

Credul ous entailment for Weak-WFSis NP-complete, even for strongly causal programsand
deriving atoms. Consequently, sceptical entailment for Weak-WFSis co-INP-completefor the
same class of programs.

4.3 Abstract Properties

In [Dix95a, Dix95b] thefirst author adapted various abstract conditions known in the context
of general nonmonotonic reasoning to logic programming semantics. It was argued that the
properties of Cumulativity and Rationality

Cumulativity: If P ~*¢athen: P ~*¢1if and only if P U {a} ~*°L.
Rationality: If not P ~*¢ —a then: P ~*“1impliesP U {a} ~*“L.

(originally introduced by Gabbay and Makinson for general nonmonotonic theories) are con-
nected with the complexity of a semantics. This was supported by two famous examples:
the wellfounded semantics WFS and the WGCWA. Both are cumulative and rational [Dix91,
Dix92b] and have alower complexity thantheir non-rational “ competitors” STABLE and GCWA:

e While WFS s polynomia (thiswas already cited in Section 2), STABLE is at the first
level of the polynomial hierarchy ([MT91]),

e While WGCWA is at the first level, GCWA is at the second level of the polynomial
hierarchy ([CS90]).

In addition, Fernandez defined in [Fer93] a semantics WICWA for general disunctive pro-
grams which he claims to be cumulative and rational. He showed that WICWA is of lower
complexity than PERFECT (which extends GCWA and is not rational). The same holdsif we
compare our causal and weak-wellfounded semantics with GCWA: we have already shown
that they have lower complexity. Indeed, they are cumulative but not rational:

Theorem 4.9 (Cumulativity for Weak-WFS and Weak-M"™")
Sceptical entailment ~*¢ of both Weak-WFS and Weak-M3™*? is cumulative. Neither of the
two semanticsisrational.

Proof: The proof isvery similar for both semantics. We show it first for Weak-WFS. Note
that for any complete shift o
P?U{a} = (PU{a})

13



and therefore, by cumulativity of WFS (see [Dix954]), if WFS(P?) |= a then
WFS((P U {a})?) = WFS(P? U {a}) = WFS(P?).

Now suppose a istruein al weakly wellfounded models of P, i.e. in all WFS(P?) where o
isacomplete shift. By the last identity we have that WFS(P?) = WFS((P U {a})?) so that
aso the set of al literals true in the intersection of all WFS(P?) coincides with the set of all
literals true in the intersection of all WFS((P U {a})?). Thisis exactly the cumulativity of
Weak-WFS.

Obviously, the same proof works aso for Weak-Mp'P?, because the addition of an atom
a has no effect on the stratification.

The counterexample against rationality isthe following

Prat eVl «
a — —f
X <— a, e

Note that only one complete shift o¢ (the one shifting f) results in a program whose well-
founded model contains a. In this model, —x is also contained. The wellfounded model of
the other complete shift o, contains —a and also —x. Therefore —x is weakly wellfounded
derivable from P, but —a isnot. Adding a however to the program P, resultsin awell-
founded model that derives x: WFS(Ps, U {a}) = x. This counterexample also appliesto

Weak-Mp'PP because all programs are stratified. .

Thisshowsthat the original claim from thefirst author, namely that cumulativity and rational-
ity of a semantics might have a strong relation on the complexity is not true. Our semantics
have a good complexity even without being rational. Another counterexample is the seman-
tics WFSc of Schlipf ([Sch92b]), which is equivalent to WFS*t ([Dix95a]): WFS is of the
same (high) complexity as STABLE (for normal programs) but it is cumulative and rational .

We end this section with some comments about consistency. The inconsistency of the sta-
ble semantics is not the only shortcoming. In fact, often when asking a query to a program
under asemanticsit would be nice when the answer only depends on that part of the program,
where the query depends on, i.e. the subset of rules determined by the call-graph below the
guery. This property has been called Relevance and was introduced in [Dix92a]. In [BD95a]
this was extended to disunctive programs and shown that it implies the following property,
called Independence

SEM(P) = ¢ < SEM(PUP') = ¢,

provided that the predicates occurring in P and P’ are digjoint, and ¢ contains only predicates
from P. Independence in turn implies Consistency. Another property satisfied by most se-
manticsisthe Elimination of Tautologies: the semanticsof aprogram does not change, if rules
that contain an atom a at the same in their head and in their body can be eliminated without
changing the semantics of the program.

It istherefore natural to ask how our semantics behave in view of these properties.

14



Lemma4.10 (More Abstract Properties)

a) Elimination of Tautologies holds for Weak-Mp ™ on the class of causal programs and
for Weak-WFS on the class of strongly causal programs.

b) Relevance holds for Weak-WFSin general as well as for Weak-M3'*P for causal pro-
grams.

The reason that Elimination of Tautologies does not hold in general for Weak-Mp'*? is that
this transformation may transform anon-causal to acausal program. Concerning Weak-WFS
notethat it derives from the program consisting of “a Vv p < p” and“p «+ —p” neither p nor
a nor their negations. But if thefirst clause is eliminated, —a wis derivable.

Note a so that Relevance does not hold for STABLE even on the class of programs where
STABLE isconsistent.

5 Relation to other approaches

We already mentioned Schaerf who also considered recently ([ Sch93, Sch95]) the technique
of shifting adigunctive program into anormal one. The semanticsthat isclosest to our Weak-
M%PP is his Weak-SUPPORTED semantics, where he considers all supported models of all
complete shifts, whereas we are only considering those complete shiftsthat result in stratified
programs (and we only take the unique perfect model).

Therefore even for stratified programs his semantics Weak-SUPPORTED isdifferent from
ours. The complexity of his semantics, however, isidentical to ours.

Another approach is due to R. Ben-Eliyahu and R. Dechter [BED92]. They tried to find
classes of programs where the complexity of the stable semantics is low. They defined the
class of head-cycle-free programs and proved that the entailment relation (“truth in all stable
models’) is co-NP-complete for this class. A program is head-cycle-free, if any two literals
that occur in the same head do not depend positively on each other. Here “ A depends pos-
itively on B” is the transitive closure of “ A depends immediately positively on B” (which
means that thereisarule C containing A in its head and B positively in its body). Note that
in this definition negative dependencies are ignored.

Asanexample“A v B «+ A, B” isnot head-cycle-freewhile“A < —A” is. Therfore
the classes of head-cycle-free programs and of causal programs are incomparable. But for
positive programs we have:

Lemmab5.1 Theclassof positive causal programsstrictly includesthe class of positive head-
cycle free clauses.

Therefore our semantics can be seen as an extension of the class of positive head-cycle free
clauses retaining the attractive low complexity. But obviously both semantics are different
even onthesmallest class of head-cyclefree programs. Thisisbecause causal semanticsrelies
on perfect models while Ben-Eliyahu and Dechter’s semantics is based on stable models.
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We also notethat causal entailment is stronger than stable entailment (this was pointed out
by Piero Bonatti):

Lemmab5.2 Every causal model of P is also a digunctive stable model of P.

The reason is that every causal model M of P isalso aminima model of PM, the Gelfond-
Lifschitz transform of P with respect to M. By definition, the minimal models M of PM (a
positive program) are exactly the stable models of P.

6 Conclusions

We found that some propositional theories S (we termed them causal) carry with them one or
more computational procedures which determine the order of construction of atomsin some
model of S. Once such aprocedure isknown, we can construct thismodel in polynomial time.
We showed that the problem of existence of such order isitself NP-complete, thereby solving
a problem recently raised by Schaerf.

We defined causal model sand investigated theinduced entailment rel ation aswel | as\Weak-
WEFS. Causal entailment is different from all other semantics proposed in the literatureand is
of low complexity. In addition these semantics behave in anice way: sceptical entailment is
cumulative and, on certain classes of programs, it also satisfies Relevance and Elimination of
Tautologies.

We gave simple syntactic conditions on the program that ensure the existence of causa
models. In general, the problem of existence of a causal model is as complex as the satisfi-
ability problem. We find a class of programs for which we can test the existence of a causal
model in polynomial time.

We also compared our approach to work of Ben-Eliyahu/Dechter and Schaerf.

Again our main contribution is to consider a disunctive program as a representation of a
set of computational procedures, which are at most quadratic. The overall complexity of the
sceptical or credulous entailment-problem is on thefirst level of the polynomial hierarchy.
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