
Intelligent Computation of PresentationDocumentsJoseph D. Oldham and Victor W. Marek and Miros law Truszczy�nskiDepartment of Computer Science, University of Kentucky, Lexington, KY 40506,foldham,marek,mirekg@cs.engr.uky.eduAbstractIntelligent presentation of data requires
exibility of expression based on userneeds and data content, both of which evolve. This
exibility is not o�ered by thecurrent generation of database management systems. To address this problemsystematically we are developing editing tools to quickly build intelligent, user-tailored presentation systems for databases.Our presentation systems are called computational registers (registers). Wedescribe registers as an architecture for generating documents that summarizedata with a particular class of user in mind. A system to manage creation andmaintenance of registers is a register system. We describe DEXTER, our ownregister system currently under development.1 IntroductionThere are groups of users who do not have su�cient access to information fromdatabases for the following reasons:1. Insu�cient ability to use the standard database front end.2. Inadequate presentation of the data for the user's specialized needs.3. Lack of familiarity with the scheme of the database at hand.In hospitals, for example, physicians, nurses and payment agents all need accessto pieces of medical records, all have distinct perspectives on the data (beyonddatabase views), and often lack skills and time to overcome the limitations ofthe presentation capabilities of database systems.The problem is an impedance mismatch between users and data managementsystems. Intelligent presentation of data requires
exibility of expression basedon user needs and data content, both of which evolve. This
exibility is noto�ered by the current generation of database management systems. To addressthis problem systematically we are developing editing tools to quickly buildintelligent, user-tailored presentation systems for databases [5, 1].Specialized presentation software is often written to present data to a par-ticular kind of user. Our goal is to move toward automating this process. Ourmethod is to describe an architecture for presentation, which we call compu-tational registers (registers.) We are developing software tools for specifying,building, coordinating and maintaining registers. We refer to these tools as aregister system. In this paper we will discuss registers, and DEXTER (DataEXpression Through Edited Registers), a register system we are developing.

Here is an example of data and a desired expression of this data in a form cus-tomized for a particular class of users. We will consider this example throughoutthe paper.Example 1. Suppose our database contains the following data:NAME COURSE Asn1 Poss1 Wt1 Asn2 ... Asn12Joe Marek CS121 91 100 0.1 0 ... -1Victor Oldham CS121 80 100 0.1 80 ... -1The summary we want is a \midterm grade report" to be sent to a student. Weassume that our register operates on the data on a tuple by tuple basis. Outputsfor these tuples might be as follows:To: Joe MarekRe: CS 121 Mid term grade reportYour mid term grade, based on a weighted average of 74.5 on dueassignments, is C. PLEASE NOTE that homework 2 is missing.Your score is based on the following homework scores: 91, 0, 84,and a midterm score of 94.To: Victor OldhamRe: CS 121 Mid term grade reportYour weighted average of 85.4 on due assignments earns a mid termgrade of B. Your score is based on the following homework scores:90, 90, 90 and a midterm score of 80.We assume that the database record contains all the essential information onwhich we would base our report. A database stores a lowest common denom-inator form of data. The fundamental task of a register is to restore to thedata a semantics that re
ects the user's perspective on the data. To achieve thisfunctionality in an intuitive way, registers take advantage of conventions andlanguage familiar to the user. For any register the range of expression is con-strained. A report for a di�erent purpose would be generated di�erently, hencewould require a distinct register. Registers related by applicability to the samedata, which also exist under the same register system, may share resources.2 Registers and Register SystemsComputational registers are designed to generate, from a record of known struc-ture (as in a database), a summary document (including multimedia) repre-sented in a language such as HTML or SGML ([10, 15, 16].) Register describesan approach to presentation without regard for speci�cs of how that approachis implemented.Speci�cally, a computational register consists of:1. Register domain description: ontology, vocabulary and vernacular2. Register processing speci�cation: �eld, mode and tenor mappings.

Registers are processed by a register execution engine. This is a a register-independent program that interprets �eld, mode and tenor speci�cations andcreates output documents on the basis of external database records.To facilitate building registers, we need a set of tools that will allow rapiddevelopment of register components. This set of tools together with the registerexecution engine will be called a register system. Thus, a register system consistsof:1. An authoring system designed to allow creation and modi�cation of registers2. A register execution engine to process registers developed in the authoringsystem.In the discussion that follows we always keep in mind that our end goal isnot a register, but a register system. A register system should allow the registerauthor to focus on data presentation rather than programming details, and allowresources for a set of registers to be shared and kept up to date.2.1 Register domain descriptionRegister domain description components specify information that must be avail-able to the register for coherent management of presentations.Ontology refers to a set of classes, including both system and author-de�nedclasses within the register system, su�cient to represent database informationwithin the register. Objects of these classes are the terms of the register.Example 2. We should be able to represent data about a student for the reportin some intuitive way in the ontology:Class StudentStudentName NameHomework[n] HomeworksExam MidTermExamCharacter CurrentGrade. . .The register vocabulary is a dictionary of strings . In a register system, aregister vocabulary is a subset of the system wide vocabulary. Vocabulary entriesfor register systems carry semantic information. In an attempt to represent datawith user-appropriate semantics registers rely on conventions of language andpresentation common in the targeted user group. While this language is powerful,it can be subject to misunderstanding. Online de�nition of terms supports bothuser trust and authoring coherence.Example 3. The vocabulary of the register for the midterm-grade example mustcontain an entry for the string \midterm grade". It might look as follows:MIDTERM GRADE (noun: count, singular) Pertinent classes: STUDENT.Synonyms: GRADE, CURRENT GRADE.A letter GRADE assigned based on performance on work

The last component of a register's domain description is called vernacular.The vernacular is a collection of register phrases, which: express relationships onfacts established by the register �eld; are used to form the document outline bythe register mode; and are given expression in the register tenor.Example 4. Here is an example of a phrase de�nition for a text phrase:Phrase SCOREEARNS(WA, G)1. your midterm grade, based on a weighted average ofWA on due assignments, is $G2. your weighted average of $WA on due assignments earnsa midterm grade of $GThis phrase will yield one of the texts listed in its de�nition as a possible way ofexpressing the relation between the weighted average and the mid-term grade.We treat phrase de�nitions as text templates. There are other possibilities.2.2 Register Processing DescriptionRegister processing consists of �eld, mode and tenor processing. Field process-ing uses the �eld speci�cation of a register, e.g. a set of rules, to transform arecord in the original database scheme into a record in another scheme, calledthe internal scheme. The internal scheme is de�ned in terms of the classes ofregister's ontology. The transformation determined by the �eld is a databasemapping, which may disregard some information, may synthesize new attributesfrom several original ones, and may break old attributes into several new ones.All access to the original data occurs in �eld processing. If �eld processingis completed before the other phases are allowed to begin, then mode and tenorprocessing will be based on a �xed instance of the internal scheme.(Re)modeling the original data via a �eld mapping has two chief purposes:1. The data is cast in a form appropriate for direct use while building presenta-tions for a particular class of users.2. Mediating ([14]), i.e. �nding a common representation, if a register needs toaccess data from several sources, or for register reuse, especially register ontologyreuse.Example 5. As the result of �eld processing in our running example of mid-termgrading reports, we might obtain the following term of class Student:Name = "Joe Marek" CurrentScore = 74.5CurrentGrade = 'C' MissingAssignments = 'Hw 2'Hw[] = 91, 0, 84 MidTermGrade = 94Mode processing operates on the internal representation of the original data.The two main tasks for mode processing are to: de�ne content by selectingphrases from the vernacular that describe relationships between facts; establishthe structure of the �nal document. Mode processing relies only on data in theinstance of the internal scheme, as determined by the register �eld. The resultof mode processing is a document outline.

Example 6. Here is a document following our running example:Grade Report : GREETING(Name, Course)SCOREEARNS(CurrentScore, CurrentGrade)Exceptional Circumstance : MISSINGWARNING(MissingAssignments)Grade Support : SCOREBASE(Hw[], MidTermGrade)The goal of register processing is a document that is consistent in meaningand always user appropriate, but variable in expression, word choice and, whennecessary, phrasing and structure. Both document structure and phrase selectionare variable in the mode. Variability in phrase expression, synonym substitutionfor terms, and so on, are handled at the tenor level.Tenor processing executes a procedure for each phrase and builds the �nalpresentation, for instance an HTML document.2.3 Register SystemsOur main goal is to automate the process of register development by creating aregister system. A register system should provide:1. Authoring tools supporting de�nition and maintenance of a register domainand processing descriptions.2. A register processor to convert the de�nitions de�ned in the above systeminto executable code.A register system will allow register developers to create reliable document gen-erating software. Consequently, they can focus more on domain issues and lesson programming details. It will also help with software maintenance and, inmany cases, will allow meta tags carrying semantic information to be added todocuments automatically. Finally, such a system supports sharing and reuse ofresources.3 The DEXTER Register SystemWe will now brie
y describe the DEXTER Register System which we are de-veloping. Following a brief description of DEXTER's authoring subsystem, ourfocus will be on DEXTER's approach to �eld and mode processing. We willdiscuss neither DEXTER's register execution engine nor its tenor processing inthis paper.The authoring subsystem consists of a suite of editors specialized to supportthe register author's various tasks. There is also a library of classes and methodsto support the details of presentation. The form of ontology classes de�nableby the author is restricted. The aggregation hierarchy for these classes must beacyclic and general methods are not allowed. Connectivity to only one database,Mini SQL ([17]) is supported, and any database meta data needed is expectedto be supplied by the author. Since processing in DEXTER is speci�ed by rules,editors for each phase of processing must support creation of the appropriaterule forms. As all access to the external database occurs during �eld processingthe query editing component is a subcomponent of the �eld editor. Text phrasesin DEXTER are speci�ed by templates, de�ned by the register author.

3.1 Field in DEXTERDEXTER's �eld processing is described as a set of rules. DEXTER assumes nullvalues are legal in either the external or internal scheme. We will use the followingnotation to describe these rules. A tuple in the external database scheme will bedenoted t. An attribute in the external scheme is denoted ai. Thus t:ai is the ithcoordinate of tuple t. The subset of t attributes known to be non-null is denotedby t̂. The internal scheme is noted analogously, with s bj , and ŝ replacing t, aiand t̂ respectively. The sj are register terms, to which �eld rules assign value.Terms must be assigned in some order, and s1�i<k denotes the set of termsassigned prior to assignment to s:bk. Whether coordinates of s and t have valuesor not is necessary but not su�cient information to write rules. We must also beable to de�ne relations on those coordinate values. Thus, R denotes a relationover t̂ and ŝ, the non-null coordinates of s and t. Finally, Ej are expressions overt̂; ŝ and constants, evaluating to a type compatible with the s:bj . A general formof a �eld rule in DEXTER is:IF (t:a1 = Null ^ : : : ^ t:ak = Null ^ t:ak+1 6= Null ^ : : : ^ t:ap 6= Null)^ s:b1 = Null ^ : : : ^ s:bl = Null ^ s:bl+1 6= Null ^ : : : ^ s:bq 6= Null)^ (R(t̂; ŝ))THEN s:bq+1 = Eq+1(t̂ [ŝ [s1�i<q+1) ; : : : ; s:bq+r = Eq+r(t̂ [ŝ [s1�i<q+r)Note that these are epistemic rules; rule applicability depends on what we doand do not know. Here is a simple example of such a rule:IF (t:AltGradeOption = Null ^ t:ACut 6= Null ^ t:BCut 6= Null)^(s:CurrentGrade = Null ^ s:score 6= Null)^(t:BCut � s:Score < t:ACut)THEN s:CurrentGrade = BgradeThe fact that rules may depend on values assigned to a tuple s earlier in theprocess makes the order of rule evaluation important.3.2 Mode in DEXTERDEXTER breaks mode processing into two distinct steps: content determinationand structure instantiation. Both are managed with a rule based approach. Hereis an example of a DEXTER Content Rule:IF (s:MissingAssignments 6= Null)THEN Include MISSINGWARNING(s:MissingAssignments)The above rule can be generalized to epistemic rules of the form:IF (s:b1 = Null^ : : :^ s:bk = Null^ s:bk+1 6= Null^ : : :^ s:bn 6= Null)THEN Include P1(�1) ^ : : : ^ Pr(�r)

where the s:bi and ŝ are as above, Pj are phrases, and �j is an ordered subset ofŝ forming an argument list for Pj . Order of evaluation does not matter for theserules.DEXTER structure rules determine which sections of a document are openedor closed. A section must be opened for writing before a phrase can be expressedin that section. Here is a simple structural rule.IF (Open(Body) ^ :Open(GradeSupport)^Included(SCOREBASE(X ;Y))^:Included(MISSINGWARNING(X)))THEN Open(GradeSupport) ^ Assert(SCOREBASE(X ;Y))Included(phrase) holds if phrase appears in the output of the content rules.Notice that the applicability of this rule depends on absence of informationabout a grade warning and that these rules are again order dependent.The general form of a structural rule follows. The �i are document sections.If Open(�i) holds then it is legal to place phrases into �i, and to open or closesubsections of �i. Further, Pj(xj) is a phrase Pj with arguments xj .IF (Open(�m+1) ^ : : : ^Open(�n))^(:Open(�n+1) ^ : : : ^ :Open(�q))^(Included(P1(x1)) ^ : : : ^ Included(Pl(xl)))^(:Included(Pl+1(xl+1)) ^ : : : ^ :Included(Pr(xr))))THEN Open(��) ^Assert(�I) ^ Close(�A;O)Note that xj and xk may overlap. This means phrases may share variables. Forinstance, Included(Pj(xj)) is true when the phrase (with associated variables)can be uni�ed with some phrase included by the mode content rules. Thus tosatisfy this condition some uni�cation on shared variables (but with no functionsymbols) must occur. When the rule condition is satis�ed then three actions maybe taken:1. A single section, ��, is opened and marked as the current section.2. Members of a possibly empty subset of included phrases, (�I), are placed inthe current section for later expression.3. Members of a possibly empty set of sections which were previously open, �A;O,are marked as no longer open.4 Additional Bene�ts of Register Generated DocumentsThe principal use for registers is to present data to the user in a way that takesinto account the semantics that the user applies to the data. However, thereare other applications of registers and register systems. Many have to do withthe capacity of these systems to support meta data with very low overhead. Toindicate the potential in this area we will brie
y discuss the approach to meta

data we take in DEXTER, which we call semantic tags. (This is distinct fromthe same term in [2].)By a semantic tag we mean a tag (as in HTML) which, for some part ofa document, indicates that part's content in the sense of its meaning. Familiesof registers, controlled by a register system with a common vocabulary, o�eradvantages in this area. A dictionary of tags used in a register system can bepublished for appropriate communities. Since the purpose of a register is tosystematically transform data into a document representation, registers can addsemantic tags to documents automatically. Beyond consistency, the principalbene�t of register tagging is that it is a low overhead operation, taking advantageof already necessary work. As semantic tagging via registers is clearly possible,we will now discuss some applications of registers and register systems whichmake it clear that this form of systematic tagging of content is useful. Thisimplies several directions for further research.1. Searching for patterns with multiple meanings is ine�cient. Register gen-erated documents can be automatically and consistently tagged for content witha level of speci�city that is prohibitive for hand-written documents. The taggingscheme used in the register system may be published and thus may supportsearch for patterns (tags) with agreed upon meanings.2. We can say that a database must: store data, allow searching on that data,and allow viewing of search results. Consider a collection of documents that aresemantically tagged. Content is represented consistently and hence searchableas above. Tags can guide data expression. Hence, a collection of semanticallytagged documents may be viewed as a virtual database. Such a virtual databasemight stand alone, or we might have several such databases on top of a standarddatabase, acting as front ends for several user communities.3. There are implications for information synthesis and control. With un-tagged documents we can ask the question \Is there a document that describesprocess X?" With a set of tagged documents we can ask if it is possible, fromthis document set, to construct a document that describes process X . We canask if our collection makes a complete set of facts publicly available.4. There is a point at which a document is not yet generated, but its contentand structure are determined. This can serve as a form of document compression.Assuming that a register can be executed at the client side, documents can beencoded either by the underlying external data, its internal representation orthe document outline, whichever is more compact.5 Related WorkA fundamental problem that the register author must solve is referred to in[7, 6] as the the writer's problem. Speci�cally, how does an author proceed, givensome facts, in using background knowledge and communicating those facts withsome end in mind? Our current focus is on text presentations. Thus, generatingcoherent, reliable text is critical. The works of McKeown [13], Paris [5] andBateman and Paris [1] are related. In DEXTER, however, we take a simplerapproach, borrowing from descriptive linguists ([9] among others.) IVORY [3] is

a tool developed at Stanford University to assist the physician in writing progressnotes. In this case the approach to text generation in a single DEXTER registeris similar, but DEXTER's phrases are not hardwired.The advent of the World Wide Web has resulted in intense scrutiny of au-tomation and authoring support for documents, e.g. [11]; creating documentsthat are more content accessible via automated means, e.g. [16]. Mapping SGMLdocument type de�nitions into object oriented database schema is considered in[4]. The problem of analyzing and representing data has been considered, e.g.[12] and the TSIMMIS project [8, 14]. As in TSIMMIS we assume self describinginternal representations of data in our systems. Our approaches di�er as ourgoals di�er.6 ConclusionsThere is a legitimate need to increase the functional power of systems to supportinformation access. Computational registers as described here support informa-tion access by attempting to restore to data some of the semantics expected byparticular groups of users in a natural way. Continuing to write ad hoc code toaccomplish this task is not su�cient. That the task of writing data presentationsoftware is common, and usually achievable, implies that we can understandand should try to automate the process. The end goal is to clarify and supportor automate the process of writing registers such that the register author canfocus more on meeting user expectation, and less on manipulating backgroundsystems. Our system, DEXTER, is a step in that direction.DEXTER's register architecture allows for substantial register reusability. Anontology developed for the needs of a register to build presentations of medicaldata can be used for a number of other registers working with possibly di�erentdatabases. Given such a register, to make it usable with yet another databaserequires only the development of an appropriate �eld speci�cation. Similarly, if amodi�cation of a presentation of the same data is required, only the tenor mustbe changed. Consequently, DEXTER's architecture maximizes reusability in thecontext of changing requirements.AcknowledgementsThis work was supported by USARO contract DAAH-04-96-1-0398. Helpful dis-cussions with Professor Raphael Finkel and Anthony Borchers are gratefullyacknowledged.References1. J. A. Bateman and C Paris. Phrasing text in terms a user can understand. InProceedings of IJCAI, 1989.

2. P. Buitelaar. A Lexicon for Underspeci�ed Semantic Tagging. Available viaComputation and Language EPrint Archive, http://xxx.lanl.gov/cmp-lg/ as pa-per 9705011, 19973. K.E. Campbell, K. Wickert, L.M. Fagan, and M.A. Musen. A computer-based toolfor generation of progress notes. In Proceedings of the Sixteenth Annual Symposiumon Computer Applications in Medical Care, 1993.4. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu-ments to novel query facilities. In Proceedings of SIGMOD 94. ACM, 1994.5. Paris C.L. The Use of Explicit User Models in Text Generation: Tailoring to aUser's Level of Experience. PhD thesis, Columbia University, 1987. also technicalreport CUCS-309-87.6. D. Estival and F. Gayral. A nlp approach to speci�c types of texts: Car accidentreports. In Proceedings of Workshop on Context in Natural Language ProcessingIJCAI 95, 1995.7. D. Estival and F. Gayral. A study of context(s) in a speci�c type of texts:Car accident reports. Available via Computation and Language EPrint Archive,http://xxx.lanl.gov/cmp-lg/ as paper 9502032, 1995.8. H. Garcia-Molina, J. Hammer, Y. Ireland, K. and Papakonstantinou, andJ. Ullman. Integrating and accessing heterogeneous information sources in tsim-mis. In Proceedings of the AAAI Symposium on Information Gathering, 1995.9. M. Gregory and S. Carroll. Language and Situation: Language Varieties and TheirSocial Contexts. Routledge And Keegan Paul, Ltd., 1978.10. E. van Herwijen. Practical SGML. Kluwer Academic Publishers, 1990.11. K. Jones. Tops on-line { automating the construction and maintenance ofhtml pages. In Electronic Proceedings of Second World Wide Web Confer-ence 94: Mosaic and the Web, 1994. Electronic Publication: http://www.nc-sa.uicu.edu/SDG/IT94/Proceedings/Autools/jones/jone.html.12. R.E. Kent and C. Neuss. Creating a web analysis and visualization envi-ronment. In Electronic Proceedings of Second World Wide Web Conference94: Mosaic and the Web, 1994. http://www.ncsa.uicu.edu/SDG/IT94/Proceed-ings/Autools/kent/kent.html.13. Kathleen R. McKeown. Text Generation. Cambridge University Press, 1985.14. Y. Papakonstaninou, H. Garcia-Molina, and J. Ullman. Medmaker: A mediationsystem based on declarative speci�cations. In Proceedings ICDE 96, 1996. availablevia ftp://www-db.stanford.edu/pub/papkonstantinou/1995/medmaker.ps.15. D. Raggett. HTML 3.2 reference speci�cation. Electronic Publication:http://www.w3.org/pub/WWW/TR/REC-html32.html, 1997.16. C.M. Sperberg-McQueen and R.F. Goldstein. Html to the max a mani-festo for adding sgml intelligence to the world-wide web. In Electronic Pro-ceedings of Second World Wide Web Conference 94: Mosaic and the Web,1994. Electronic Publication: http://www.ncsa.uicu.edu/SDG/IT94/Proceed-ings/Autools/sperberg-mcqueen/sperberg.html.17. Hughes Technologies. Hughes technologies library. Published Electronically athttp://Hughes.com.au/library/. Contains documentation on miniSQL.
This article was processed using the LATEX macro package with LLNCS style

