
Reducing Disjunctive to Non-Disjunctive
Semantics by Shift-Operations�

Jürgen Dix
University of Koblenz-Landau,

Dept. of Computer Science,
Rheinau 1, 56075 Koblenz, Germany

Georg Gottlob
University of Vienna,

Institut für Informationssysteme,
Paniglgasse 14, 1040 Wien, Austria

V. Wiktor Marek
University of Kentucky,

Dept. of Computer Science,
Lexington, KY 40506, USA

To the memories of Helena Rasiowa
and Cecylia Rauszer

Abstract

It is wellknown that Minker’s semantics GCWA for positive disjunctive programs P is�P2 -complete , i.e. to decide if a literal is true in all minimal models of P. This is in
contrast to the same entailment problem for semantics of non-disjunctive programs such
as STABLE and SUPPORTED (both are co-NP-complete) as well as MsuppP and WFS
(that are even polynomial).

Recently, the idea of reducing disjunctive to non-disjunctive programs by using so
called shift-operations was introduced independently by the authors and Marco Schaerf.
In fact, Schaerf associated to each semantics SEM for normal programs a corresponding
semantics Weak-SEM for disjunctive programs and asked for the properties of these weak
semantics, in particular for the complexity of their entailment relations. While Schaerf
concentrated on Weak-STABLE and Weak-SUPPORTED, we investigate the weak ver-
sions of Apt, Blair, and Walker’s stratified semantics MsuppP and of Van Gelder, Ross, and
Schlipf’s wellfounded semantics WFS.

We show that credulous entailment for both semantics is NP-complete (consequently,
sceptical entailment is co-NP–complete). Thus, unlike GCWA, the complexity of these�This paper is a revised and extended version of [DGM94] which has been presented at ICLP ’94.

semantics belongs to the first level of the polynomial hierarchy. Note that, unlike Weak-
WFS, the semantics Weak-MsuppP is not always defined: testing consistency of Weak-
MsuppP is also NP–complete.

We also show that Weak-WFS and Weak-MsuppP are cumulative (but not rational) and
that, in addition, Weak-WFS satisfies some of the well-behaved principles introduced by
Dix.

1 Introduction

One is often tempted to consider as desired models of a theory T only intended models. But
what is an intended model? Clearly, such model depends on the possible applications that the
programmer has in mind while writing a theory. Various intentions lead to different results.
For instance, the analysis of the frame problem leads to the acceptance of minimal models as
the class of desired models and, subsequently to the notion of circumscription ([McC80]). The
analysis of closed systems of beliefs leads to the acceptance of supported models of programs
([Cla78, MT93]).

In this paper we are looking at logical theories (described by means of a disjunctive pro-
gram, possibly with negation in the body) as expressing a possible causal relationship between
various atoms of the underlying language. Moreover we want to express the interpretation of
negation as negation by failure to prove. The idea is that when we observe a state of affairs,
we write a program describing it, and we want to find the possible ways of causal interplay of
atoms.

We consider a general reduction method to associate to any disjunctive programP a set of
normal programs. Given a semantics SEM for non-disjunctive programs, we assign to a dis-
junctive program P all SEM-models of the normal programs Pshift1 , : : : , Pshiftn . These pro-
grams are obtained fromP by a series of shift-operations which move atoms from the head to
the body (and negate them). The procedure is unidirectional – we cannot move a literal from
the body to the head. Therefore we can keep an additional control over the way the causal
models are produced – if we want an atom not to depend on other atoms we can move it to the
body (provided it appears in a head consisting of a proper disjunction). The resulting seman-
tics is called Weak-SEM. This approach has also been followed be Schaerf in [Sch93, Sch95]
and by Bonatti in an even more general context ([Bon93]).

Thus our idea is that some theories carry in their syntactic form one or more computational
procedures that can be associated with that theory. In this we are taking a position similar
to that of [ABW88, Prz88, vGRS91]. While Schaerf considered Weak-STABLE and Weak-
Supported, we investigate in this paper the two semantics� Weak-MsuppP , and� Weak-WFS.

Results about properties of Weak-MsuppP have been already given in [DGM94]. These results
are now extended to Weak-WFS and more properties of these semantics are investigated.

2

Weak-MsuppP essentially gives a stratified interpretation to causality. That is, when a pro-
gram is stratified, it imposes on atoms of the underlying language an ordering; some atoms
are decided earlier than other atoms. Such ordering, together with the program itself leads to
the unique model which can be viewed as a description of the causal relationship. The way it
went in the earlier strata (together with the program) determines the way the matters stand in
the next stratum. A theory (that is a disjunctive program) may or may not admit a transforma-
tion to a stratified logic program. Weak-MsuppP is only defined for theories which admit such
representation. Like in the case of stratified normal programs, theories logically equivalent
may be different from the point of view of causality. Weak-MsuppP has as intended models the
set of all perfect models of all stratified shifts of P.

Weak-WFS is based on the wellfounded semantics WFS and associates to any programP the entire collection of shifts of P, no matter whether they are stratified or not. Unlike the
MsuppP semantics, WFS is always defined and therefore no restriction is needed. Weak-WFS
declares as intended models the set of all wellfounded models of all shifts of P

To summarize, our overall idea is that a disjunctive program can be seen as a representation
of a set of computational procedures, each of which has a very low complexity: linear in the
case of Weak-MsuppP , quadratic in the case of Weak-WFS. The only expensive procedures are
the shift-operations which transform a disjunctive program in a set of nondisjunctive ones. But
even then, we stay on the first level of the polynomial hierarchy.

The paper is organized as follows. Section 2 contains some terminology used throughout
the paper, the definition of the perfect model for stratified non-disjunctive programs and its
complexity. In Section 3 we introduce the shifting-operations and define the class of causal
programs. This is the class where Weak-MsuppP is consistent. Its NP-completeness is shown
and a smaller class, simple disjunctive programs, is shown to be polynomial. In Section 4 we
formally define Weak-WFS, Weak-MsuppP and investigate their relationship with GCWA. We
also determine the complexity of their induced entailment relations and show some interesting
abstract properties of them. Section 5 compares our work to the approach of Schaerf, Bonatti
and Ben-Eliyahu/Dechter. We end in Section 6 with some conclusions.

2 Preliminaries

A disjunctive rule is a formula a1 _ : : : _ an b1; : : : ;bm;:c1; : : : ;:cl, where n � 1, m;l � 0 and ai;bi; ci are arbitrary propositional atoms. As usual, the comma represents con-
junction. We call such a rule positive if l = 0, normal if n = 1. One can think of a rule C
as a pair of sets hhead(C);body(C)i, where head(C) = fa1; : : : ; ang and body(C) =fb1; : : : ;bm;:c1; : : : ;:clg.

A disjunctive logic program is a set of disjunctive rules: it straightforwardly inherits the
typology of rules. A normal logic program is often also called general logic program. The
Herbrand base induced by a program P is denoted BP.

Here we only deal with finite disjunctive logic programs. Since all the clauses of a disjunc-
tive program have non-empty heads, a disjunctive logic program is always consistent (viewed

3

as a first-order theory).
We say that a normal programP is stratified if there exists a rank function rk, rk : At!IN such that for every ruleC = p q1; : : : ;qn;:s1; : : : ;:sm (p;q1; : : : ;qn; s1; : : : ; sm are atoms)

from P: rk(p) � rk(qi); i � n, and rk(p) > rk(sj); j �m.
LetP be a stratified normal logic program. We can assign toP a model MsuppP , called the

perfect model ([ABW88] as presented in [MT93]) as follows: first, split the program P into
the union of programsPi according to the ranks of heads. LetP = Sn2INPn be this decompo-
sition. DefineM0 to be the least model ofP0 (notice that according to stratification condition,P0, if non-empty, must be a Horn program). Next, assuming that Mi; i < j, are already com-
puted proceed as follows: for every clause C in Pj perform the following reduction. If some
atom p in

Si<jMi appears negatively inC then eliminateC. If all the atoms appearing nega-
tively in the body of C do not belong to

Si<jMi then eliminate all these negated atoms. The
resulting reduced program Qj is a Horn program, and Mj is defined as the smallest model ofQj [fa : a 2 Si<jMig.

The following fact is proved by Apt, Blair and Walker ([ABW88]):

Theorem 2.1 (Perfect Model Msupp
P for Stratified Normal Programs)

If P is a stratified normal logic program, then its perfect model MsuppP is a minimal model ofP. Moreover the perfect model of P does not depend on stratification: every stratification ofP generates the same perfect model.

We also note the following well-known fact, which follows from careful examination of the
construction of perfect model of logic program, as well as construction of the least model of
a Horn program in linear time ([MT93])

Lemma 2.2 (Linear Complexity of the Perfect Model Msupp
P)

Let P be a stratified normal logic program. Then the perfect model MsuppP of P can be com-
puted in linear time.

3 Reducing Disjunctive to Normal Programs

Our intention is to define a semantics for disjunctive programs (or on a certain subclass of
them) with good computational behaviour. Since the perfect model MsuppP of a stratified nor-
mal program or the wellfounded model of an arbitrary normal program can be computed in
quadratic time (see Lemma 2.2 in Section 2) it is promising to try to reduce a disjunctive pro-
gram to a set of (stratified) non-disjunctive programs.

We introduce the shifting operations in Subsection 3.1 and define the class of causal pro-
grams which is a proper subclass of the class of all disjunctive programs. Section 3.2 solves the
complexity problem of testing causality: this has been stated as an open problem in [Sch93].

4

3.1 The Shift-Operation

The important notion to reduce disjunctive into non-disjunctive programs is a shift:

Definition 3.1 (Shift, Complete Shift �)
A shift in a disjunctive logic program consists in moving a literal of a rule containing more
than one literals in the head from the head to the body and negating it: A shift of “a1” ina1 _ : : : _ an b1; : : : ;bm;:c1; : : : ;:cl results in the clausea2 _ : : : _ an b1; : : : ;bm;:a1;:c1; : : : ;:cl.

We call any sequence of shifts � that transformP into a normal program a complete shift.

Clearly, a shift does not change the classical models of a rule (viewed as a first-order for-
mula). If C is a disjunctive rule and C0 the result of a shift of some atom from the head to the
body, then every model of C is a model of C0 and conversely. But from a negation-as-failure
viewpoint there is obviously a difference between “a _ b” and “a :b”.

Now the idea of reducing disjunctive to non-disjunctive programs is to appply all possible
shifts until a non-disjunctive programs is reached, i.e. to consider complete shifts.

This means that we can associate to any disjunctive program P a set of non-disjunctive
programs fP� : � is a complete shift g:

Of particular importance are those complete shifts that result in stratified programs:

Definition 3.2 (Causal Program)
A disjunctive logic program is called causal if it can be transformed by a sequence of shift
operations to a stratified normal logic program.

There is a simple syntactic condition to ensure causality. Let us defineb(P) := [C2Pfa : a an atom such that a or :a 2 body(C)g
Then

Lemma 3.3 Let P be a disjunctive logic program such that for every head head(C) of a
clause C 2 P, head(C) n b(P) 6= ;. Then P is causal.

Proof: Shift all the elements of b(P) to the bodies. Notice that such elements may appear
in the heads of clauses from P as well. Our assumption guarantees that after such sequence
of shifts every clause will have at least one atom in the head. Next, order all the elements ofAtnb(P) in order� of type at most!. As before, leave at the head of the modified clause only
the atom highest in the ordering �, shifting all the remaining atoms to the body. Now, assign
to every atom the following rank: the elements of b(P) are assigned the rank 0. Similarly,
the atoms which do not appear in the heads of clauses of P are assigned 0 as well. For the
remaining atoms p (these are precisely the atoms appearing in the heads of clauses after the

5

initial shift) are assigned the rankn+1wheren is the position ofp in the ordering�. We claim
that the resulting program P0 is stratified. Indeed, let C = p q1; : : : ;qn;:s1; : : : ;:sm be
a clause of P0. First of all, the atoms qi, i � n must belong to b(P), and therefore they
have rank 0. Hence their rank is smaller than that of p. Concerning the remaining (negated)
literals: they either come from b(P) and then they have the rank 0 (whereas the rank of p is
not zero) or they appear in the ordering � before p and so they also have smaller rank. ThusP0 is stratified.

We notice that the program constructed in the proof of Lemma 3.3 is in fact hierarchical (see
[Llo87]), not only stratified. A special instance of the previous Lemma is that all programs
whose bodies are empty are causal. But not even every positive disjunctive program is causal:

Example 3.4 (A Non-Causal Positive Disjunctive Program)
Let Pnc be the following disjunctive logic program:Pnc : p _ q rp _ r qr _ q p
Then Pnc is not causal. Indeed, by symmetry we can shift p in the first clause. Then rk(p) <rk(q), and rk(r) � rk(q). This forces us to select r for the shift in the third clause. This
implies that rk(p) = rk(r) and rk(q) < rk(p). Now, in the second clause, neither p norr can be shifted to the body, for one of them has to have smaller rank than the other. On the
other hand, every proper subprogram of Pnc is causal.

3.2 Testing Causality

In [Sch93], Schaerf asked (in our terminology) to determine the complexity of testing causal-
ity and of determining tractable subclasses of programs. Theorem 3.5 and Lemma 3.6 are
solutions to these problems.

Theorem 3.5 (NP-Completeness of Deciding Causality)
Testing whether a positive disjunctive logic program is causal is NP-complete.

Proof: The problem is obviously in NP: if the given disjunctive logic program is stratifiable
we may nondeterministically guess a correct sequence of shifts and check in polynomial time
by well-known methods that the resulting normal logic program is stratified. NP-hardness
is shown by a polynomial transformation from EXACT HITTING SET, a well-known NP-
complete problem.

An instance I of EXACT HITTING SET consists of a finite set S and a family of subsetsS1; : : : ;Sn of S. The question is whether there exists a set H � S such that 8i : 1 � i �n jH \ Sij = 1. If such a set exists it is called an exact hitting set of S1; : : : ;Sn.
To each instance fS;S1; : : : ;Sng of EXACT HITTING SET we define a disjunctive logic

program DLP(I) as follows

6

� The atoms of DLP(I) are: S [fqg, where q is a new predicate symbol.� DLP(I) contains for each Si a rule Ri of the form:
Wx2Si x q:� In addition, DLP(I) contains an extra rule R of the form: q Vx2S x:

We claim thatDLP(I) is causal if and only if the Si have an exact hitting set.

Let us first show the if-direction. Assume the S1; : : : ;Sn have an exact hitting set H.
Transform the disjunctive logic program DLP(I) to a normal logic program P0 by shifting
each atom of each rule R1; : : : ;Rn not occurring in H to the right (i.e., to the rule body).
First observe that P0 is effectively a normal logic program, since each rule contains only one
atom in its head (because H is an exact hitting set). Now observe thatP0 is stratified. Indeed,
none of the negative literals that occur in the rule bodies occurs also in the rule head; this al-
lows a stratification of two strata: the top stratum consists ofH[fqg and the bottom stratum
consists of all other predicate symbols.

Let us now show the only-if direction. Assume DLP(I) is causal. Then DLP(I) can be
transformed by shift operations to a stratified normal logic programP0. Obviously the special
rule R remains unaffected by the shifts and is therefore also present in P0. Thus P0 is of the
form fR01; : : : ;R0n;Rg whereR0i is the transform of Ri for 1 � i � n. LetH be the set of all
head-atoms of the rules R01; : : : ;R0n. Obviously, H is a hitting set of the family S1; : : : ;Sn,
sinceH intersects each Si. We claim thatH is an exact hitting set of S1; : : : ;Sn. Assume it is
not. Then for some Si it holds that jSi \Hj � 2, hence, there are at least two different atomsp and s in H \ Si. This means that during the shift from DLP(I) to P0, at least one of these
atoms, say p, is shifted from the head to the rule body ofRi. Hence p occurs negatively in the
body ofR0i. By definition ofH, however, there must exist a ruleR0j whose head isp. Now it is
easy to see that the existence of the three rulesR0i;R0j, andR inP0 constitutes a contradiction
to our assumption thatP0 is stratified. Indeed, fromR0i we know that for some atom t (namely
the head of R0i), we have t > p; from R we further know that q � t, hence it follows q > p.
But from the existence of R0j we deduce that p � q, a contradiction. Therefore, H must be
an exact hitting set.

Observe that the constructed program does not contain any negated literal (if written in
implicational form of course). This shows that NP-completeness of causality-testing holds for
the restricted class of positive disjunctive logic programs. Actually, adding negated literals to
the rule bodies makes things easier because some choices are prohibited.

If a disjunctive logic program has only negated literals in the rule bodies, then causality
can be tested in polynomial time. Let us therefore call simple disjunctive logic programs those
disjunctive logic programs whose rule bodies contain only negated literals.

Lemma 3.6 (Polynomial Complexity of Simple Programs)
There is a polynomial time algorithm for testing causality of simple disjunctive logic pro-
grams.

7

Proof: One first shows the following two claims:

1. If a simple disjunctive logic program P is causal, then there must exist an atom p in
some rule head ofP such that :p does not occur in any rule body (exploiting the finite-
ness : : :). Call such an atom a top-atom.

2. If a simple disjunctive logic program P contains a top-atom p then it is causal if and
only if the program P0 � P consisting of all rules of P in which p does not occur is
causal.

These claims imply that a polynomial algorithm for testing the causality of a simple disjunc-
tive logic programP is easily derived by choosing top-atoms of smaller and smaller programs.
If the algorithm ends-up with the empty program then the input-program is causal; if the al-
gorithm gets stuck because at some level there is no top-atom, then the input-program is not
causal.

We mention that in recent work of the first author ([BD95b, BD95a]) it has been shown
that under any semantics satisfying two simple properties (Partial Evaluation and Elimina-
tion of Tautologies) a program may be transformed in an equivalent simple program. This
transformation itself is, unfortunately, exponential.

4 Weak-WFS, Weak-Msupp
P and their Properties

In this section we first define the notions of causal and weak wellfounded model and consider
their induced entailment relations truth in all causal (resp. weak wellfounded) models by com-
paring them with GCWA (Section 4.1). We then determine their complexity (Section 4.2) and
consider in Section 4.3 abstract properties introduced by Dix ([Dix95a, Dix95b]) into logic
programming.

4.1 Definition of Weak-WFS, Weak-Msupp
P

We have associated to every disjunctive program the set of its complete shifts. This gives us
the following

Definition 4.1 (Weak WFS)
The weak-wellfounded semantics of a disjunctive program P is defined as the set of all well-
founded models of all complete shifts of P (we call these models weakly wellfounded:

Weak-WFS(P) = fWFS(P�) : � is a complete shift of Pg:
A literal l is sceptically entailed via Weak-WFS from P, if it is true in all weakly well-

founded models of P.

8

We again note that this definition has already be given in [Sch93].
Of course, one can argue that there is no general agreement about the “right” semantics on

the class of all normal programs and that, therefore, WFS is only one among several candi-
dates. Schaerf for example considered in [Sch93, Sch95] the supported and the stable models
as competing approaches and discussed their induced weak versions for general disjunctive
programs.

We choose here, since there is general agreement about the right semantics for the class of
stratified normal programs, the causal models as natural candidates:

Definition 4.2 (Weak-Msupp
P)

The weak-MsuppP semantics of a disjunctive programP is defined as the set of all wellfounded
models of all complete shifts ofP that result in stratified normal programs (we call those mod-
els causal):

Weak-MsuppP (P) = fWFS(P�) : � is a complete shift of P and P� is stratifiedg:
Literal l is sceptically entailed by Weak-MsuppP from P, if it is true in all causal models of P.

Hence, we are looking at the possible stratifications of a disjunctive logic program and in
this fashion a disjunctive logic program may possess none, unique, or several causal models.
The following observations are obvious:

1. Every Horn program P possesses the unique causal model. This model coincides with
the least model MP of P.

2. Every stratified normal program P possesses its perfect model MsuppP as the unique
causal model. The causal semantics therefore extends the stratified semantics.

3. The disjunctive logic program fp _ qg possesses two causal models: fpg and fqg.
Let us compare our semantics with the GCWA (introduced by Minker in [Min82]). For

a positive disjunctive program P, the GCWA entails all literals true in all minimal models ofP. Note that for atoms it makes no difference between considering (classical) entailment or
minimal entailment. This is no longer the case for our causal entailment.

Example 4.3 (Minimal vs. Causal Entailment)
Let Pc�ent be the following disjunctive logic program:Pc�ent : p qq pp _ q _ r
Clearly,Pc�ent possesses two minimal models, one contains both p and q but not r, the other
contains only r (but neither p nor q). When we look at the stratified programs obtained fromPc�ent by shifts, then we see that there is only one such program, in which both p and q are

9

shifted to the right. This is because both p and q are in the same stratum, so the shifts of
the third clause must move them both. Therefore only the second of two minimal models is a
causal model of Pc�ent, and so Pc�ent causally entails r. On the other hand, Pc�ent does
not minimally entail any atom: GCWA(P)=;.
In the last example the causal semantics is stronger than GCWA (more literals are derivable).
On the other hand there are non-causal positive programs (see Example 3.4): for such pro-
grams the causal semantics is not defined but the GCWA is.

This consistency problem obviously does not occur for Weak-WFS. But Weak-WFS has
other shortcomings. We consider the programP1 consisting of “a_b” andP2 obtained fromP1 by adding “a_b_c”. The weak-wellfounded semantics ofP1 consists of the two minimal
models fag and fbg and therefore coincides with GCWA. The weak-wellfounded semantics
of P2 consists not only of the two two-valued models fag, fbg but it also contains the three-
valued model h;; fcgiwhere :c is true and both a and b are undefined. It is therefore weaker
than GCWA. In fact, we cannot even derive a_b! We have the following easy observations:

Lemma 4.4 (Relationship of Weak-WFS, Weak-Msupp
P and GCWA)

a) If P is positive causal: sceptical causal-entailment is stronger than sceptical GCWA.

b) If P is positive: sceptical GCWA is stronger than sceptical weak-WFS-entailment.

c) If P is causal: sceptical causal-ent. is stronger than sceptical Weak-WFS-ent.

Let us define another interesting class of programs:

Definition 4.5 (Strongly Causal Programs)
A disjunctive program is called strongly causal if every complete shift results in a stratified
normal program.

It is immediate that Weak-WFS and Weak-MsuppP coincide for all strongly causal pro-
grams, because WFS extends the stratified semantics MsuppP and Weak-MsuppP is consistent
on this class.

The main reason for the difference of GCWA and the causal or the weak-wellfounded se-
mantics is their complexity: while GCWA is �P2 -complete ([CS90, EG93]), both causal and
weak-wellfounded entailment are located one level below in the polynomial hierarchy as we
will show in the next section.

4.2 Complexity of the Entailment Problem

In the previous section we introduced causal and weakly-wellfounded entailment and noticed
that these notions, even for atoms, are different from the usual entailment defined by GCWA.
We also determined in Section 3.2 the complexity of the existence of a causal model. In this
section we use these results to analyze the complexity of causal entailment for positive pro-
grams. A different proof will show that this complexity is identical to the complexity of causal

10

entailment for the class of strongly causal programs. Therefore (since weakly-wellfounded
and causal models coincide for strongly causal programs) we get the same complexity for
Weak-WFS and Weak-MsuppP .

Let us defineP j�sc l (“l follows sceptically fromP”) to denote that l is true in every causal
model of theory P. Similarly P j�cr l (“l follows credulously from P”) denotes that l is true
in some causal model of P.

Theorem 4.6 (Complexity of Causal Entailment for Positive Programs)

a) Determining whether “P j�sc l” is a co-NP-complete problem even for positive pro-
grams P and l being atoms.

b) Determining whether P j�cr l is an NP-complete problem even for positive programsP and l being atoms.

Proof: First, we need to prove that the problem complementary to our problem is in the classNP and that our problem is co-NP-hard.

1. To test that P j�sc l can be done in NP time is done as follows: first we guess a strat-
ification for P. Next, using Lemma 2.2 we compute the corresponding causal model.
Finally we check that the constructed causal model of P does not satisfy l.

2. “P j�sc a for some atom a not occurring in P” is equivalent to the fact that P is not
causal. Hence there is a trivial polynomial reduction from the problem complementary
to causality testing to testing ofP j�sc l. Thus, by Theorem 3.5 our problem is co-NP-
hard.

Second, we need to prove that our problem belongs to the class NP and that it is NP-hard.

1. To establish that our problem is in the classNPwe proceed as above. We guess a strat-
ification of P, compute the corresponding causal model of P and then check that that
model satisfies l. This is, of course, done in polynomial time.

2. Now, it is clear that P possesses a causal model if and only if “P j�cr a for some atom
occurring inP”. Thus we get a trivial reduction of the stratifiability problem to the j�cr
entailment problem. This, by Proposition 3.5 implies that our problem is NP-hard.

The next theorem proves the same result for the class of strongly causal programs. Note
that the proof is completely different from the previous one, because it is based on a reduction
to 3-SAT.

Theorem 4.7 (Complexity of Causal Entailment for Strongly Causal Programs)

a) Determining whether P j�sc l is a co-NP-complete problem even for strongly causal
programs P and l being atoms.

11

b) Determining whetherP j�cr l is anNP-complete problem even for strongly causal pro-
grams P and l being atoms.

Proof: In view of the proof of Theorem 4.6 we will only show that the problem “P j�sc a”
is co-NP-complete because Membership in co-NP (as well as membership of the credulous
version in NP) is immediate. In fact, we show that there is a polynomial transformation from
the complement of 3-SAT to this problem.

An instance I of 3-SAT consists of a clause setC1; : : : ;Cm over a set of variables fp1; : : : ;png
such that each Ci contains at most 3 literals. The question is whether there is an assignment
of the variables such that the whole clause set is satisfiable.

For each instance I of 3-SAT we construct a strongly causal disjunctive logic programDLP(I) as follows:� The 2n+ 1 atoms of DLP(I) are p1; : : : ;pn; not p1; : : : ;not pn; anew.� DLP(I) contains for each 1 � i � n the rule: pi _ not pi .� In addition DLP(I) contains the m rulesanew f(l1); f(l2); f(l3)
where C = fl1; l2; l3g is one of the m clauses in I. Here we denote by f the function
defined on fp1; : : : ;pn; :p1; : : : ;:png by

f(x) := 8>>>>>>>>>><>>>>>>>>>>:
p1 if x = :p1,

...
...pn if x = :pn,not p1 if x = p1,

...
...not pn if x = pn,

We claim thatI is unsatisfiable if and only if Weak-MsuppP (DLP(I)) j= anew.

First we show that DLP(I) is strongly causal. It suffices to consider only the rules pi _not pi because all other rules are already stratified. But any shift on these rules determines
a stratification (with 2 strata): if pi is shifted then not pi is in the higher stratum and pi will
be false and not pi be true in the corresponding model. If not pi is shifted then pi is in the
higher stratum and not pi will be false and pi be true in the corresponding model. Thus any
complete shift results in a stratified normal program with exactly 2 strata. The bottom stratum
contains all pi that are false and all not pj such that pj is true. The top stratum contains all
other atoms.

12

Therefore any complete shift of the program DLP(I) corresponds to a variable assign-
ment to fp1; : : : ;png and vice versa. The atom anew is true in MsuppP� if and only if one of
the clauses anew f(l1); f(l2); f(l3) has been applied, i.e. if the complete shift � induced a
variable assignment which falsified the corresponding clause fl1; l2; l3g of I.
Corollary 4.8 (Complexity of Weak-WFS)
Credulous entailment for Weak-WFS isNP-complete, even for strongly causal programs and
deriving atoms. Consequently, sceptical entailment for Weak-WFS is co-NP-complete for the
same class of programs.

4.3 Abstract Properties

In [Dix95a, Dix95b] the first author adapted various abstract conditions known in the context
of general nonmonotonic reasoning to logic programming semantics. It was argued that the
properties of Cumulativity and Rationality

Cumulativity: If P j�sc a then: P j�sc l if and only if P [fag j�sc l.
Rationality: If not P j�sc :a then: P j�sc l implies P [fag j�sc l.

(originally introduced by Gabbay and Makinson for general nonmonotonic theories) are con-
nected with the complexity of a semantics. This was supported by two famous examples:
the wellfounded semantics WFS and the WGCWA. Both are cumulative and rational [Dix91,
Dix92b] and have a lower complexity than their non-rational “competitors” STABLE and GCWA:� While WFS is polynomial (this was already cited in Section 2), STABLE is at the first

level of the polynomial hierarchy ([MT91]),� While WGCWA is at the first level, GCWA is at the second level of the polynomial
hierarchy ([CS90]).

In addition, Fernandez defined in [Fer93] a semantics WICWA for general disjunctive pro-
grams which he claims to be cumulative and rational. He showed that WICWA is of lower
complexity than PERFECT (which extends GCWA and is not rational). The same holds if we
compare our causal and weak-wellfounded semantics with GCWA: we have already shown
that they have lower complexity. Indeed, they are cumulative but not rational:

Theorem 4.9 (Cumulativity for Weak-WFS and Weak-Msupp
P)

Sceptical entailment j�sc of both Weak-WFS and Weak-MsuppP is cumulative. Neither of the
two semantics is rational.

Proof: The proof is very similar for both semantics. We show it first for Weak-WFS. Note
that for any complete shift � P� [fag = (P [fag)�

13

and therefore, by cumulativity of WFS (see [Dix95a]), if WFS(P�) j= a then

WFS((P [fag)�) = WFS(P� [fag) = WFS(P�):
Now suppose a is true in all weakly wellfounded models of P, i.e. in all WFS(P�) where �
is a complete shift. By the last identity we have that WFS(P�) = WFS((P [fag)�) so that
also the set of all literals true in the intersection of all WFS(P�) coincides with the set of all
literals true in the intersection of all WFS((P [fag)�). This is exactly the cumulativity of
Weak-WFS.

Obviously, the same proof works also for Weak-MsuppP , because the addition of an atoma has no effect on the stratification.
The counterexample against rationality is the followingPrat : e _ f a :fx a;:e

Note that only one complete shift �f (the one shifting f) results in a program whose well-
founded model contains a. In this model, :x is also contained. The wellfounded model of
the other complete shift �e contains :a and also :x. Therefore :x is weakly wellfounded
derivable from Prat but :a is not. Adding a however to the program P�erat results in a well-
founded model that derives x: WFS(P�erat [fag) j= x. This counterexample also applies to
Weak-MsuppP because all programs are stratified.

This shows that the original claim from the first author, namely that cumulativity and rational-
ity of a semantics might have a strong relation on the complexity is not true. Our semantics
have a good complexity even without being rational. Another counterexample is the seman-
tics WFSC of Schlipf ([Sch92b]), which is equivalent to WFS+ ([Dix95a]): WFS is of the
same (high) complexity as STABLE (for normal programs) but it is cumulative and rational.

We end this section with some comments about consistency. The inconsistency of the sta-
ble semantics is not the only shortcoming. In fact, often when asking a query to a program
under a semantics it would be nice when the answer only depends on that part of the program,
where the query depends on, i.e. the subset of rules determined by the call-graph below the
query. This property has been called Relevance and was introduced in [Dix92a]. In [BD95a]
this was extended to disjunctive programs and shown that it implies the following property,
called Independence SEM(P) j= � () SEM(P [P0) j= �;
provided that the predicates occurring inP andP0 are disjoint, and � contains only predicates
from P. Independence in turn implies Consistency. Another property satisfied by most se-
mantics is the Elimination of Tautologies: the semantics of a program does not change, if rules
that contain an atom a at the same in their head and in their body can be eliminated without
changing the semantics of the program.

It is therefore natural to ask how our semantics behave in view of these properties.

14

Lemma 4.10 (More Abstract Properties)

a) Elimination of Tautologies holds for Weak-MsuppP on the class of causal programs and
for Weak-WFS on the class of strongly causal programs.

b) Relevance holds for Weak-WFS in general as well as for Weak-MsuppP for causal pro-
grams.

The reason that Elimination of Tautologies does not hold in general for Weak-MsuppP is that
this transformation may transform a non-causal to a causal program. Concerning Weak-WFS
note that it derives from the program consisting of “a_p p” and “p :p” neither p nora nor their negations. But if the first clause is eliminated, :a wis derivable.

Note also that Relevance does not hold for STABLE even on the class of programs where
STABLE is consistent.

5 Relation to other approaches

We already mentioned Schaerf who also considered recently ([Sch93, Sch95]) the technique
of shifting a disjunctive program into a normal one. The semantics that is closest to our Weak-
MsuppP is his Weak-SUPPORTED semantics, where he considers all supported models of all
complete shifts, whereas we are only considering those complete shifts that result in stratified
programs (and we only take the unique perfect model).

Therefore even for stratified programs his semantics Weak-SUPPORTED is different from
ours. The complexity of his semantics, however, is identical to ours.

Another approach is due to R. Ben-Eliyahu and R. Dechter [BED92]. They tried to find
classes of programs where the complexity of the stable semantics is low. They defined the
class of head-cycle-free programs and proved that the entailment relation (“truth in all stable
models”) is co-NP-complete for this class. A program is head-cycle-free, if any two literals
that occur in the same head do not depend positively on each other. Here “A depends pos-
itively on B” is the transitive closure of “A depends immediately positively on B” (which
means that there is a rule C containing A in its head and B positively in its body). Note that
in this definition negative dependencies are ignored.

As an example “A _ B A;B” is not head-cycle-free while “A :A” is. Therfore
the classes of head-cycle-free programs and of causal programs are incomparable. But for
positive programs we have:

Lemma 5.1 The class of positive causal programs strictly includes the class of positive head-
cycle free clauses.

Therefore our semantics can be seen as an extension of the class of positive head-cycle free
clauses retaining the attractive low complexity. But obviously both semantics are different
even on the smallest class of head-cycle free programs. This is because causal semantics relies
on perfect models while Ben-Eliyahu and Dechter’s semantics is based on stable models.

15

We also note that causal entailment is stronger than stable entailment (this was pointed out
by Piero Bonatti):

Lemma 5.2 Every causal model of P is also a disjunctive stable model of P.

The reason is that every causal model M of P is also a minimal model of PM, the Gelfond-
Lifschitz transform of P with respect to M. By definition, the minimal models M of PM (a
positive program) are exactly the stable models of P.

6 Conclusions

We found that some propositional theories S (we termed them causal) carry with them one or
more computational procedures which determine the order of construction of atoms in some
model of S. Once such a procedure is known, we can construct this model in polynomial time.
We showed that the problem of existence of such order is itselfNP-complete, thereby solving
a problem recently raised by Schaerf.

We defined causal models and investigated the induced entailment relation as well as Weak-
WFS. Causal entailment is different from all other semantics proposed in the literature and is
of low complexity. In addition these semantics behave in a nice way: sceptical entailment is
cumulative and, on certain classes of programs, it also satisfies Relevance and Elimination of
Tautologies.

We gave simple syntactic conditions on the program that ensure the existence of causal
models. In general, the problem of existence of a causal model is as complex as the satisfi-
ability problem. We find a class of programs for which we can test the existence of a causal
model in polynomial time.

We also compared our approach to work of Ben-Eliyahu/Dechter and Schaerf.
Again our main contribution is to consider a disjunctive program as a representation of a

set of computational procedures, which are at most quadratic. The overall complexity of the
sceptical or credulous entailment-problem is on the first level of the polynomial hierarchy.

Acknowledgements

We thank Piero Bonatti, Marco Schaerf and anonymous referees of the early version of this
paper for useful comments. The third author gratefully acknowledges partial support of NSF
grant IRI-9400568.

References

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases, chapter 2, pages 89–
148. Morgan Kaufmann, 1988.

16

[BD95a] S. Brass and J. Dix. Characterizations of the Stable Semantics by Partial Evalua-
tion. In A. Nerode, W. Marek, and M. Truszczyński, editors, Logic Programming
and Non-Monotonic Reasoning, Proceedings of the Third International Confer-
ence, LNCS 928, pages 85–98, Berlin, June 1995. Springer.

[BD95b] S. Brass and J. Dix. Disjunctive Semantics based upon Partial and Bottom-Up
Evaluation. In L. Sterling, editor, Logic Programming: Proceedings of the 12th
International Conference on Logic Programming, Tokyo, pages 199–213. MIT
Press, June 1995.

[BED92] R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic
Programs. In K. R. Apt, editor, Logic Programming: Proceedings of the 1992
Joint International Conference and Symposium, Washington, Cambridge, Mass.,
November 1992. MIT Press.

[Bon93] P. Bonatti. Shift-based semantics: general results and applications. Technical
Report CD-TR-93-59, Technical University of Vienna, Inst. für Informationssys-
teme, 1993.

[Cla78] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and
Data-Bases, pages 293–322. Plenum, New York, 1978.

[CS90] J. Chomicki and V.S. Subrahmanian. Generalized Closed World Assumption is�02-Complete. Information Processing Letters, 34:289–291, 1990.

[DGM94] J. Dix, G. Gottlob, and V. Marek. Causal Models for Disjunctive Logic Programs.
In P. Van Hentenryck, editor, Logic Programming: Proceedings of the 11th Inter-
national Conference on Logic Programming, S. Margherita Ligure, pages 290–
302. MIT, June 1994.

[Dix91] J. Dix. Classifying Semantics of Logic Programs. In A. Nerode, W. Marek, and
V. S. Subrahmanian, editors, Logic Programming and Non-Monotonic Reason-
ing, Proceedings of the first International Workshop, Washington, pages 166–180,
Cambridge, Mass., July 1991. Washington D.C, MIT Press.

[Dix92a] J. Dix. A Framework for Representing and Characterizing Semantics of Logic
Programs. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Third International Con-
ference (KR ’92), pages 591–602. San Mateo, CA, Morgan Kaufmann, 1992.

[Dix92b] J. Dix. Classifying Semantics of Disjunctive Logic Programs. In K. R. Apt, ed-
itor, Logic Programming: Proceedings of the 1992 Joint International Confer-
ence and Symposium, Washington, pages 798–812, Cambridge, Mass., November
1992. MIT Press.

17

[Dix95a] J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I. Strong
Properties. Fundamenta Informaticae, XXII(3):227–255, 1995.

[Dix95b] J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: II. Weak
Properties. Fundamenta Informaticae, XXII(3):257–288, 1995.

[EG93] T. Eiter and G. Gottlob. Propositional Circumscription and Extended Closed
World Reasoning are �P2 -complete. Theoretical Computer Science, 144(2):231–
245, Addendum: vol. 118, p. 315, 1993, 1993.

[Fer93] J. A. Fernández. Weak Models for Disjunctive Logic Programs. In Proceedings
of Workshop on Logic Programming with Incomplete Information, Vancouver Oct.
1993, following ILPS’ 93, pages 190–205, 1993.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2nd edition,
1987.

[MT91] W. Marek and M. Truszczyński. Computing Intersection of Autoepistemic Expan-
sions. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, Logic Program-
ming and Non-Monotonic Reasoning, Proceedings of the first International Work-
shop, Washington, pages 37–50, July 1991. Washington, DC, Cambridge, MA,
MIT Press.

[MT93] V.W. Marek and M. Truszczyński. Nonmonotonic Logics; Context-Dependent
Reasoning. Springer, Berlin, 1st edition, 1993.

[McC80] J. McCarthy. Circumscription: A Form of Nonmonotonic Reasoning. Artificial
Intelligence, 13:27–39, 1980.

[Min82] J. Minker. On indefinite databases and the closed world assumption. In Proceed-
ings of the 6th Conference on Automated Deduction, New York, pages 292–308,
Berlin, 1982. Springer.

[Prz88] T. Przymusinski. On the declarative semantics of deductive databases and logic
programs. In J. Minker, editor, Foundations of Deductive Databases, chapter 5,
pages 193–216. Morgan Kaufmann, 1988.

[Sch93] M. Schaerf. Negation and minimality in non-Horn databases. In C. Beeri, editor,
Proceedings of the Twelfth Conference on Principle Of Database Systems (PODS-
93), pages 147–157. ACM Press, 1993.

[Sch95] M. Schaerf. Negation and minimality in disjunctive databases. Journal of Logic
Programming, 23(1):63–83, 1995.

18

[Sch92a] J. S. Schlipf. A Survey of Complexity and Undecidability Results in Logic Pro-
gramming. In H. Blair, W. Marek, A. Nerode, and J. Remmel, editors, Proceed-
ings of the Workshop on Complexity and Recursion-theoretic Methods in Logic
Programming, following the JICSLP’92. informal, 1992.

[Sch92b] J. S. Schlipf. Formalizing a Logic for Logic Programming. Annals of Mathematics
and Artificial Intelligence, 5:279–302, 1992.

[vGRS91] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for gen-
eral logic programs. Journal of the ACM, 38:620–650, 1991.

19

