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1 Introduction

We propose a model theory for full first-order default logic that allows both closed
and non-closed default theories. Beginning with first-order languages without logical
equality, we note how Henkin’s proof of the completeness theorem for first-order logic
yields complete algebras; that is, algebras over which models of consistent theories
may always be found. The uniformity is what is interesting here. The algebra is
constructed independently of the theory for which a model is sought and depends
only on the underlying first-order language.. With these observations in place, the
model theory for first-order defaults can be treated. Reiter [Rei80] has already told us
what the extensions of closed first-order default theories are. With these extensions
as a guide we introduce models, and extensions, of first-order default theories (D,W )
where these theories may be closed or non-closed1. Beginning with closed default
theories, the principal issue is how to check for consistency of the justifications in the
defaults. A justification is consistent with a set of structures iff it is satisfied by some

structure in the set. Let Γ be a set of structures. A Γ-model of (D,W ) is a set of
structures over an algebra A which individually satisfy W and collectively satisfy D
with respect to using Γ to check the consistency of the justifications. We describe
these notions in detail in Section 5. The family of Γ-models of (D,W ) is closed under
arbitrary union. Hence, over a given algebra A there is a unique largest Γ-model. Γ is
a model of (D,W ) if Γ is the unique largest Γ-model of (D,W ). A maximal model of
(D,W ) is a stable model of (D,W ) and the theory of a stable model, over a complete
algebra, of (D,W ) is an extension of (D,W ). All complete algebras determine the
same set of extensions. What about non-closed default theories? If one is going
to assign values to freely occurring variables in default rules, we assume that one
has a domain in mind where these values are to be found, i.e. an algebra A. One
may then close (D,W ) with respect to A, fundamentally by adjoining the theory of
A to W , and instantiating the freely occurring variables in the defaults in D, and

1Lifschitz, [Li90], uses the term open to denote defaults allowing both quantifiers and freely
occurring variables. We use the term “non-closed” here as the term “open” is standardly used to
refer to quantifier-free formulas.
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then taking the extensions of the resulting closed default theory. Here however, one
obtains different sets of extensions with respect to different algebras, even when the
algebras are complete, because of the interaction between the augmentation of W by
the theory of A and the names of elements of A that instantiate the freely occurring
variables in D. If one takes non-isomorphic complete algebras A and A′, default
theories (D,W ) can be obtained whose closures with respect to A and A′ produce
differing sets of extensions. Instantiations that produce this difficulty do not occur in
the case of closed default theories.

Lifschitz, in [Li90] introduces a technique for handling defaults admitting vari-
ables. The idea is to have a set F of constants describing the desired domain and
then instantiate the variables with these constants.

There problems with Lifschitz approach. First, there are problems with the treat-
ment of equality (Lifschitz is aware of this problem). Second, there are no restrictions
on the structure of the set F and at times the resulting extensions are counterintuitive.
These difficulties are illustrated with the following example.

Example 1.1: Let W = ∅, D = { :¬p(x)
p(a)

}. With the Herbrand universe as the set

of the constants that are used for grounding, (D,W ) has no extensions. Yet, if we
add to W a completely immaterial fact, r(b) (thus making the larger theory aware of
b), the new default theory possesses an extension: Cn({p(a), r(b)}). But even if this
case, if we add to W the sentence a = b, we are destroying this extension.

Our model theory captures the following intuition about default reasoning. We
want to reason about the world while making cautious guesses about a situation based
on our most-likely incomplete knowledge of the situation. The knowledge we have is
codified by a theory W . The models of W are all of the ways the situation could be
that are consistent with our knowledge. We also have knowledge and beliefs about
how matters normally stand in situations, codified by default rules D. We find that
the possibilities for our situation group together; seldom do we find that all models of
W coherently accord with our default rules. Wanting to be cautious, that is, wanting
to minimally constrain the possibilities for how the situation is but still take account
of the default rules, we take maximal groupings of models of W among groupings
that accord with the default rules.

In order to find which domains actually lead to results consistent with Reiter
concept of extension we carefully investigate algebras for first-order language in which
default theory is formulated. These algebras have, for each formula ϕ(x) an element
named by a constant “∃xϕ(x)” in the extension of the language L that assigns a
tentative example, that is that the implication

∃xϕ(x) → (“∃xϕ(x)”)

holds. Notice the subtle difference from Skolemization – the constants “∃xϕ(x)” are
added regardless whether the existential statement holds or not. The essence of the
Henkin completeness proof is that the algebra constructed in that fashion is complete,
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that is every consistent theory in L has a model over that algebra (denoted below
by HkL). In fact the Henkin algebra is entirely effective as long as the language L

possesses an effective presentation. A Henkin algebra which, of course, contains the
Herbrand universe of the theory is uniquely determined by the language. Henkin’s
proof of the completeness theorem can then be interpreted as saying that the Henkin
algebra has precisely the same properties with respect to the all the sentences of the
language as its Herbrand universe plays with respect to the set of universal setences
of L.

2 Preliminaries

We assume that readers are familiar with first-order logic and understand what is
meant by the terms first-order language and structure. Any of [Sh67], [Mo76] and
[Kl67] for example are useful texts on mathematical logic where discussion of ter-
minology and basic background results, not explicitly treated in this paper, may be
found. We now clarify some of our basic terms and notation.

Let Σ be the set of function and predicate symbols of a first order language L.
σ is the signature of L. Let Σ1 and Σ2 be the signatures of languages L1 and L2,
respectively. Σ1 is a subsignature of Σ2 iff every function symbol of Σ1 of arity n is
a function symbol of Σ2 of arity n and similarly for each predicate symbol. L1 is
a restriction of L2 iff the signature of L1 is a subsignature of the signature of L2.
Conversely, L2 is an extension of L1 iff L1 is a restriction of L2. We denote that L1

is a restriction of L2 by L1 � L2. A theory T is a pair (L,Γ) where L is a first-order
language and Γ is a set of formulas of L. The language of T , denoted by L(T ), is L

and the nonlogical axioms of T are the formulas in Γ. (Γ may be empty, and any
nonlogical axiom may be a logical truth.) We denote Γ by NLAx(T ). If T1 and T2

are theories such that L(T1) � L(T2) and every theorem of T1 is a theorem of T2, then
T1 is a restriction of T2 and T2 is an extension of T1. Further, if every theorem of T2

which is a formula of L(T1) is a theorem of T1, then T2 is a conservative extension of
T1.

Concerning the elements of a signature we adopt the following convention. If σ is
a symbol in a signature Σ which is a function [resp. predicate] symbol of arity n, then
σ is a function [resp. predicate] symbol of arity n in every signature. Alternatively,
one may think of the type of a symbol as a part of the symbol, the actual character
used to depict the symbol being a metalinguistic consideration. The convention is
necessary for the following notion to be sensible.

Let L1 and L2 be languages with signatures Σ1 and Σ2, respectively. The lan-
guage determined by the signature Σ1

⋃
Σ2 is denoted by L1

⋃
L2. If T1 and T2 are

theories then we denote the theory (L1

⋃
L2, NLAx(T1)

⋃
NLAx(T2)) by T1

⋃
T2.

The definition of the union of theories extends to infinite collections of theories in the
obvious way.

The domain of a structure, often called the universe of a structure, the set of
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individuals, or, synonymously, elements, of the structure. Let L1, L2 be languages
such that L1 � L2, and let U be structure for L2. U ↿ L1 is the structure for
L1 obtained from U be deleting the interpretations of the function and predicate
symbols not in the signature of L1. (Note that the domains of U and U ↿ L1 are
equal.) We say that U ↿ L1 is a restriction of U to L1 and U is expansion of U ↿ L1

to L2. If Γ is a class of structures for L2 then Γ ↿ L1 = {U ↿ L1}.
A sentence of the language L is a closed formula of L; i.e. a formula without free

occurrences of variables. A variable-free term is a called ground and a closed atomic
formula is also called ground.

We will consider only languages without logical equality. This restriction is not a
loss of generality because, when needed, we can restore equality nonlogically by adding
a binary predicate symbol ∼= (which we write in infix position) to the language of a
theory and extending the theory by including nonlogical axioms that say that ∼= is a
congruence. Model-theoretically, we can then take the quotient of a given structure S
that satisfies the congruence axioms for ∼= by the congruence relation that interprets
∼= in S. The reason for this restriction will become apparent when we discuss Henkin’s
proof of the completeness theorem, below.

Definition 2.1: Let L be a first-order language (without equality). We denote by
Lf the result of deleting all predicate symbols from L (including ∼=, if present). An
algebra for L is a structure for the language Lf. A structure S for L is said to be
over algebra A for L iff the restriction of S to Lf is A. A is said to be the algebra
underlying structure S iff S is over A.

The principal applications of the theory of models over fixed algebra will be to
default logic. Specifically we will be dealing with default theories, as introduced by
Reiter in [Rei80].

Definition 2.2: Let L be a countable first-order language. A default over L is a
syntactic object

α: β1, . . . , βm
γ

where the α, βj, 1 ≤ j ≤ m and γ are formulas of L. A default theory is a pair (D,W )
where D is a set of defaults over L and W is a theory whose language is L. When
all formulas occurring in defaults are sentences, we call (D,W ) closed. Otherwise,
(D,W ) is called non-closed.

3 Henkin Algebras

The restriction of models of a consistent theory to considering only those models over
a quotient of a fixed algebra is one of the main ideas in Henkin’s proof of the strong
classical completeness theorem for first-order logic. We shall exploit this idea to

4



provide a single algebra over which we can construct a suitable notion of extension of
full first-order default theories both with and without free occurrences of variables in
defaults rule. We need to be able to ground-instantiate formulas over a fixed algebra
A without having to worry about equality between ground terms, and we must be
able to guarantee that whenever a set of formulas is satisfiable, the set is satisfiable
over A. Having banished logical equality (i.e. logical equality is a congruence relation
that must be interpreted as the identity relation in any structure), we will be able to
restrict ourselves to considering models over fixed algebras, without the need for the
quotients to which we alluded above.

Let L be a first-order language, and let L0 = L. Suppose languages L0 � . . . � Lk

have been obtained. To obtain Lk+1 we introduce a new constant symbol eϕ for each
sentence ϕ of Lk which is not a formula of Li, i = 0, . . . k − 1 and which has the
form ∃yψ. We call k+1 the rank of each constant symbol introduced to obtain Lk+1.
The constant symbols of L have rank 0. Let Lω be the extension of L whose function
symbols consist of all constant symbols of finite rank, introduced above together with
the function symbols of L. Thus

signature(Lω) =
∞⋃

k=0

signature(Lk) .

Let U be the Herbrand universe of Lω, and let A be the restriction of U to L. We here-
after denote the constant symbol e∃yψ by “∃yψ”. We refer to these constant symbols
as Henkin constants. This is a notation we use in the metalanguage. Syntactically,
within Lω, the Henkin constant “∃yψ” has no internal structure.

Definition 3.1: We call A the Henkin algebra of L, and denote it by HA(L). A
Henkin structure for L is structure over A.

Note that A is unique up to isomorphism by the choice of each new constant
symbol of finite rank while forming Lω. Also note that the domain of A contains
infinitely many elements not named by any ground term in L.

Proposition 3.1: There is a one-to-one correspondence between the subsets of the
set of all ground atomic sentences of Lω, and Henkin structures for L.

The preceding proposition says that Henkin structures are in one-to-one corre-
spondence with Herbrand interpretations for Lω.

4 The Rôle of Henkin’s Proof of the Completeness

Theorem

We recall one of the forms of the classical strong completeness theorem for first-order
logic:
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Completeness Theorem: A theory T is consistent iff T has a model.

Our purpose in recalling the Completeness Theorem is to exploit for somewhat dif-
ferent purposes a part of the construction given in Henkin’s proof. We follow the
presentation in [Sh67].

[Sh67] begins by first defining the canonical structure for a theory T . The interest
in canonical structures, which we will define below, lies in the fact that under special
circumstances, namely, for complete consistent Henkin theories, they are the models
that we seek in proving the completeness theorem.

Informally, a Henkin theory is a theory in which every existential sentence ∃xϕ(x)
has a ‘witness’. Formally, T is a Henkin theory iff (∃xϕ(x)) → ϕ(t)) is a theorem
of T , for some variable-free term t depending on ϕ(x), for each sentence ∃xϕ(x) in
L(T ). Let us formally call such a ground term t a Henkin witness for ∃xϕ(x).

The main property of Henkin theories on which we focus is:

The canonical structure of T is a model of T , if T is itself a complete
Henkin theory.

This property is an immediate corollary of:

Let T be a complete Henkin theory. For each sentence ϕ of L(T ), ϕ is
true in the canonical structure for T iff ϕ is a theorem of T .

The canonical structure of an arbitrary theory T is defined as follows [Sh67]. For
all variable-free terms t1, t2 of L(T ), put t1 ∼ t2 iff t1 = t2 is a theorem of T . It
follows that ∼ is a congruence relation. The individuals of the canonical structure
are the congruence classes. Denote the congruence class of a variable-free term t by
t◦. The interpretation of an n-ary (n ≥ 0) function symbol f of L(T ) is the function
that maps an n-tuple (t◦1, . . . , t

◦
n) to the congruence class f(t1, . . . , tn)

◦. The n-ary
relation which is the interpretation of an n-ary (n ≥ 1) predicate symbol is the relation
which holds of an n-tuple (t◦1, . . . , t

◦
n) iff p(t1, . . . , tn) is a theorem of T .

Notice that since logical equality does not occur in our languages the congruence
classes induced by ∼ are simply singleton classes. Hence the canonical structure is
an Herbrand interpretation, and the underlying algebra is of course the Herbrand
universe of L. If it happens that we are given a consistent complete Henkin theory
with language L, then the theory’s canonical structure is in the unique Herbrand
model of the theory.

Recall the construction of the language Lω in the construction of HA(L). Let
T be a theory and let T0 be T . Paralleling the construction of the sequence of
languages {Li}

∞
i=0 we construct a sequence of theories {Ti}

∞
i=0 such that L(Ti) = Li.

The nonlogical axioms NLAx(Tk+1), k ≥ 0, which hereafter we call Henkin axioms,
are obtained by including the sentence

∃yψ(y) → ψ(“∃yψ(y)”)
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for each sentence ∃yψ(y) of Lk such that “∃yψ(y)” has rank k + 1. Let TH =
∞⋃

i=0

Ti.

Let HkL be the theory with language L and with nonlogical axioms consisting of
the Henkin axioms introduced in the preceding construction. Notice that the Henkin
axioms are independent of T . Therefore, TH = T

⋃
HkL. Hereafter we call HkL the

initial Henkin theory with language L.

Lemma 4.1: For each k ≥ 0, Tk+1 is a conservative extension of Tk.

The preceding lemma is essential to the Henkin construction, and it is insightful
to see how the Henkin axioms yield conservative extensions. The basic observation is
that if e is a constant that does not occur in ψ or in ϕ(x), and T is a theory whose
nonlogical axioms do not contain e and T ⊢ (∃xϕ(x) → ϕ(e)) → ψ then T ⊢ ψ by
prenex operations and the theorem on constants [Sh67].

Theorem 4.1: TH is a conservative extension of T .

Corollary 4.1: If T is consistent then TH is consistent.

Assume theory T is consistent. Henkin’s proof of the Completeness Theorem
is finished by applying some version of the axiom of choice, to obtain a maximal
consistent extension T ′ of TH with language L(TH). T ′ is then a complete theory,
and hence a complete consistent Henkin theory. In case when the language L is
denumerable, axiom of choice is not, actually, needed. The canonical structure of T ′,
whose underlying algebra, when restricted to L(T ) is the Henkin algebra for L(T ), is
a model of T ′, hence its restriction to L(T ) is a model of T . Thus, we can state the
following more detailed form of the Completeness Theorem.

Theorem 4.2: A theory T is consistent iff T has a model over the Henkin algebra
for L(T ).

Theorem 4.2 corresponds to the well-known completeness property of Herbrand
algebra, that is a universal theory in L is consistent then it has a model over Herbrand
algebra. Theorem 4.2 also shows that the concept of a complete algebra given by the
next definition is not vacuous.

Definition 4.1: An algebra A for language L is complete iff every consistent theory
with language L has a model over A.

Is Henkin algebra the only complete algebra for L? In fact it is easy to construct
other complete algebras for L.

Example 4.1: Consider the set of formulas False = {ϕ : ∀x¬ϕ(x) is a tautology}.
Thus False consists of formulas that are provably false. Let ≡ be the congruence
that “glues together” all elements with names “∃xϕ(x)” for ϕ ∈ False, but nothing
else. The algebra HA/ ≡ is complete. The reason is that the constants “∃xϕ(x)”
for ϕ ∈ False cannot be used as examples. It may be of interest that the algebra
constructed here is no more effective, as the set False is Π0

1-complete.
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With the notion of a complete algebra in hand we can state an another equivalent
form of the completeness theorem.

Theorem 4.3: Let A be a complete algebra for language L and let T be a theory
with language L. T ⊢ ϕ iff ϕ is valid in every model of T over A.

Is one complete algebra as good as another? Among complete algebras, the Henkin
algebra enjoys an important property given by the next theorem.

Theorem 4.4: Let T be a theory with language L. Then there is a propositional
theory (i.e. a theory whose nonlogical axioms are closed and quantifier-free) P with
langauge Lω such that T

⋃
HkL is logically equivalent to P

⋃
HkL.

Informally stated, the preceding theorem says that every theory is logically equiva-
lent, modulo the initial Henkin theory of its language, to a propositional theory. Note
both the similarity to Herband’s theorem and the uniformity in theorem 4.4. The
preceding theorem allows one to similarly reduce all default theories to propositional
default theories if one so chooses.

Also, the notion of an algebra’s not being complete allows us to introduce another
idea, domain-consistency.

Definition 4.2: Let T be a theory, A an algebra for L(T ), not necessarily complete.
T is domain-consistent, with respect to A iff T has a model over A. We also say that
T is A-consistent if T is domain-consistent with respect to A.

Domain consistency will be useful in the model theory of first-order default logic
by allowing us to introduce a tighter notion of extension when the domain is fixed.
Domain-consistency is stronger than consistency. Every theory which is domain-
consistent is consistent. If the algebra is complete, then domain-consistency is just
consistency.

We point out that while the Henkin algebra for L is a complete algebra for L, it
is not, as the Herbrand universe of Lω complete for Lω. One needs only to give a
language L′ with infinitely many constants and a consistent theory T with language
L′ that has no Herbrand model in order to see this.

To treat the model theory of first-order default logic we need a few ideas and
results from classical model theory. The reader interested in greater detail is referred
to [Mo76]. One of the fundamental ideas underlying the concepts given by the next
definition is to obtain classes of structures that stand in for theories.

Definition 4.3: The class of models of a theory T , called an elementary class is
denoted by Mod(T ). We denote the set of models of T over algebra A by ModA(T ).
We call such a set of models an A-elementary set. Let Γ be a class of structures for
a language L. The theory of Γ, denoted by Th(Γ), is the theory whose nonlogical
axioms consist of the set of sentences of L that are true in every structure in Γ. If Γ
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is a singleton {S} then we write Th(S) for Th({S}). Two structures S1 and S2 are
elementarily equivalent iff Th(S1) is logically equivlent to Th(S2), i.e. they have the
same theorems. A class of structures Γ for a language L is compact iff Γ satisfies:
for every set S of sentences of L if every finite subset of S has a model in Γ then S
has a model in Γ. A class of structures Γ for L is elementarily closed iff for every
structure S1 in Γ, if S2 is elementarily equivalent to S1 then S2 is in Γ. Similarly, A
class of structures Γ ove A is elementarily closed over A iff for every structure S1 in
Γ if S2 is elementarily equivalent to S1 and in A then S2 is in Γ. Finally, the compact

elementary closure of a class of structures Γ is Mod(Th(Γ)). The compact elementary

A-closure of a set of structures Γ over algebra A is ModA(Th(Γ))

The following results show how elementary classes stand in for theories. cf.

[Mo76].

Proposition 4.1:
A class of structures Γ for a language L is an elementary class iff Γ is elementarily

closed and compact.
T is logically equivalent to Th(Mod(T )).
If Γ is elementarily closed and compact, then Γ = Mod(Th(Γ)).

Corollary 4.2: The smallest class of structures containing Γ which is compact and
elementarily closed is Mod(Th(Γ)).

There is a proposition and corollary for complete algebras that parallels the pre-
ceding proposition and its corollary.

Proposition 4.2: Let A be a complete algebra for a language L. Let Γ be a class
of structures over algebra A.

Γ is an A-elementary class iff Γ is elementarily closed over A and compact.
T is logically equivalent to Th(ModA(T )).
If Γ is elementarily closed over A and compact, then Γ = ModA(Th(Γ)).

Corollary 4.3: Let Γ be a class of structures over algebra A. The smallest class of
structures containing Γ which is compact and elementarily closed over A is ModA(Th(Γ)).

We need two more notions and a proposition that relates them to elementary
classes in order to treat the model theory of first-order default logic.

Definition 4.4: Let A be an algebra for a language L. Extend L to a language
L(A)

∼= by including a name ia for each element a in the universe of A. Denote by
Â the result of expanding A to be the algebra for the language L(A) in which each
constant symbol ia is interpreted as a and ∼= is interprested as the identity relation.
The theory of A, denoted Th(A) is the theory whose language is L(A)

∼= and whose
nonlogical axioms are the congruence axioms for ∼= together with all sentences of
L(A)

∼=

f
that are true in Â.

Lemma 4.2:
ModA(T ) = Mod

Â
(T

⋃
Th(A)) ↿ L .
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5 Default Theories and their Model Theory

In this section we will apply the our results to study of default theories. Recall that
a default theory [Rei80] is a pair (D,W ) where D is a set of defaults, and W a set of
formulas of L. We will say that a default d is closed if all formulas occurring in d are
sentences (that is have no free variables). Often one talks about open defaults. Those
are defaults with formulas that may contain variables, but no quantifiers. We will
also consider the most general type of defaults, that we will call partially open. Those
will put no restrictions on the formulas appearing in d. Let us recall that Reiter, in
[Rei80] assigns an extension to a closed default theories as follows:

Definition 5.1 1. Let (D,W ) be a closed default theory. Given a set of sentences
S, ΓD,W (S) is the least set U satisfying these conditions: (a) W ⊆ U , (b) U is
closed under consequence, (c) Whenever d = α:β1,...,βk

γ
belongs to D, α ∈ U , βj

is consistent with S for all j ≤ k then γ ∈ S.

2. A set of sentences Γ is an extension of (D,W ) if ΓD,W (S) = S.

Lifschitz [Li90] (see also [MT93]) shows how this notion can be defined semanti-
cally in the propositional case.

We will see how the notion of extension can be defined semantically. Our technique
will involve constructing a set of extensions over a fixed algebra. The construction that
we assign has the advantage to be independent of the algebra under consideration, as
long as that algebra is complete over L.

Thus let A be any algebra, and let us consider the set of all structures for L over
A. The elements of |A| are called individuals.

Now, fix a class Γ of structures and let K be a class of structures. A formula ϕ is
consistent with Γ iff it is valid in some structure in Γ. ϕ is K-valid iff ϕ is valid in all
structures in K. Then, for closed defaults, a default α:β1,...,βk

γ
is K-valid with respect

to Γ iff α is K-valid and each justification is consistent with Γ implies γ is K-valid.
So, K is a Γ-model iff all of the nonlogical axioms of W are K-valid and all defaults

in D are K-valid with respect to Γ.
Notice that here, a Γ-model of (D,W ) is not a single structure, but a family of

structures.
We now have the following result:

Proposition 5.1: Let Γ be a fixed class of structures. Then the family of models of
closed (D,W ) is closed under arbitrary unions. Hence, over a given algebra A there
is a unique largest Γ-model.

With this proposition, we now define a stable model (over an algebra A of a default
theory (D,W ) as a class of structures Γ which is its own largest Γ-model.

The following result tells us something about what the stable models look like
and shows that they do stand in for theories without having to pad them with extra
structures. The theorem is a consequence of proposition 4.1.
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Proposition 5.2: Every stable model of a closed default theory is elementarily closed
and compact.

We say that T is an A-extension of (D,W ) if the set of all structures over A
satisfying T is a A-stable model of (D,W ).

Could stable models of (D,W ) nest? It turns out, that this is not the case.

Proposition 5.3: Let A be a complete algebra. Then A-Stable models of (D,W )
form an antichain, that is, if K1 and K2 are different A-stable models of (D,W ) then
K1 is not included in K2.

It is natural to ask how the set of A-extensions depends on A. It turns out that
for complete algebras we do not get much dependence.

Theorem 5.1 All complete algebras determine the same set of semantic extensions.
That is, given two complete algebras A1, and A2, the sets of A1-extensions of a default
theory (D,W ) and A2-extensions of (D,W ) coincide. Moreover, these extensions
coincide with Reiter extensions.

Corollary 5.1: If (D,W ) is closed and normal default theory, W is consistent and
A is a complete algebra, then (D,W ) possesses at least one stable model over A in
particular a consistent extension (all such extensions coincide with Reiter extensions).

Clearly this corollary does not hold for incomplete algebras. Indeed, if W has no
model over A then the empty class is the stable model and so we get as its theory
the inconsistent theory.

There is a version of theorem 4.4 for defualt logic which has essentially the same
proof.

Theorem 5.2: Let (D,W ) be a closed default theory with language L. There is
a set of propositional default rules D′ and a propositional theory W ′ with language

Lω such that (D,W
⋃

HkL)) has precisely the same stable models over ĤA(L) as
(D′,W ′

⋃
HkL).

We will investigate the case of partially open defaults, that is defaults of the form
d = α(x):β1(x),...,βk(x)

γ(x)
, where α, β1, . . . , βk, γ are formulas of L and x is a set of variables.

These formulas allow quantifiers.
First, we need to understand what happens when we assign values to variables

occurring free in our formulas. This means that we have a domain consisting of values
that we are using. Specifically, we must have an algebra A whose elements we are
using. The properties of A are given a priori (as Th(A)) and therefore must be
included in the initial conditions. This means that we have to add Th(A) to W .
Once this is done, we are now able to transform a default theory (D,W ) to a closed

default theory (but over a given algebra A) as follows.
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Definition 5.2: Let (D,W ) be a default theory (possibly partially open), and let
A be an algebra. A default theory (D,W )A is a closed default theory (formulated in
LA), (D1,W1) where:
(1) W1 = W ∪ Th(A)
(2) D1 consists of all instantiation of defaults in D to ground terms of A.

Since the default theory (D,W )A is closed, we know how to construct extensions
of (D,W )A. Those will be called extensions of (D,W ) over A. Notice that our
construction is similar to that of Lifschitz [Li90] but differs from it in that we add
theory of A to W . This is motivated by the fact we need to incorporate the facts
true in ⊣ in the initial data.

The extensions of (D,W )A are sets of sentences of LA rather than L. Thus it is
natural to ask for the correctness of our construction with respect to Reiter extensions.
That is, we need to investigate what happens when we restrict to the original language
L and closed theories. Lemma 4.2 implies the following crucial property:

Theorem 5.3: Let A be a complete algebra for L and let (D,W ) be a closed default
theory in L. Then the restrictions (to L) of extensions of (D,W ) over A are precisely
Reiter extensions of (D,W ).
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