
A Context for Belief Revision: Forward
Chaining-Normal Nonmonotonic Rule Systems:

V.W. Marek,1 A. Nerode2 and J.B. Remmel3

1 Introduction and Motivation.

A number of nonmonotonic reasoning formalism have been introduced to model the
set of beliefs of an agent. For example, Reiter [Rei80] introduced default logic where
the set of beliefs of an agent reasoning with incomplete information corresponded
to a extension of a default theory < D,W >. In the realm of logic programming,
the stable models of a general logic program as introduced by Gelfond and Lifschitz
[GL88] can be used to model the set of beliefs of an agent. Similarly, extensions
of truth maintenance systems as defined by Doyle [Doy79] and De Kleer [dK86],
with subsequent contributions of Reinfrank, Dressler, and Brewka [RDB89] can be
used to model the set of beliefs of an agent. We introduced nonmonotonic rule
systems as a non-logical generalization of all essential features of default theories,
truth maintenance systems, and logic programs so that theorems applying to all
could be proven once and for all, see [MNR90] and [MNR92c].

We put forth the hypothesis that any of the above systems can be used to effectively
model the beliefs of an agent as long as we restrict ourselves to a rather wide class
of default theories, general logic programs, or truth maintenance systems which cor-
respond to the forward chaining -normal nonmonotonic rule systems, or FC-normal
systems, introduced in this paper. For example, suppose that belief sets are iden-
tified with stable models of an FC-normal logic program. To explain the role of
FC-normality, we employ the paradigm of a blocks world for a robot with a hardwi-
red motion planner. We think of the robot as making moves based on facts about
where blocks are and based on rules of thumb such as “as long as such and such
configuration is not observed, move as follows” based on logic programming. We
choose as our current belief set a stable model, if any, incorporating known facts and
rules. First difficulty: a general logic program may have no stable model. A second
difficulty can arise even if our logic program has a stable model. That is, we want to
deduce robot moves in this stable model. But if the robot observes a new fact, a block

1Department of Computer Science, University Kentucky, Lexington, KY 40506–0027. Work

partially supported by NSF grant IRI-9012902
2Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853. Work partially suppor-

ted by NSF grant DMS-8902797 and ARO contract DAAG629-85-C-0018.
3Department of Mathematics, University of California at San Diego, La Jolla, CA 92903. Work

partially supported by NSF grant DMS-9006413.

1

position not in the stable model, we have to abandon the previous stable model of the
old program and find a new stable model of the logic program extended by the new
facts. Again, for arbitrary logic programs, there may be no such stable model. So if
stable models are to model beliefs and the robot is to have a belief set no matter what
facts arise, with a hardwired underlying logic program, we have to find a useful and
general condition on the logic program which guarantees that the program, extended
by new facts, always has a stable model. Such a condition is the irreducible minimum
in order to model belief sets as stable models and to specify belief revision operations
as programming operations on stable models.

In default logic, Reiter [Rei80] (see also Etherington ([Eth88]) defined a simple class
of default rules, called normal, for which one never gets stuck in finding extensions.
His normality condition is syntactic and unduly restrictive, i.e. in a normal default
theory all rules must be of the form φ:Mβ

β
. It turns out that this syntactic condition

does not generalize directly to nonmonotonic rule systems. However an analysis of
the proofs of the main results of Reiter on normal default theories reveals that his
proofs do not rely on the particular syntactic form of his rules but rather on the fact
that all rules of the form φ:Mβ

β
have a certain consistency property. This led us to de-

fine a far reaching generalization of normal default theories with respect to a general
consistency property. Moreover this generalization is easily extendible to nonmonoto-
nic rule systems and hence applies to general logic programs and truth maintenance
systems as well. Thus we introduce in this paper the definition of what we call FC-
normal nonmonotonic rule systems. We shall see that when we translate FC-normal
nonmonotonic rule systems back into default theories, we will define a large class of
default theories which we call FC-normal default theories. We shall see that the class
of FC-normal default theories strictly contains the class of normal default theories
and that FC-normal default theories have all the desirable properties of normal de-
fault theories. Finally there are natural analogues of FC-normal default theories or
FC-normal nonmonotonic rule systems in the formalisms of logic programming and
truth maintenance systems as well.

To repeat, we claim that extensions of nonmonotonic rule systems can be used to mo-
del beliefs of an agent, provided that we restrict ourselves to the class of FC-normal
nonmonotonic rule systems introduced in this paper. Here an extension of a nonmo-
notonic rule system is the common generalization of extensions of default theories,
stable models of logic programs, and extensions of truth maintenance systems. Re-
stricting ourselves to FC-normal nonmonotonic rule systems avoids our ever getting
stuck in finding new extensions in the face of new facts and there is no syntactic li-
mitation. Rather, we employ an axiomatic “consistency property”, different for each
application, which cover all areas of intended application we have examined. Our
notion of consistency property can be thought of as a version of Scott’s “informa-
tion systems” [Sco82] tailored to extensions of nonmonotonic rule systems. In future
papers this will allow us to use, for example, metaprogramming as a belief revision

2

programming language operating on “FC-normal” logic programs and representati-
ons of stable models. Now the problem of whether there exists a stable model of a
finite propositional program is known to be NP-complete ([MT91]). The same result
applies to the problem of whether there exists an extension of a nonmonotonic rule
system. So the problem of finding a consistency property under which a logic program
P or a nonmonotonic rule system 〈U,N〉 is FC-normal is at least, NP-hard. But in
all applications, we can see directly what consistency notion to introduce, dictated
by natural considerations of consistency for the semantics of the application.

We shall not only prove that FC-normal nonmonotonic rule system have the desirable
properties possessed by normal default theories but we shall prove that FC-normal
nonmonotonic rule systems have a number of other important properties as well. For
example, given an FC-normal nonmonotonic rule system S = 〈U,N〉, we shall show
that every extension of S can be constructed via a simple forward chaining algorithm
which is based on a well-ordering ≺ of the strictly nonmonotonic rules of S which we
denote by nmon(S). That is, each ordering of nmon(S) determines an extension of S
and every extension of S is determined by an ordering ≺. However, many orderings
may determine the same extension. This means the orderings themselves may be
taken as computational surrogates for extensions. In a companion paper [MNR93b],
we introduce a more general forward chaining process based on a well-ordering of the
nonmonotonic rules which can be applied to arbitrary nonmonotonic rule systems S.
For general nonmonotonic rule systems, our forward chaining process also yields an
extension but, for a possibly smaller rule system than our original rule system. It
turns out that one can view our definition of FC-normal nonmonotonic rule systems
as a sufficient condition which guarantees that the forward chaining algorithm always
produces an extension of the original rule system. This is important because we
will show that the forward chaining algorithm, when applied to finite FC-normal
nonmonotonic rule systems, produces an extension in polynomial time in the sum of
the lengths of the rules of the system. More precisely one can construct an extension
of an FC-normal nonmonotonic rule system in time which is of order the square of the
sum of the lengths of the rules of system. As usual, this same result also applies to
constructing extensions of FC-normal default theories, stable models of “FC-normal”
logic programs, and extensions of “FC-normal” truth maintenance systems. Thus
FC-normal nonmonotonic rules system have the property that one can construct an
extension or go from one extension to another in a highly efficient manner.

Finally we explore the complexity of the sets of extensions of arbitrary recursive FC-
normal nonmonotonic rule systems. Briefly, a nonmonotonic rule system S = 〈U,N〉
is called recursive if the universe U is a recursive set of integers and the set of rulesN is
a recursive set. We showed in [MNR92b] that for every countably branching recursive
tree, there is a recursive nonmonotonic rule system S = 〈U,N〉 such that there is a
recursive one-to-one correspondence between maximal branches of the tree and the
extensions of the S. Conversely, the set of all extensions of a recursive nonmonotonic

3

rule system always so arises. Since there are recursive trees without hyperarithmetic
maximal branches, but with a continuum of maximal branches, it follows there are
recursive NRS with a continuum of extensions but no hyperarithmetic extensions.
This does not happen with FC-normal recursive NRS. They always have extensions
recursive in 0′′. However, recursive FC-normal nonmonotonic rule systems are very
expressive. We show that given any highly recursive tree, i.e. a recursive tree which
is finitely branching and which has the property that we can effectively find all the
successors of any node in the tree, there is an FC-normal nonmonotonic rule system
S = 〈U,N〉 such that there is a recursive one-to-one correspondence between maximal
branches of the tree and the extensions of the S. This is shown via coding trees
into suitably constructed recursive NRS with simultaneous construction of a suitable
consistency property. This will imply that, for example, that there are recursive
FC-normal nonmonotonic rules systems which have no recursive extensions.

The outline of this paper is as follows. In Section 2, we shall briefly review Reiter’s
[Rei80] definition of normal default theories and state the main properties of such
theories. Then in Section 3 we introduce the basic definitions of nonmonotonic rule
systems. In Section 4, we shall introduce our abstract consistency properties and
define FC-normal nonmonotonic rules systems. We shall also introduce our forward
chaining construction and state our major results about FC-normal nonmonotonic
rules systems. The proofs of these theorems will be postponed until Section 7. In
Section 5, we shall show how to translate the definitions and results of Section 4 back
into logic programming, default logic, and truth maintenance systems. In Section
6, we shall provide a background on the complexity of general recursive nonmono-
tonic rule systems and state our basic complexity results for recursive FC-normal
nonmonotonic rule systems. The proofs of the complexity results in Section 6 will be
postponed until Section 8.

2 Normal Default Theories.

In this section we shall introduce Reiter’s definitions of default theories and normal
default theories and state some of the basic theorems about normal default theories
as proved in [Rei80].

Following the notation of Reiter’s paper ([Rei80]), a default rule is a rule of proof of
the form

ϕ : Mψ1, . . . ,Mψm
γ

(1)

where ϕ, ψ1 . . . , ψm, γ are formulas of a propositional language L. A default theory
is a pair 〈D,W 〉 where D is a set of default rules and W ⊆ L. For any subset of
formulas S ⊆ L, we let Cn(S) denote the set of all logical consequences of S. Also if

4

D is a set of default rules, let

c(D) = {γ :
ϕ : Mψ1, . . . ,Mψm

γ
∈ D}.

Given a subset S ⊆ L, define Γ(S) as the least set T (under inclusion) satisfying
these conditions:

1. W ⊆ T ;

2. Cn(T) = T ;

3. Whenever r ∈ D is a default rule of the form (1) and ϕ ∈ T and for all j ≤ m,
¬ψj /∈ S then γ ∈ T .

It is easy to see that Γ(S) always exists. We say that S ⊆ L is an extension of
〈D,W 〉 if Γ(S) = S. A default rule of the form (1) is called generating for S if ϕ ∈ S,
¬ψ1, . . . ,¬ψm /∈ S. Let S ⊆ L. Then we define GD(D,S) as the set of all generating
rules for S in D and c(GD(D,S)) is the set of their conclusions.

A rule r is normal if it is of the form

ϕ : Mψ

ψ
. (2)

A default theory 〈D,W 〉 is normal if every r ∈ D is a normal default rule. Reiter
[Rei80] proved the following theorems about normal default theories.

Theorem 2.1 Every normal default theory possesses an extension.

Theorem 2.2 (Semi-monotonicity) Suppose that D and D′ are sets of normal
defaults with D′ ⊆ D. Let E ′ be an extension of the normal default theory ∆′ =
〈D′,W 〉 and let ∆ = 〈D,W 〉. Then ∆ has an extension E such that

1. E ′ ⊆ E and

2. GD(E ′,∆′) ⊆ GD(E,∆).

Theorem 2.3 (Orthogonality of Extensions) If a normal default theory 〈D,W 〉
has distinct extensions E and F , then E ∪ F is inconsistent.

Theorem 2.4 Suppose that ∆ = 〈D,W 〉 is a normal default theory and W ∪ c(D)
is consistent. Then ∆ has a unique extension.

Theorem 2.5 Suppose that ∆ = 〈D,W 〉 is a normal default theory and that D′ ⊆ D.
Suppose further that E1

′ and E2
′ are distinct extensions of 〈D′,W 〉. Then ∆ has

distinct extensions E1 and E2 such that E1
′ ⊆ E1 and E2

′ ⊆ E2.

5

3 Monotonic and Nonmonotonic rule systems.

In this section we recall the basic definitions of monotonic and nonmonotonic rule
systems from [MNR90, MNR92c].

Tarski [Tar56] characterized monotonic formal systems by means of monotonic rules
of inference. Such systems include intuitionistic logic, classical logics, modal logics,
and many others. Suppose that a nonempty set U is given. In a particular application
U may be the collection of all formulas of a propositional or first order logic, of all
legal strings of a formal system, or of all atomic statements as in logic programming.

A monotonic rule of inference is a tuple r = 〈P, ϕ〉 where P = 〈α1, . . . , αn〉 is a
finite (possibly empty) list of objects from U and ϕ is an element of U . Such a rule
r is usually written in the suggestive form

r =
α1, . . . , αn

ϕ
(3)

We call α1, . . . , αn the premises of r and ϕ the conclusion of r.

Definition 3.1 (a) A monotonic formal system is a pair 〈U,M〉, where U is a no-
nempty set and M is a collection of monotonic rules.
(b) A subset S ⊆ U is called deductively closed over 〈U,M〉 if for all rules
r = α1,...,αn

ϕ
∈M , α1, . . . , αn ∈ S implies ϕ ∈ S.

Inspired by Reiter [Rei80], and Apt [Apt90], we introduced the notion of a nonmo-
notonic formal system 〈U,N〉 in [MNR90, MNR92c]. A nonmonotonic rule of
inference is a triple 〈P,R, ϕ〉, where P = {α1, . . . , αn}, R = {β1, . . . , βm} are finite
lists of objects from U and ϕ ∈ U . Each such rule is written in a more suggestive
form as

r =
α1, . . . , αn: β1, . . . , βm

ϕ
. (4)

Here α1, . . . , αn are called the premises of rule r, β1, . . . , βm are called the constraints
of rule r, and ϕ is called the conclusion of rule r. For any rule r as in (4), we shall write
prem(r) = {α1, . . . , αn}, cons(r) = {β1, . . . , βm}, and c(r) = ϕ. Either prem(r), or
cons(r), or both may be empty. If prem(r) = cons(r) = ∅, then the rule r is called
an axiom.

A nonmonotonic rule system is a pair 〈U,N〉, where U is a non-empty set and N
is a set of nonmonotonic rules such that prem(r), cons(r), and {c(r)} are subsets of
U for all r ∈ N .

Each monotonic formal system can be identified with the nonmonotonic system in
which every monotonic rule has an empty set of constraints.

6

A subset S ⊆ U is called deductively closed if for all r = α1,...,αn:β1,...,βm

ϕ
∈ N ,

whenever all the premises α1, . . . , αn of r are in S and all the constraints β1, . . . , βm
of r are not in S, then the conclusion ϕ of r belongs to S.

In nonmonotonic systems, deductively closed sets are not generally closed under ar-
bitrary intersections as in the monotone case. But deductively closed sets are clo-
sed under intersections of descending chains. Since U is deductively closed, by the
Kuratowski-Zorn Lemma, any I ⊆ U , there is at least one minimal deductively closed
set superset of I.

Given sets S ⊆ U and I ⊆ U , an S-deduction of ϕ from I in 〈U,N〉 is a finite
sequence < ϕ1, . . . , ϕk > such that ϕk = ϕ and, for all i ≤ k, each ϕi is in I, or
is an axiom, or is the conclusion of a rule r ∈ N such that all the premises of r
are included in {ϕ1, . . . , ϕi−1} and all constraints of r are in U − S (see [MT89b],
also [RDB89]). An S-consequence of I is an element of U occurring in some S-
deduction from I. Let CS(I) be the set of all S-consequences of I in 〈U,N〉. Clearly
I is a subset of CS(I). However note that S enters solely as a restraint on the use
of the rules imposed by the constraints in the rules. A single constraint in a rule in
N may be in S and thus prevent the rule from ever being applied in an S-deduction
from I, even though all the premises of that rule occur earlier in a deduction. Thus
S contributes no members directly to CS(I), although members of S may turn up in
CS(I) by an application of a rule which happens to have its conclusion in S. For a
fixed S, the operator CS(·) is monotonic. That is, if I ⊆ J , then CS(I) ⊆ CS(J).
Also, CS(CS(I)) = CS(I). However, for fixed I, the operator CS(I) is anti-monotonic
in the argument S. That is if S ′ ⊆ S, then CS(I) ⊆ CS′(I).

Generally, CS(I) is not deductively closed in 〈U,N〉. It is perfectly possible that all
the premises of a rule be in CS(I), the constraints of that rule are outside CS(I),
but a constraint of that rule be in S, preventing the conclusion from being put into
CS(I).

Example 3.1 U = {α, β, γ}, N = { :
α
, α:β
γ
}, S = {β}. Then CS(∅) = {α} is not

deductively closed.

However, the following holds:

Proposition 3.2 If S ⊆ CS(I) then CS(I) is deductively closed.

We say that S ⊆ U is grounded in I if S ⊆ CS(I). We say that S ⊆ U is an
extension of I if CS(I) = S.

The notion of groundedness is related to the phenomenon of “reconstruction”. S is
grounded in I if all elements of S are S-deducible from I (remember that S influ-
ences only the negative sides of rules). S is an extension of I if two things happen.

7

First, every element of S is deducible from I, that is, S is grounded in I (this is
an analogue of adequacy property in logical calculi). Second, the converse holds: all
the S-consequences of I belong to S (this is the analogue of completeness). Thus
extensions are analogues for a nonmonotonic systems of the set of all consequences
for monotonic systems. Both properties (adequacy and completeness) need to be
satisfied - if we want S to be an extension.

The notion of an extension is related to that of a minimal deductively closed set.
Indeed, the following propositions are proved in [MNR90]

Proposition 3.3 If S is an extension of I, then:
(1) S is a minimal deductively closed superset of I.
(2) For every I ′ such that I ⊆ I ′ ⊆ S, CS(I

′) = S.

Proposition 3.4 The set of extensions of I forms an antichain. That is, if S1, S2

are extensions of I and S1 ⊆ S2, then S1 = S2.

With each rule r of form (4), we associate a monotonic rule of form (3)

r′ =
α1, . . . , αn

ϕ
(5)

obtained from r by dropping all the constraints. Rule r′ is called the projection of rule
r. Let NG(S,S) be the collection of all S-applicable rules. That is, a rule r belongs
to NG(S,S) if all the premises of r belong to S and all constraints of r are outside of
S. We write M(S) for the collection of all projections of all rules from NG(S,S). The
projection 〈U,N〉 |S is the monotone system 〈U,M(S)〉. Thus 〈U,N〉 |S is obtained
as follows: First, non-S-applicable rules are eliminated. Then, the constraints are
dropped altogether. We have the following characterization theorem:

Theorem 3.5 A subset S ⊆ U is an extension of I in 〈U,N〉 if and only if S is the
deductive closure of I in 〈U,N〉 |S.

For the rest of this paper, we shall only consider extensions of ∅ unless explicitly
stated otherwise. We say that T is an extension of S if T is an extension of ∅ in S.

We shall end this section by giving yet another characterization of extensions. For
this we need the concept of a proof scheme. A proof scheme for ϕ is a finite sequence

p =<< ϕ0, r0, G0 >, . . . , < ϕm, rm, Gm >> (6)

such that ϕm = ϕ and
(1) If m = 0 then:

8

(a) ϕ0 is an axiom (that is, there exists a rule r ∈ N such that r = :
ϕ0

), r0 = r, and

G0 = ∅,
or
(b) ϕ is a conclusion of a rule r = :b1,...,br

ϕ
, r0 = r, and G0 = cons(r).

(2) Ifm > 0, << ϕi, ri, Gi >>
m−1
i=0 is a proof scheme of lengthm and ϕm is a conclusion

of r =
ϕi0

,...ϕis :b1,...,br
ϕm

where i0, . . . , is < m, rm = r, and Gm = Gm−1 ∪ cons(r).

The formula ϕm is called the conclusion of p and is written cln(p). The set Gm is
called the support of p and is written supp(p).

The idea behind this concept is as follows. An S-derivation in the system 〈U,N〉, say
p, uses some negative information about S to ensure that the constraints of rules that
were used are outside of S. But this negative information is finite, that is, it involves
a finite subset of the complement of S. Thus, there exists a finite subset G of the
complement of S such that as long as G ∩ S1 = ∅, p is an S1-derivation as well. Our
notion of proof scheme captures this finitary character of S-derivation.

We can then characterize extensions of 〈U,N〉 as follows.

Theorem 3.6 Let S = 〈U,N〉 be a nonmonotonic rule system and let S ⊂ U . Then
S is an extension of S if and only if
(i) for each ϕ ∈ S, there is a proof scheme p such that cln(p) = ϕ and supp(p)∩S = ∅
and
(ii) for each ϕ /∈ S, there is a no proof scheme p such that cln(p) = ϕ and supp(p) ∩
S = ∅.

There is a natural preordering of proof schemes according to the set of rules they
utilize. Given a proof scheme p, there is always a minimal (with respect to that
preordering) proof scheme with the same conclusion. This fact will be used in our
recursion-theoretic considerations. The concept of minimal proof scheme is treated
in more detail in [MNR90, MNR92c]

4 FC-normal Nonmonotonic Rule Systems.

In this section we shall define forward chaining-normal nonmonotonic rule systems
(FC-normal nonmonotonic rule systems) and state the analogues of all the theorems
of the previous section. We shall postpone the proof of all theorems in this section
until section 7

Let S = 〈U,N〉 be a nonmonotonic rule system. Let mon(S) be the set of all rules
r ∈ N such that r has no constraints. Thus mon(S) = {r ∈ N : cons(r) = ∅}. We let
nmon(S) = N−mon(S). We shall refer to mon(S) as the monotonic part of S and
nmon(S) as the nonmonotonic part of S. We say a set W ⊆ U is monotonically

9

closed if whenever r = α1, . . . , αn
γ

∈ mon(S) and α1, . . . , αn ∈ W , then γ ∈ W .

Given any set A ⊆ U , the monotonic–closure of A, written clmon(A), is defined to
be the intersection of all monotonically closed sets containing A. It is easy to see that
such a set is itself monotonically closed.

So far our investigations of nonmonotonic rule systems did not get beyond the infor-
mation established already in [MNR90, MNR92c]. Next we introduce the notion of
consistency property over 〈U,N〉, which leads us to the main subject of this paper.

We say that a subset Con ⊆ P(U) (where P(U) is the power set of U) is a consi-
stency property over S = 〈U,N〉 if

1. ∅ ∈ Con;

2. ∀A,B ⊆ U(A ⊆ B ∧ Con(B)⇒ Con(A));

3. ∀A ⊆ U(Con(A)⇒ Con(clmon(A)));

4. wheneverA ⊆ Con has the property that A,B ∈ A ⇒ ∃C∈A(A ⊆ C∧B ⊆ C),
then Con(

⋃

A).

Condition (1) says that the empty set is consistent. Condition (2) requires that a
subset of a consistent set is also consistent. Condition (3) postulates that the closure
of a consistent set under monotonic rules is consistent. Finally, the last condition
says that the union of a directed family of consistent sets is also consistent. We
note that conditions (1),(2), and (4) are Scott’s conditions for information systems.
Condition (3) connects “consistent” sets to the monotonic part of the rule system; if
A is consistent then adding elements derivable from A via monotonic rules preserves
“consistency”.

Now suppose S = 〈U,N〉 is a nonmonotonic rule system and let Con be a consistency

property over 〈U,N〉. Then we say a rule r = α1, . . . , αn : β1, . . . , βt
γ

∈ nmon(S) is

FC-normal (with respect to Con) if Con(V ∪ {γ}) and not Con(V ∪ {γ, βi}) for
all i ≤ k whenever V ⊆ U is such that Con(V), clmon(V) = V , α1, . . . , αn ∈ V ,
and γ, β1, . . . , βk /∈ V . We say that S = 〈U,N〉 is a FC-normal (with respect to
Con) if all r ∈ nmon(S) are FC-normal with respect to Con. Finally, we say that
〈U,N〉 is FC-normal nonmonotonic rule system if for some consistency property
Con ⊆ P(U), 〈U,N〉 is FC-normal with respect to Con.

Example 4.1 Let U = {a, b, c, d, e, f}. Let the consistency property be defined by
the following condition:
A /∈ Con if and only if either {c, d} ⊆ A or {e, f} ⊆ A.

10

Thus {a, b, c, e}, {a, b, c, f}, {a, b, d, e}, and {a, b, d, f} are the maximal subsets of
P(U) which are in Con.

Now consider the following set of rules, N :

(1) :
a

(2) c:
b

(3) b:
c

(4) a:d
c

(5) c:f
e

Then for the nonmonotonic rule system S = 〈U,N〉, rules (1),(2), and (3) form the
monotonic part of S and rules (4) and (5) form the nonmonotonic part of S. First
it is easy to check that Con is a consistency property over S. The monotonically
closed subsets of P(U) which are in Con are {a},{a, d},{a, e},{a, f},{a, b, c},{a, d, e},
{a, d, f}, {a, b, c, e},and {a, b, c, f}. It is then easy to check that S is FC-normal
with respect to Con. Moreover one can easily check that S has a unique extension
M = {a, b, c, e}.

If we add to N the rule c:
d

to get a set of rules N ′, then Con is no longer a consistency
property over S ′ = 〈U,N ′〉 because {c} ∈ Con but the monotonic closure of {c}
relative to S ′ = 〈U,N ′〉 which equals {a, b, c, d} is not in Con.

If we add the rule e:f
d

to N to form a new NRS S ′′ = 〈U,N ′′〉, Con will still be a
consistency property over S ′′ = 〈U,N ′′〉 because the property of being a consistency
property depends only on the monotonic part of the rule system. However S ′′ =
〈U,N ′′〉 is not FC-normal with respect to Con because r = e:f

d
is not FC-normal

with respect to Con. That is, for the monotonically closed set {a, b, c, e}, we have
prem(r) ⊆ {a, b, c, e}, cons(r) ∩ {a, b, c, e} = ∅, but clmon({c(r)} ∪ {a, b, c, e}) =
{a, b, c, d, e} is not in Con.

Finally if we add to N the rule c:e
f

to get a set of rules N ′′′, then the resulting

NRS S ′′′ = 〈U,N ′′′〉 is still FC-normal with respect to Con but now there are two
extensions, M1 = {a, b, c, e} and M2 = {a, b, c, f}.

We have the following analogue of Theorem 2.1.

Theorem 4.1 Let S = 〈U,N〉 be an FC-normal nonmonotonic rule system with
respect to consistency property Con. Then there exists an extension of S.

It is easy to adopt the proof of Theorem 4.1 to get the following result.

Theorem 4.2 Let S = 〈U,N〉 be a normal nonmonotonic rule system with respect
to consistency property Con and let I be a subset of U such that I ∈ Con. Then there
exists an extension I ′ of S such that I ⊆ I ′.

11

In fact, we will show that there is a uniform construction of extensions of FC-normal
NRS S = 〈U,N〉 which depends on a well-ordering ≺ of the nonmonotonic rules of
S, i.e. the rules in nmon(S). We shall call this construction the forward chaining
construction with respect to ≺ (and this is the reason why we call our systems, for
whom this construction always succeeds in producing an extension, forward chaining
normal). To this end, fix some well-ordering ≺ of nmon(S). That is, the well-
ordering ≺ determines some listing of the rules of nmon(S),{rα : α ∈ γ} where γ is
some ordinal. Let Θγ be the least cardinal such that γ ≤ Θγ. In what follows, we
shall assume that the ordering among ordinals is given by ∈. Our forward chaining
construction will define an increasing sequence of sets {E≺

α }α∈Θγ
. We will then define

E≺ =
⋃

α∈Θγ
E≺
α and show that E≺ is always an extension of S. Moreover we shall

show that all extensions of S arise from this construction.

The forward chaining construction of E≺.

Case 0. Let E≺
0 = clmon(∅).

Case 1. α = η + 1 is a successor ordinal.

Given E≺
η , let ℓ(α) be the least λ ∈ γ such that rλ = α1, . . . , αp : β1, . . . , βk

ψ
where

α1, . . . , αp ∈ E
≺
η and β1, . . . , βk, ψ /∈ E≺

η . If there is no such ℓ(α), then let E≺
η+1 =

E≺
α = E≺

η . Otherwise, let

E≺
η+1 = E≺

α = clmon(E
≺
η ∪ {cln(rℓ(α))}).

Case 2. α is a limit ordinal. Then let E≺
α =

⋃

β∈αE
≺
β .

This given, we have the following.

Theorem 4.3 If S = 〈U,N〉 is an FC-normal nonmonotonic rule system and ≺ is
any well-ordering of nmon(S), then

1. E≺ is an extension of S.

2. (Completeness of the construction). Every extension of S is of the form E≺ for
a suitably chosen ordering ≺ of nmon(S).

It is quite straightforward to prove by induction that if S = 〈U,N〉 is FC-normal with
respect to consistency property Con, then E≺

α ∈ Con for all α and hence E≺ ∈ Con.
Thus the following is an immediate consequence of Theorem 4.3(2).

12

Corollary 4.4 Let S = 〈U,N〉 be an FC-normal nonmonotonic rule system with
respect to consistency property Con, then every extension of S is in Con.

Example 4.2 If we consider the final extended program of Example 4.1, it is easy to
check that any ordering ≺1 in which the rule r1 = c:f

e
precedes the rule r2 = c:e

f
will

have E≺1 = M1 while any ordering ≺2 in which r2 precedes r1 will have E≺2 = M2.

We should also point out that if we restrict ourselves to countable nonmonotonic rules
systems S = 〈U,N〉, i.e. if U and N are countable, then we can restrict ourselves to
orderings of order type ω where ω is the order type of the natural numbers. That
is, suppose we fix some well-ordering ≺ of nmon(S) of order type ω. Thus, the
well-ordering ≺ determines some listing of the rules of nmon(S),{rn : n ∈ ω}. Our
forward chaining construction can be presented in a more straightforward manner in
this case. Our construction again will define an increasing sequence of sets {E≺

n }n∈ω
in stages. This given, we will then define E≺ =

⋃

n∈ω E
≺
n .

The countable forward chaining construction of E≺.

Stage 0. Let E≺
0 = clmon(∅).

Stage n+ 1. Let ℓ(n + 1) be the least s ∈ ω such that rs = α1, . . . , αp : β1, . . . , βk
ψ

where α1, . . . , αp ∈ E
≺
n and β1, . . . , βk, ψ /∈ E≺

n . If there is no such ℓ(n+ 1), then let
E≺
n+1 = E≺

n . Otherwise, let

E≺
n+1 = E≺

n = clmon(E
≺
n ∪ {cln(rℓ(n+1))}).

This given, we then have the following.

Theorem 4.5 If S = 〈U,N〉 is a countable FC-normal nonmonotonic rule system,
then

1. E≺ is an extension of S if E≺ is constructed via the countable forward chaining
algorithm with respect to ≺ where ≺ is any well-ordering of nmon(S) of order
type ω.

2. (completeness of the construction.) Every extension of S is of the form E≺

for a suitably chosen well ordering ≺ of nmon(S) of order type ω where E≺ is
constructed via the countable forward chaining algorithm.

FC-normal NRS’s also possess the “semi-monotonicity” property.

13

Theorem 4.6 Let S1 = 〈U,N1〉 and S2 = 〈U,N2〉 be two FC-normal NRS such that
N1 ⊆ N2 but mon(S1) = mon(S2). Assume, in addition, that both are FC-normal
with respect to the same consistency property. Then for every extension E1 of S1,
there is an extension E2 of S2 such that

1. E1 ⊆ E2 and

2. NG(E1,S1) ⊆ NG(E2,S2).

Here given and extension E, we let NG(E,S) denote the set of all E-applicable rules,

i.e. r = α1, . . . , αp : β1, . . . , βk
ψ

is in NG(E,S) if and only if α1, . . . , αp ∈ E and

β1, . . . , βk are not in E.

FC-normal NRS’s also satisfy the orthogonality of extensions property with respect
to their consistency property. That is, we have the following analogue of Theorem
2.3

Theorem 4.7 Let S = 〈U,N〉 be an FC-normal NRS with respect to a consistency
property Con. Then if E1 and E2 are two distinct extensions of S, E1 ∪ E2 /∈ Con.

Similarly we also have the following analogues of Theorems 2.4 and 2.5.

Theorem 4.8 Let S = 〈U,N〉 be an FC-normal NRS with respect to a consistency
property Con. Suppose that clmon{cln(r) : r ∈ nmon(S)} is in Con. Then S has a
unique extension.

We now have two more results which are also analogues of the results of Reiter’s
[Rei80]. We say that ϕ ∈ U has a consistent proof scheme with respect to a consistency
property Con over S = 〈U,N〉 if and only if there is a proof scheme

p =<< ϕ0, r0, G0 >, . . . , < ϕm, rm, Gm >> (7)

such that ϕm = ϕ and {ϕ0, . . . , ϕm} ∈ Con. We then have the following.

Theorem 4.9 Let S = 〈U,N〉 be an FC-normal NRS with respect to a consistency
property Con. Then ϕ ∈ U is an element of some extension of S if and only if ϕ has
a consistent proof scheme with respect to Con.

Theorem 4.10 Suppose S = 〈U,N〉 is an FC-normal NRS and that D ⊆ nmon(S).
Suppose further that E ′

1 and E ′
2 are distinct extensions of (U,D ∪mon(S)). Then S

has distinct extensions E1 and E2 such that E ′
1 ⊆ E1 and E ′

2 ⊆ E2.

14

5 FC-normal Nonmonotonic Rule Systems and

Other Nonmonotonic Reasoning Formalisms.

In this section, we shall explicitly translate the definitions and theorems of the pre-
vious section into the language of logic programming, default logic, and truth main-
tenance systems.

5.1 Logic programming, general case

Now because general logic programs are probably the most widely studied type of non-
monotonic reasoning we shall take some time to give the translation of FC-normal
nonmonotonic rule systems and the results above into the language of logic program-
ming. A similar translation can be done for all the other nonmonotonic formalisms
to follow but we shall not carry out the translation in detail in the other cases.

A general program clause is an expression of the form

C = p← q1, . . . , qn,¬r1, . . . ,¬rm (8)

where p, q1, . . . , qn, r1, . . . , rm are atomic formulas possibly with variables in some first
order language L. A program is a set of clauses of the form (8). A clause C is called
a Horn clause if m = 0. We let H(P) denote the set of all Horn clauses of P .

HP is the Herbrand base of P , that is, the set of all ground atomic formulas of the
language of P .

ground(P) is the set of ground Herbrand substitutions of clauses in P . Given a
set M ⊆ HP , the Gelfond-Lifschitz ([GL88]) reduct of P , PM is the set of ground
Horn clauses p ← q1, . . . , qn such that for some r1, . . . , rm /∈ M , the clause p ←
q1, . . . , qn,¬r1, . . . ,¬rm ∈ ground(P). M is called a stable model of P ifM coincides
with the least model of PM .

Assign to a ground clause p← q1, . . . , qn,¬r1, . . . ,¬rm ∈ ground(P) the rule

r(C) =
q1, . . . , qn : r1, . . . , rm

p
. (9)

Let r(P) = 〈HP , {r(C) : C ∈ ground(P)}〉. Then, as shown in ([MNR90]), M is a
stable model of P if and only if M is an extension of r(P).

This given, it is easy to see that HP plays the role of the universe U and ground(P)
plays the role of the set of rulesN in Section 4. Moreover, the Horn part of ground(P),
i.e. ground(H(P)), plays the role of the monotonic part of the rulesN . Then of course
the immediate provability operator associated with H(P), TH(P) (cf. Apt [Apt90]) is
monotonic.

15

In this setting the notion of a consistency property becomes the following. Call a
family of subsets of HP , Con, a consistency property over P if it satisfies the
following conditions:

1. ∅ ∈ Con.

2. If A ⊆ B and B ∈ Con, then A ∈ Con.

3. Con is closed under directed unions.

4. If A ∈ Con then A ∪ TH(P)(A) ∈ Con.

Conditions (1)-(3) are Scott’s conditions for information systems. Condition (4)
connects “consistent” sets of atoms to the Horn part of the program; if A is con-
sistent then adding atoms provable from A preserves “consistency”. The following
fact is easy to prove:

Proposition 5.1 If Con is a consistency property with respect to P and A ∈ Con,
then TH(P) ⇑ ω(A) ∈ Con.

Here, for a programQ, TQ ⇑ ω(A) is the cumulative fixpoint of TQ over A. Proposition
5.1 says that our condition (4) in the definition of consistency property implies that
the cumulative closure of a “consistent” set of atoms under TH(P) is still “consistent”.
Here TQ ⇑ ω(A) is the analogue of the monotonic closure of the set A.

Given a consistency property, we define the concept of an FC-normal program with
respect to that property in analogy with our definition of FC-normal NRS.

Definition 5.2 (a) Let P be a general program, let Con be a consistency property
with respect to P . Call P FC-normal with respect to Con if for every clause
C = p← q1, . . . , qn,¬r1, . . . ,¬rm such that C ∈ ground(P)− ground(H(P)), and for
every consistent fixpoint A of TH(P), if q1, . . . , qn ∈ A, p, r1, . . . , rm /∈ A we have:
(1) A ∪ {p} ∈ Con
(2) A ∪ {p, ri} /∈ Con for all 1 ≤ i ≤ m.
(b) P is called FC-normal if there exists a consistency property Con such that P is
FC-normal with respect to Con.

Next we translate Example 4.1 into the language of general logic programs.

Example 5.1 Let the Herbrand base consist of atoms a, b, c, d, e, f . Let the consi-
stency property be defined by the following condition:
A /∈ Con if and only if either {c, d} ⊆ A or {e, f} ⊆ A.

Now consider this program:

16

1) a←
2) b← c
3) c← b
4) c← a,¬d
5) e← c,¬f

This program is FC-normal with respect to the consistency property described above
and one can easily check that there is a unique stable model M = {a, b, c, e}.
If we add to this program the clause f ← c,¬e, the resulting program is still FC-
normal but now there are two stable models, M1 = {a, b, c, e} and M2 = {a, b, c, f}.

We now have the following analogues of Theorem 4.1 and Theorem 4.2.

Theorem 5.3 If P is an FC-normal program, then P possesses a stable model.

Theorem 5.4 If P is an FC-normal program with respect to the consistency property
Con and I ∈ Con, then P possesses a stable model I ′ such that I ⊆ I ′.

The analogue of our forward chaining construction of extensions of an FC-normal
NRS becomes the following. Let ≺ be a well-ordering of ground(P)−ground(H(P)).
That is, the well-ordering ≺ determines some listing of the clauses of ground(P) −
ground(H(P)), {cα : α ∈ γ} where γ is some ordinal. Let Θγ be the least cardinal
such that γ ≤ Θγ. Our forward chaining construction will define an increasing se-
quence of subsets of HP , {T≺

α }α∈Θγ
. This given, we will then define T≺ =

⋃

α∈Θγ
T≺
α

and show that T≺ is always an stable model of P . Moreover we shall show that all
stable models of P arise from this construction.

The forward chaining construction of T≺.

Case 0. T≺
0 = TH(P) ⇑ ω(∅)

Case 1. Suppose that α = η + 1 is a successor ordinal. Given T≺
η , let ℓ(α) be

the least λ ∈ γ such that cλ = ϕ ← α1, . . . , αn,¬β1, . . . ,¬βm where α1, . . . , αn ∈ T
≺
η

and β1, . . . , βm, ϕ /∈ T≺
η . If there is no such ℓ(α), let T≺

α = T≺
η . Otherwise let

T≺
α = TH(P) ⇑ ω(T≺

η ∪ {pℓ(α)})

where pℓ(α) is the head of cℓ(α).

Case 2. α is a limit ordinal. Then let T≺
α =

⋃

β∈α T
≺
β .

We then get:

17

Theorem 5.5 If P is an FC-normal program and ≺ is any well-ordering of ground(P)−
ground(H(P)), then :
(1) T≺ is a stable model of P .
(2) (completeness of the construction). Every stable model model of P is of the form
T≺ for a suitably chosen ordering ≺ of ground(P)− ground(H(P)).

Example 5.2 If we consider the final extended program of Example 5.1, it is easy
to check that any ordering ≺1 in which the clause C1 = e← c,¬f precedes the clause
C2 = f ← c,¬e will have T≺1 = M1 while any ordering ≺2 in which C2 precedes C1

will have T≺2 = M2.

Once again, we note that if we restrict ourselves to countable programs P , then we
can restrict ourselves to orderings of order type ω. That is, suppose we fix some well-
ordering ≺ of ground(P) − ground(H(P)) of order type ω. Thus, the well-ordering
≺ determines some listing of the clauses of ground(P)− ground(H(P)),{cn : n ∈ ω}.
Again in this case, our forward chaining construction can be presented in a more
straightforward manner. Our construction will define an increasing sequence of sets
{T≺

n }n∈ω in stages. This given, we will then define T≺ =
⋃

n∈ω T
≺
n .

The countable forward chaining construction of T≺.

Stage 0. Let T≺
0 = TH(P) ⇑ ω(∅).

Stage n+ 1. Let ℓ(n+1) be the least s ∈ ω such that cs = ϕ← α1, . . . , αk,¬β1, . . . ,¬βm
where α1, . . . , αk ∈ T≺

n and β1, . . . , βm, ϕ /∈ T≺
n . If there is no such ℓ(n + 1), let

T≺
n+1 = T≺

n . Otherwise let

T≺
n+1 = TH(P) ⇑ ω(T≺

n ∪ {pℓ(n+1)})

where pℓ(n+1) is the head of cℓ(n+1).

Theorem 5.6 If P is a countable FC-normal program, and ≺ is any well-ordering
of ground(P)− ground(H(P)) of order type ω, then :
(1) T≺ is a stable model of P where T≺ is constructed via the countable forward
chaining algorithm.
(2) (completeness of the construction). Every stable model model of P is of the form
T≺ for a suitably chosen ordering ≺ of ground(P) − ground(H(P)) of order type ω
where T≺ is constructed via the countable forward chaining algorithm.

Theorem 5.7 If P is an FC-normal logic program with respect to Con, then every
stable model M of P is in Con.

18

FC-normal programs possess the “semi-monotonicity” property.

Theorem 5.8 Let P1, P2 be two general programs such that P1 ⊆ P2 but H(P1) =
H(P2). Assume, in addition, that both are FC-normal with respect to the same con-
sistency property. Then for every stable model M1 of P1, there is a stable model M2

of P2 such that

1. M1 ⊆M2 and

2. NG(M1, P1) ⊆ NG(M2, P2).

Here given a logic program P and a stable model M , we let NG(M,P) equal the set of
all clauses c = ϕ← α1, . . . , αk,¬β1, . . . ,¬βm in ground(P) such that α1, . . . , αk ∈M
and β1, . . . , βm /∈M .

This is a very useful result. That is, if we consider our paradigm of the robot who
moves are determined by a hardwired logic program as described in the introduc-
tion, this results tells us that if the robot is operating with respect to certain belief
set or point of view and subsequently new clauses, FC-normal with respect to the
consistency property ruling the behavior of the robot, are added, then the beliefs
at that point do not need to be recomputed, just new point of view extending the
current point of view can be formed. Adding new Horn rules, however, may require
backtracking. The reason is that we may have chosen a belief explicitly contradicting
these new facts.

The analogues of the remaining theorems of Section 4, also hold for FC-normal logic
programs.

Theorem 5.9 Let P be an FC-normal logic program with respect to a consistency
property Con. Then if E1 and E2 are two distinct stable models of P , then E1∪E2 /∈
Con.

Theorem 5.10 Let P be an FC-normal program with respect to a consistency pro-
perty Con. Suppose that T ⇑ ω({head(c) : c ∈ ground(P) − ground(H(P))}) is in
Con where for any clause c, head(c) denotes the head of the clause. Then P has a
unique stable model.

Theorem 5.11 Suppose P is an FC-normal logic program and that D ⊆ ground(P)−
ground(H(P)). Suppose further that E ′

1 and E ′
2 are distinct stable models of the pro-

gram of ground(P) ∪ D. Then P has distinct stable models E1 and E2 such that
E ′

1 ⊆ E1 and E ′
2 ⊆ E2.

19

To state the analogue of Theorem 7, we must define the notion of proof scheme for
a logic program P . A proof scheme for p with respect to P is a sequence of triples
< 〈pl, Cl, Sl〉 >1≤l≤n, with n a natural number, such that the following conditions all
hold.

1. Each pl is in HP . Each Cl is in ground(P). Each Sl is a finite subset of HP .

2. pn is p.

3. The Sl, Cl satisfy the following conditions. For all 1 ≤ l ≤ n, one of (a), (b),
(c) below holds.

(a) Cl is pl ←, and Sl is Sl−1,

(b) Cl is pl ← ¬s1, . . . ,¬sr and Sl is Sl−1 ∪ {s1, . . . , sr}, or

(c) Cl is pl ← pm1
, . . . , pmk

,¬s1, . . . ,¬sr, m1 < l,. . . ,mk < l, and
Sl is Sl−1 ∪ {s1, . . . , sr}.

(We put S0 = ∅).

Suppose that ϕ =< 〈pl, Cl, Sl〉 >1≤l≤n is a proof scheme. Then cln(ϕ) denotes the
atom pn and is called the conclusion of ϕ. Also, supp(ϕ) is the set Sn and is called
the support of ϕ.

Now suppose that P is FC-normal logic program with respect to the consistency
property Con. Then we say a proof scheme < 〈pl, Cl, Sl〉 >1≤l≤n is consistent with
respect to Con if {p1, . . . pn} ∈ Con. We then have the following.

Theorem 5.12 Let P be an FC-normal logic program with respect to a consistency
property Con. Then ϕ ∈ HP is an element of some stable model of P if and only if
ϕ has a consistent proof scheme with respect to Con.

5.2 Default logic

In this subsection, we shall translate our results of Section 4 back into the language of
default logic. We shall start with the translation between default logic and nonmono-
tonic rule systems as described in [MNR90] and [MNR92c]. Let U be the collection of
all formulas of propositional logic L. Recall a default theory 〈D,W 〉 as a pair where
D is a collection of default rules, that is, rules of form

α:Mβ1, . . . ,Mβm
ψ

, (10)

(where α, β1, . . . , βm, and ψ are formulas) and W a collection of formulas of the
language L.

20

Represent such a default theory as a rule system consisting of three lists:
(i) Elements γ ∈ W are represented as rules:

:

γ

(ii) Rules of form (10) are represented as

α:¬β1, . . . ,¬βm
γ

(That is, the restraints of the rule representing a default rule r have an additional
negation in front).
(iii) Processing rules of logic. That is, all the monotonic rules of the system of classical
logic.

We then have the following proposition from [MNR90]:

Proposition 5.13 A collection S ⊆ U is an extension of a system consisting of rules
of types (i), (ii), and (iii) if and only if S is a default extension of 〈D,W 〉.

Given a default rule r as in (10), we let prem(r) = {α}, cons(r) = {¬β1, . . . ,¬βm},
and cln(r) = ψ. If m = 0, then we say that r is a monotonic rule and otherwise
we will say that r is a nonmonotonic rule. We let mon(〈D,W 〉) denote the set of
monotonic rules of 〈D,W 〉 and nmon(〈D,W 〉) denote the set of monotonic rules of
〈D,W 〉. We say that a subset S ⊆ S is monotonically closed relative to 〈D,W 〉, if
W ⊂ S, Cn(S) = S and for any montonic rule α:

ψ
in 〈D,W 〉, it is the case that ψinS

if α ∈ S. Thus a set S containing W is montonically closed relative to 〈D,W 〉, if
S is closed under the application of all monotonic rules of 〈D,W 〉 as well as being
closed under logical consequence. It is easy to see that the intersection of any two
monotonically closed sets relative to 〈D,W 〉 is also monotonically closed relative to
〈D,W 〉 so that for any set T ⊆ L, there is a smallest set S which contains T and is
monotonically closed. We let clmon(T) denote the smallest monotonically closed set
relative to 〈D,W 〉 which contains T .

Call a family of subsets of L, Con a consistency property for 〈D,W 〉 if it satisfies the
following conditions:

1. ∅ ∈ Con.

2. If A ⊆ B and B ∈ Con then A ∈ Con.

3. Con is closed under directed unions.

4. If A ∈ Con then clmon(A) ∈ Con.

21

Given a consistency property Con, we say that a default rule rule as in (10) is FC-
normal with respect to Con if for any theory A ∈ Con such that α ∈ A and
ψ,¬β1, . . . ,¬βm, are not in A, then Cn(A∪{ψ}) ∈ Con but Cn(A∪{ψ,¬βi}) /∈ Con
for any i. Then we say that a default theory 〈D,W 〉 is FC-normal with respect to
Con if each rule r ∈ D is FC-normal with respect to Con.

Our next result will show that our definition of FC-normal default theories actually
extends Reiter’s original definition of normal default theories.

Theorem 5.14 Every normal default theory 〈D,W 〉 is an FC-normal default theory.

Proof. First observe that since every rule in a normal default theory is of the form
α:Mβ
β

, there are no monotonic rules in 〈D,W 〉. Thus a set S is monotonically closed

relative to 〈D,W 〉 if and only if Cn(S ∪W) = S (that is W ⊆ S and Cn(S) = S).

There are two cases. First, suppose that W is a logically consistent set of formulas. In
this case, it is easy to see that the set of logically consistent subsets S of the language
L such that W ∪ S is logically consistent is a consistency property for 〈D,W 〉. We
note that if Con is just the set of logically consistent sets S in L such that S ∪W is
logically consistent, then every rule of the form α:Mβ

β
is certainly FC-normal. That

is, no consistent set can contain both β and ¬β and if A is a consistent theory which
containsW such that neither β,¬β are in A, then Th(A∪{β}) is also consistent. Thus
if W is logically consistent set, then 〈D,W 〉 is FC-normal relative to the consistency
property consisting of all logically consistent sets S such that S ∪ W is logically
consistent. Second, if W is not logically consistent, then it is easy to see that for
any set S ⊂ L, clmon(S) = Cn(S ∪W) = L. Thus in this case, the only possible
consistency property with respect to 〈D,W 〉 is the set of all subsets of L. Moreover,
the only monotonically closed set is L. But then every rule of the form α:Mβ

β
is FC-

normal since there is no monotonically closed set T such that both β and ¬β are not
in T . Thus if W is logically inconsistent, then 〈D,W 〉 is FC-normal with respect to
the consistency property consisting of all subsets of L. 2

Of course, it is easy to see that there are many FC-normal default theories which are
not normal default theories since in FC-normal default theories we allow monotonic
rules and we do not restrict nonmonotonic rules to be of the form α:Mβ

β
.

We then have the following analogues of the results of Section 4.

Theorem 5.15 Let 〈D,W 〉 be an FC-normal default theory with respect to consi-
stency property Con, then there exists an extension of 〈D,W 〉.

Theorem 5.16 Let 〈D,W 〉 be an FC-normal default theory with respect to consi-
stency property Con and let I ∈ Con. Then there exists an extension I ′ of 〈D,W 〉
such that I ⊆ I ′.

22

The analogue of the forward chaining construction for FC-normal default theories is
the following. Given an FC-normal default theory 〈D,W 〉, fix some well-ordering ≺ of
D. That is, the well-ordering ≺ determines some listing of the rules of D,{rα : α ∈ γ}
where γ is some ordinal. Let Θγ be the least cardinal such that γ ≤ Θγ. In what
follows, we shall assume that the ordering among ordinals is given by ∈. Our forward
chaining construction will define an increasing sequence of sets {E≺

α }α∈Θγ
.

The forward chaining construction of E≺.

Case 0. Let E≺
0 = clmon(W).

Case 1. α = η + 1 is a successor ordinal.
Given E≺

η , let ℓ(α) be the least λ ∈ γ such that rλ = α1,...,αp:Mβk,...Mβk

ψ
where

α1, . . . , αp ∈ E≺
η and ¬β1, . . . ,¬βk, ψ /∈ E≺

η . If there is no such ℓ(α), then let
E≺
η+1 = E≺

α = E≺
η . Otherwise, let

E≺
η+1 = E≺

α = clmon(E
≺
η ∪ {cln(rℓ(α))}).

Case 2. α is a limit ordinal. Then let E≺
α =

⋃

β∈αE
≺
β .

This given, we have the following.

Theorem 5.17 If 〈D,W 〉 is an FC-normal default theory and ≺ is any well-ordering
of D, then

1. E≺ is an extension of 〈D,W 〉.

2. (completeness of the construction). Every extension of 〈D,W 〉 is of the form
E≺ for a suitably chosen well-ordering ≺ of D.

Corollary 5.18 Let 〈D,W 〉 be an FC-normal default theory with respect to consi-
stency property Con, then every extension of 〈D,W 〉 is in Con.

If we restrict ourselves to countable default theories 〈D,W 〉, i.e. if the underlying
propositional language countable, then we can restrict ourselves to orderings of order
type ω where ω is the order type of the natural numbers. That is, suppose we fix
some well-ordering ≺ of D of order type ω. Thus, the well-ordering ≺ determines
some listing of the rules of D, {rn : n ∈ ω}. Our forward chaining construction can
be presented in a more straightforward manner in this case. Our construction again
will define an increasing sequence of sets {E≺

n }n∈ω in stages.

23

The countable forward chaining construction of E≺.

Stage 0. Let E≺
0 = clmon(W).

Stage n+ 1. Let ℓ(n+ 1) be the least s ∈ ω such that

rs = α1,...,αp:Mβk,...Mβk

ψ
where α1, . . . , αp ∈ E

≺
n and ¬β1, . . . ,¬βk, ψ /∈ E≺

n . If there is

no such ℓ(n+ 1), then let E≺
n+1 = E≺

n . Otherwise, let

E≺
n+1 = E≺

n = clmon(E
≺
n ∪ {cln(rℓ(n+1))}).

We then define E≺ =
⋃

n∈ω E
≺
n .

This given, we then have the following.

Theorem 5.19 If 〈D,W 〉 is a countable FC-normal default theory then

1. E≺ is an extension of 〈D,W 〉 where E≺ is constructed via the countable for-
ward chaining algorithm with respect to ≺, where ≺ is any well-ordering of D
of order type ω.

2. (completeness of the construction.) Every extension of 〈D,W 〉 is of the form
E≺ for a suitably chosen well ordering ≺ of D of order type ω, where E≺ is
constructed via the countable forward chaining algorithm.

The “Semi-monotonicity” property holds for FC-normal default theories.

Theorem 5.20 Let ∆1 = 〈D1,W 〉 and ∆2 = 〈D2,W 〉 be two FC-normal default
theories with respect to a consistency property Con such that mon(∆1) = mon(∆2)
and nmon(∆1) ⊆ nmon(∆2). Then for every extension E1 of 〈D1,W 〉, there is an
extension E2 of 〈D2,W 〉 such that

1. E1 ⊆ E2 and

2. GD(E1,∆1) ⊆ GD(E2,∆2).

FC-normal default theories also satisfy the orthogonality of extension property with
respect to their consistency property.

Theorem 5.21 Let 〈D,W 〉 be an FC-normal default theory with respect to the con-
sistency property Con. Then if E1 and E2 are two distinct extensions of 〈D,W 〉, then
E1 ∪ E2 /∈ Con.

24

Similarly we also have the following analogues of Theorems 2.4 and 2.5.

Theorem 5.22 Let 〈D,W 〉 be an FC-normal default theory with respect to a consi-
stency property Con. Suppose that W ∪ {cln(r) : r ∈ D} is in Con. Then 〈D,W 〉
has a unique extension.

Theorem 5.23 Let 〈D,W 〉 be an FC-normal default theory and suppose that D′ is
a subset of D which contains mon(〈D,W 〉). Suppose further that E ′

1 and E ′
2 are

distinct extensions of 〈D′,W 〉. Then 〈D,W 〉 has distinct extensions E1 and E2 such
that E ′

1 ⊆ E1 and E ′
2 ⊆ E2.

Finally there is also an analogue of Theorem 4.9. First we assume that the underlying
logic has some proof systems consisting of finitely many axiom schema and finitely
many rules θ1, . . . , θk. An (annotated) proof scheme for ϕ is a finite sequence

p =<< ϕ0, r0, G0 >, . . . , < ϕm, rm, Gm >> (11)

such that ϕm = ϕ and
(1) If m = 0 then:
(a) ϕ0 is an instance of an axiom schema for L or ϕ0 ∈W , r0 = ϕ0, and G0 = ∅,
or
(b) ϕ is a conclusion of a rule r = :Mβ1,...,Mβr

ϕ
, r0 = r, and G0 = cons(r).

(2) If m > 0, << ϕi, ri, Gi >>
m−1
i=0 is a proof scheme of length m and either

(a) ϕm is a conclusion of r = ϕi:Mβ1,...,mβr

ϕm
where i < m, rm = r, and Gm = Gm−1 ∪

cons(r) or
(b) there is some i0 < . . . < is < m such that ϕm follows is the results of applying
one of the rules of proof θj to αi0 , . . . , αis , rm = θj, and Gm = Gm−1.

The formula ϕm is called the conclusion of p and is written cln(p). The set Gm is
called the support of p and is written supp(p). We say that ϕ ∈ L has a consistent
proof scheme with respect to a consistency property Con over 〈D,W 〉 if and only if
there is a proof scheme

p =<< ϕ0, r0, G0 >, . . . , < ϕm, rm, Gm >>

such that ϕm = ϕ and {ϕ0, . . . , ϕm} ∈ Con. We then have the following.

Theorem 5.24 Let 〈D,W 〉 be an FC-normal default theory with respect to a consi-
stency property Con. Then ϕ is an element of some extension of 〈D,W 〉 if and only
if ϕ has a consistent proof scheme with respect to Con.

25

5.3 Logic programming with classical negation

We now discuss the so-called “logic programming with classical negation” of [GL90]
as a chapter in the theory of nonmonotonic rule systems.
Recall the basic notions introduced in [GL90]. The collection of objects appearing in
heads or bodies of clauses is the set of all literals, that is, atoms or negated atoms.
In particular, a negated atom may appear in the head of a clause. Consider first
“general Horn” clauses in which literals may appear in arbitrary places. To each set
P of such clauses assign its answer set, the least collection A of literals satisfying the
following two conditions:
(1) If a← b1, . . . , bm is in P and b1, . . . , bm ∈ A then a ∈ A.
(2) If for some atom p, p and ¬p are both in A, then A is the whole collection Lit of
all literals.

Introduce a collection Str of structural processing rules over the set U = Lit.
These are all monotone rules of the form:

p,¬p:

a

for all atoms p and literals a.
Translate the clause: a← b1, . . . , bn as rule:

b1, . . . , bn:

a

and let tr(P) be the collection of translations of clauses in P plus the structural rules
Str. Then we have

Proposition 5.25 A subset A ⊆ Lit is an answer set for P if and only if A is an
extension of tr(P). Since tr(P) is a set of monotonic rules, such an answer set is
the least fixpoint of the (monotonic) operator associated with the translation.

Gelfond and Lifschitz then introduce general rules. Since the negation used in literals
is not the “negation-as-failure” of general logic programming, Gelfond and Lifschitz
introduce another negation symbol “not” and a general logic clause with classical
negation in the form:

a← b1, . . . , bn, not(c1), . . . , not(cm)

Then the answer set for a set P of clauses of this form is introduced by merging
the operational procedure for the construction of stable models for a program (as
introduced in [GL88]) with the procedure above. They define the answer set for a
program with classical negation as follows:

26

Let M ⊆ Lit and P be a general program. Define P/M as a collection of clauses
lacking not obtained as follows:
(1) If a clause C contains a substring not(a) where a ∈ M , then eliminate C alto-
gether.
(2) In remaining clauses eliminate all substrings of the form not(a).
The resulting program P/M lacks the symbol not, so the answer set is well defined.
Let M ′ be the answer set for P/M . We call M an answer set for P precisely when
M ′ = M .

Gelfond and Lifschitz give a computational procedure for finding such answer sets,
and subsequently reduce computing them to computing default logic extensions. Here
we give a general result showing that the construction of Gelfond and Lifschitz is
faithfully represented within nonmonotonic rule systems; here is how. Define U to be
Lit, and translate the clause:

a← b1, . . . , bn, not(c1), . . . , not(cm)

as the rule:
b1, . . . , bn : c1, . . . , cm

a

The translation of the program P then consists of the translations of individual clauses
C of P , incremented by the structural rules Str. We get the following result:

Proposition 5.26 Let P be a general logic program with classical negation and NP

be the translation described above. Then a collection M is an answer set for P if and
only if M is an extension for the rule system 〈U,NP 〉.

Let LitP = HP ∪ {¬p : p ∈ HP}. It is easy to see that LitP plays the role of
the universe U and ground(P) ∪ Str plays the role of the set of rules N in Section
4. Moreover, the not-free part of ground(P) together with the structural rules Str,
plays the role of the monotonic part of the rules N . Define mon(P) to be the the
not-free part of P incremented by Str. The immediate provability operator, TP (M),
associated with mon(P) is monotonic. Moreover, if the input M contains a pair of
contradictory literals then TP (M) is the whole set LitP .

In this setting the notion of a consistency property becomes the following. Call a
family of subsets of LitP , Con a consistency property over P if it satisfies the
following conditions:

1. ∅ ∈ Con.

2. If A ⊆ B and B ∈ Con then A ∈ Con.

3. Con is closed under directed unions.

27

4. If A ∈ Con then A ∪ Tmon(P)(A) ∈ Con.

5. LitP /∈ Con

We have, as before,

Proposition 5.27 If Con is a consistency property with respect to P and A ∈ Con,
then Tmon(P) ⇑ ω(A) ∈ Con.

Here for a general logic program Q, Tmon(Q) ⇑ ω(A) is the cumulative fixed point of
TQ over A.

Given a consistency property, we define the concept of an FC-normal CN logic
program with respect to that property in analogy with our definition of FC-normal
NRS.

Definition 5.28 (a) Let P be a CN logic program, let Con be a consistency property
with respect to P . Call P FC-normal with respect to Con if for every clause C =
p ← q1, . . . , qn, not(r1), . . . , not(rm) such that C ∈ ground(P) − ground(mon(P)),
and for every consistent fixpoint A of Tmon(P), if q1, . . . , qn ∈ A, p, r1, . . . , rm /∈ A we
have:
(1) A ∪ {p} ∈ Con
(2) A ∪ {p, ri} /∈ Con for all 1 ≤ i ≤ m.
(b) P is called FC-normal if there exists a consistency property Con such that P is
FC-normal with respect to Con.

Our condition (5) implies that there is a weakest consistency property. This is the
consistency property based on the the absence of pair of complementary literals.

We now have the following analogues of Theorem 4.1 and Theorem 4.2.

Theorem 5.29 If P is an FC-normal CN logic program, then P possesses an answer
set.

Theorem 5.30 If P is an FC-normal CN logic program with respect to the con-
sistency property Con and I ∈ Con, then P possesses an answer set I ′ such that
I ⊆ I ′.

The analogue of our forward chaining construction of extensions of an FC-normal NRS
becomes the following. Let ≺ be a well-ordering of ground(P) − ground(mon(P)).
That is, the well-ordering ≺ determines some listing of the clauses of ground(P) −
ground(mon(P)), {cα : α ∈ γ} where γ is some ordinal. Let Θγ be the least cardinal

28

such that γ ≤ Θγ. Our forward chaining construction will define an increasing se-
quence of subsets of LitP , {T≺

α }α∈Θγ
. This given, we will then define T≺ =

⋃

α∈Θγ
T≺
α

and show that T≺ is always an answer set for P . Moreover we shall show that all
answer sets for P arise from this construction.

The forward chaining construction of T≺.

Case 0. T≺
0 = Tmon(P) ⇑ ω(∅)

Case 1. Suppose that α = η+1 is a successor ordinal. Given T≺
η , let ℓ(α) be the least

λ ∈ γ such that cλ = ϕ ← α1, . . . , αn, not(β1), . . . , not(βm) where α1, . . . , αn ∈ T≺
η

and β1, . . . , βm, ϕ /∈ T≺
η . If there is no such ℓ(α), let T≺

α = T≺
η . Otherwise let

T≺
α = Tmon(P) ⇑ ω(T≺

η ∪ {pℓ(α)})

where pℓ(α) is the head of cℓ(α).

Case 2. α is a limit ordinal. Then let T≺
α =

⋃

β∈α T
≺
β .

We then get:

Theorem 5.31 If P is an FC-normal CN logic program and ≺ is any well-ordering
of ground(P)− ground(mon(P)), then :

1. T≺ is an answer set for P .

2. (completeness of the construction). Every answer set for P is of the form T≺

for a suitably chosen ordering ≺ of ground(P)− ground(mon(P)).

Once again, we note that if we restrict ourselves to countable programs P , then we
can restrict ourselves to orderings of order type ω. That is, suppose we fix some well-
ordering ≺ of ground(P)−ground(mon(P)) of order type ω. Thus, the well-ordering
≺ determines some listing of the clauses of ground(P) − ground(mon(P)),{cn : n ∈
ω}. Again in this case, our forward chaining construction can be presented in a more
straightforward manner. Our construction will define an increasing sequence of sets
{T≺

n }n∈ω in stages. This given, we will then define T≺ =
⋃

n∈ω T
≺
n .

The countable forward chaining construction of T≺.

Stage 0. Let T≺
0 = Tmon(P) ⇑ ω(∅).

29

Stage n+ 1. Let ℓ(n+1) be the least natural number s such that cs = ϕ← α1, . . . , αk,
not(β1), . . . , not(βm) where α1, . . . , αk ∈ T≺

n and β1, . . . , βm, ϕ /∈ T≺
n . If there is no

such ℓ(n+ 1), let T≺
n+1 = T≺

n . Otherwise let

T≺
n+1 = TH(P) ⇑ ω(T≺

n ∪ {pℓ(n+1)})

where pℓ(n+1) is the head of cℓ(n+1).

Theorem 5.32 If P is a countable FC-normal CN logic program, and ≺ is any well-
ordering of ground(P)− ground(mon(P)) of order type ω, then :
(1) T≺ is a answer set for P where T≺ is constructed via the countable forward
chaining algorithm.
(2) (completeness of the construction). Every answer set for P is of the form T≺ for
a suitably chosen ordering ≺ of ground(P)− ground(mon(P)) of order type ω where
T≺ is constructed via the countable forward chaining algorithm.

Theorem 5.33 If P is an FC-normal CN logic program with respect to Con, then
every answer set model M for P is in Con.

FC-normal programs possess “semi-monotonicity” property.

Theorem 5.34 Let P1, P2 be two CN logic programs such that P1 ⊆ P2 but mon(P1) =
mon(P2). Assume, in addition, that both are FC-normal with respect to the same con-
sistency property. Then for every answer set M1 for P1, there is an answer set M2

for P2 such that

1. M1 ⊆M2 and

2. NG(M1, P1) ⊆ NG(M2, P2).

Here given a CN logic program P and an answer set M , we let NG(M,P) equal the
set of all clauses c = ϕ ← α1, . . . , αk, not(β1), . . . , not(βm) in ground(P) such that
α1, . . . , αk ∈M and β1, . . . , βm /∈M .

The analogues of the remaining theorems of Section 4, also hold for FC-normal logic
programs with classical negation.

Theorem 5.35 Let P be an FC-normal CN logic program with respect to a consi-
stency property Con. Then if E1 and E2 are two distinct answer sets for P , then
E1 ∪ E2 /∈ Con.

30

Theorem 5.36 Let P be an FC-normal CN logic program with respect to a consi-
stency property Con. Suppose that T ⇑ ω({head(c) : c ∈ ground(P)−ground(mon(P))})
is in Con where for any clause c, head(c) denotes the head of the clause. Then P has
a unique answer set.

Theorem 5.37 Suppose P is an FC-normal CN logic program and that D ⊆ ground(P)−
ground(mon(P)). Suppose further that E ′

1 and E ′
2 are distinct answer sets for the

program of ground(P) ∪ D. Then P has distinct answer sets E1 and E2 such that
E ′

1 ⊆ E1 and E ′
2 ⊆ E2.

To state the analogue of Theorem 7, we must define the notion of proof scheme for
a logic program P . A proof scheme for p with respect to P is a sequence of triples
< 〈pl, Cl, Sl〉 >1≤l≤n, with n a natural number, such that the following conditions all
hold.

1. Each pl is in LitP . Each Cl is in ground(P). Each Sl is a finite subset of LitP .

2. pn is p.

3. The Sl, Cl satisfy the following conditions. For all 1 ≤ l ≤ n, one of (a), (b),
(c) below holds.

(a) Cl is pl ←, and Sl is Sl−1,

(b) Cl is pl ← not(s1), . . . , not(sr) and Sl is Sl−1 ∪ {s1, . . . , sr}, or

(c) Cl is pl ← pm1
, . . . , pmk

, not(s1), . . . , not(sr), m1 < l,. . . ,mk < l, and
Sl is Sl−1 ∪ {s1, . . . , sr}.

(We put S0 = ∅).

Suppose that ϕ =< 〈pl, Cl, Sl〉 >1≤l≤n is a proof scheme. Then cln(ϕ) denotes atom
pn and is called the conclusion of ϕ. Also, supp(ϕ) is the set Sn and is called the
support of ϕ.

Now suppose that P is an FC-normal logic program with respect to the consistency
property Con. Then we say a proof scheme < 〈pl, Cl, Sl〉 >1≤l≤n is consistent with
respect to Con if {p1, . . . pn} ∈ Con. We then have the following.

Theorem 5.38 Let P be an FC-normal CN logic program with respect to a consi-
stency property Con. Then ϕ ∈ LitP is an element of some answer set for P if and
only if ϕ has a consistent proof scheme with respect to Con.

31

5.4 Truth Maintenance Systems

In this and the next section, we shall discuss two other nonmonotonic formalism which
have appeared in the literature. In each of these cases, we shall be content to simply
translate these formalisms into nonmonotonic rules systems and leave it to the reader
to translate the definition of FC-normal and the statements of its various properties.

Our description takes care of both truth maintenance systems as defined by Doyle
[Doy79] and De Kleer [dK86], with subsequent contributions of Reinfrank, Dressler,
and Brewka [RDB89].

Let At be a collection of atoms. By a rule over At we mean a object of the form
r = 〈A | B〉 → c where A,B ⊆ At, c ∈ At. A truth maintenance system (TMS for
short) is a collection of rules.

Let S be a TMS. Given M ⊆ At, an M -derivation of an atom a ∈ At is a finite
sequence < a1, . . . , an > satisfying the conditions:
(1) an = a.
(2) For every j ≤ n, either a rule 〈∅ | ∅〉 → aj belongs to S or
there is a rule 〈A | B〉 → aj in S such that A ⊆ {a1, . . . , aj−1}, B ∩M = ∅.

We call M a TMS-extension of S if and only if M has the property that M consists
of precisely these atoms that possess an M -derivation.

It is easy to reconstruct, in this setting, truth maintenance as logic programming.
Namely, we can translate a rule 〈A | B〉 → c as a program clause c ← a1, . . . , am,
not(b1), . . . , not(bn) where A = {a1, . . . , am} and B = {b1, . . . , bn}. In this fashion,
TMS-extensions become stable models of the resulting programs. This also implies
that one can also construct truth-maintenance systems with literals.

To do this properly one considers (as in the case rules which involve literals and
also“built-in” rules 〈{a,¬a}, ∅〉 → c. For more about these, see ([MT93]).

The results on FC-normal logic programs as well as on FC-normal logic programs
with classical negation allow us to prove analogous results for TMS, and also TMS
with literals. We shall not pursue this matter further in this paper.

5.5 McDermott and Doyle systems

McDermott and Doyle [MD80] and McDermott [McD82] investigated another system
of nonmonotonic reasoning. This system is based on modal logic. Here is a short
description of that approach and the description how it fits into our framework. Let
LL be the propositional modal language based on modal operator L (expressing the
necessity operator). We consider a strong notion of proof based on the application
of the necessitation rule to all formulas, not just all theorems, of the logic under

32

consideration. That is, this notion of proof from a set of formulas I allows us to
apply necessitation to all formulas previously proved.

Let S be a modal logic. Examples of such a logic includes the familiar S4, S5, K
or even a logic that does not includes the schemes of K. We associate with S its
consequence operation based on the above strong notion of proof. We denote it by
CnS(·). We now introduce the notion of S-expansion. Given a set of formulas
I ⊆ LL, we say that a theory T ⊆ LL is a S-expansion of I if

T = CnS(I ∪ {¬Lϕ:ϕ /∈ T}) (12)

Notice that the role of the logic S here is slightly different than in the usual ap-
plications of modal logic. S serves as means of reconstruction of T from the initial
assumptions I and the negative introspection with respect to T . It should be clear
that regardless of what S is (it does not even need to be included in S5) that an
expansion of any theory is closed under S5-consequence. It is the discipline of recon-
struction that makes the difference. Note the weaker the logic, the more difficult it
is to reconstruct.

We show now how this formalism can be faithfully represented as a nonmonotonic
rule system. Let S be a fixed modal logic, axiomatized by a set of axioms AX. We
define a rule system SS as follows. The universe U of our system is LL. The set N
consists of the following five groups of rules:

1. :
ϕ

, where ϕ ranges over all the axioms of propositional logic in the language
LL, treating every formula of the form Lψ as an atom.

2. :
ϕ

, where ϕ ranges over all the the axioms of the logic S.

3. ϕ:
Lϕ

for all the formulas ϕ ∈ LL.

4. ϕ,ϕ⊃ψ:
ψ

for all the formulas ϕ, ψ ∈ LL.

5. :ϕ
¬Lϕ

for all ϕ ∈ LL.

Notice that the groups (1), (2), (3), and (4) of rules are monotonic, only the group
(5) consists of nonmonotonic rules.

We have the following result

Theorem 5.39 Let S be a modal logic. Let I ⊆ LL. Then T is an S-expansion of
of I if end only if T is an extension of I in the nonmonotonic rule system SS .

This result allows us to apply the theory developed in this paper to S-expansions.
That is, we can introduce the notion of consistency property for a modal logic (notice

33

that we have just one system for any given modal logic). If the system SS is FC-
normal for such property then, in particular every set of formulas consistent with
respect to that property possesses an extension.

6 The Complexity of Extensions for a Recursive

FC-normal NRS.

This section will be divided into two subsections. First we shall introduce some
preliminaries from recursion theory and various classes of recursive rule systems so
that we can make our statements about the complexity of extensions for recursive
FC-normal NRS’s precise. We shall also provide a brief review of what is known
about the complexity of extensions in recursive nonmonotonic rule systems. In the
second subsection, we shall state our new results about the complexity of extensions
in recursive FC-normal nonmonotonic rule systems. The proofs of these new results
will be deferred until Section 8

6.1 Preliminaries

Let ω denote the set of natural numbers. The canonical index, can(X), of finite set
X = {x1 < . . . < xn} ⊆ ω is defined as 2x1 + . . .+ 2xn and the canonical index of ∅ is
defined as 0. Let Dk be the finite set whose canonical index is k, i.e., can(Dk) = k.

We shall identify a rule r with a triple < k, l, ϕ > where Dk = prem(r), and Dl =
cons(r), ϕ = c(r). In this way, when U ⊆ ω we can think about N as a subset of ω
as well. This given, we then say that a NRS S = 〈U,N〉 is recursive if U and N are
recursive subsets of ω

Next we shall define various types of recursive trees and Π0
1 classes. Let [,]:ω×ω → ω

be a fixed one-to-one and onto recursive pairing function such that the projection fun-
ctions π1 and π2 defined by π1([x, y]) = x and π2([x, y]) = y are also recursive. Extend
our pairing function to code n-tuples for n > 2 by the usual inductive definition, that
is, let [x1, . . . , xn] = [x1, [x2, . . . , xn]] for n ≥ 3. Let ω<ω be the set of all finite
sequences from ω, let 2<ω be the set of all finite sequences of 0’s and 1’s. Given
α =< α1, . . . , αn > and β =< β1, . . . , βk > in ω<ω, write α ⊑ β if α is initial segment
of β, i.e. , if n ≤ k and αi = βi for i ≤ n. In this paper, we identify each finite
sequence α =< α1, . . . , αn > with its code c(α) = [n, [α1, . . . , αn]] in ω. Let 0 be
the code of the empty sequence ∅. When we say that a set S ⊆ ω<ω is recursive,
recursively enumerable, etc., what we mean is that the set {c(α):α ∈ S} is recursive,
recursively enumerable, etc. Define a tree T to be a nonempty subset of ω<ω such
that T is closed under initial segments. Call a function f :ω → ω an infinite path

34

through T provided that for all n, < f(0), . . . , f(n) >∈ T . Let [T] be the set of
all infinite paths through T . Call a set A of functions a Π0

1-class if there exists a
recursive predicate R such that A = {f :ω → ω :∀n(R([f(0), . . . , f(n)])}. Call a
Π0

1-class A recursively bounded if there exists a recursive function g:ω → ω such
that ∀f ∈ A∀n(f(n) ≤ g(n)). It is not difficult to see that if A is a Π0

1-class, then
A = [T] for some recursive tree T ⊆ ω<ω. Say that a tree T ⊆ ω<ω is highly recur-
sive if T is a recursive, finitely branching tree, and also there is a recursive procedure
which, applied to α =< α1, . . . , αn > in T , produces a canonical index of the set of
immediate successors of α in T . Then if A is a recursively bounded Π0

1-class, it is
easy to show that A = [T] for some highly recursive tree T ⊆ ω<ω, see [JS72b]. For
any set A ⊆ ω, let A′ = {e: {e}A(e) is defined} be the jump of A, let 0′ denote the
jump of the empty set ∅. We write A ≤T B if A is Turing reducible to B and A ≡T B
if A ≤T B and B ≤T B.

Formally, say that there is an effective, one-to-one degree preserving correspondence
between the set of extensions E(S) of a recursive nonmonotonic rule system S =
〈U,N〉 and the set of infinite paths [T] through a recursive tree T if there are indices
e1 and e2 of oracle Turing machines such that
(i) ∀f ∈ [T]{e1}

gr(f) = Ef ∈ E(S),
(ii) ∀E ∈ E(S){e2}

E = fE ∈ [T], and
(iii) ∀f ∈ [T]∀E∈E(S)({e1}

gr(f) = E if and only if {e2}
E = f).

where {e}B denotes the function computed by the eth oracle machine with oracle
B. Also, write {e}B = A for a set A if {e}B is a characteristic function of A, and
for a function f :ω → ω, gr(f) = {[x, f(x)]:x ∈ ω}. Condition (i) says that the
branches of the tree T uniformly produce extensions via an algorithm with index e1.
Condition (ii) says that extensions of S uniformly produce branches of the tree T via
an algorithm with index e2. Condition (iii) asserts that if {e1}

gr(f) = Ef , then f is
Turing equivalent to Ef . In the sequel we shall not explicitly construct the indices e1
and e2, but it will be clear that such indices can be constructed in each case.

There are two important subclasses of recursive NRS’s introduced in [MNR92a], na-
mely locally finite and highly recursive nonmonotonic rules systems. Say that the
system 〈U,N〉 is locally finite if for each ϕ ∈ U , there exist only finitely many
≺-minimal proof schema with conclusion ϕ. If 〈U,N〉 is locally finite, then for every
ϕ, there exists a finite set of derivations Drϕ such that all the derivations of ϕ are
inessential extensions of derivations in Drϕ. That is, if p is a derivation of ϕ, then
there is a derivation p1 ∈ Drϕ such that p1 ≺ p. Finally, say that 〈U,N〉 is highly
recursive if 〈U,N〉 is recursive, locally finite, and the map ϕ 7→ can(Drϕ) is partial
recursive. The latter means that there is an effective procedure which, when applied
to any ϕ ∈ U , produces a canonical index of the set of all ≺-minimal proof schema
with conclusion ϕ.

This given, we can now state some basic results from [MNR92c, MNR92b, MNR92a]
on the complexity of extensions in recursive nonmonotonic rule systems.

35

Theorem 6.1 For any highly recursive NRS system S = 〈U,N〉, there is a highly
recursive tree TS such that there is an effective one-to-one degree preserving corre-
spondence between [TS] and E(S). Vice versa, for any highly recursive tree T , there is
a highly recursive NRS system ST = 〈U,N〉 such that there is an effective one-to-one
degree preserving correspondence between [T] and E(ST).

Theorem 6.2 For any locally finite recursive NRS system S = 〈U,N〉, there is a
tree TS which is highly recursive in 0′ such that there is an effective one-to-one degree
preserving correspondence between [TS] and E(S). Vice versa, for any highly recursive
tree T in 0′, there is a locally finite recursive NRS system ST = 〈U,N〉 such that there
is an effective one-to-one degree preserving correspondence between [T] and E(ST).

Theorem 6.3 For any recursive NRS system S = 〈U,N〉, there is a recursive tree
TS such that there is an effective one-to-one degree preserving correspondence between
[TS] and E(S). Vice versa, for any recursive tree T , there is a recursive NRS system
ST = 〈U,N〉 such that there is an effective one-to-one degree preserving correspon-
dence between [T] and E(ST).

Because the set of degrees of paths through trees have been extensively studied in
the literature, we immediately can derive a number of corollaries about the degrees of
extensions in recursive NRS systems. We shall give a few of these corollaries below.
We begin with some consequences of Theorem 6.1. First there are some basic results
which guarantee that there are extensions of a highly recursive NRS system which
are not too complex. Let 0 denote the degree of recursive sets and 0′ its jump. Call
A low if A′ ≡T 0′. This means that A is called low provided that the jump of A
is as small as possible with respect to Turing degrees. The following corollary is an
immediate consequence of Theorem 4.1 and the work of Jockusch and Soare [JS72b].

Corollary 6.4 Let S = 〈U,N〉 be a highly recursive nonmonotonic rule system such
that E(S) 6= ∅. Then
(i) There exists an extension E of S such that E is low.
(ii) If S has only finitely many extensions, then every extension E of S is recursive.

In the other directions, there are a number of corollaries of the Theorem 4.1 which
allow us to show that there are highly recursive NRS systems S such that the set of
degrees realized by elements of E(S) are quite complex. Again all these corollaries
follow by transferring results of Jockusch and Soare [JS72b, JS72a].

Corollary 6.5 1. There is a highly recursive nonmonotonic rule system 〈U,N〉
such that 〈U,N〉 has 2ℵ0 extensions but no recursive extensions.

36

2. There is a highly recursive nonmonotonic rule system 〈U,N〉 such that 〈U,N〉
has 2ℵ0 extensions and any two extensions E1 6= E2 of 〈U,N〉 are Turing in-
comparable.

3. If a is any Turing degree such that 0 <T a ≤T 0′, then there is a highly recursive
nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has 2ℵ0 extensions but no
recursive extensions and 〈U,N〉 has an extension of degree a.

4. If a is any Turing degree such that 0 <T a ≤T 0′, then there is a highly recursive
nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has ℵ0 extensions, 〈U,N〉
has an extension E of degree a and if E ′ 6= E is an extension of 〈U,N〉, then
E ′ is recursive.

5. There is a highly recursive nonmonotonic rule system 〈U,N〉 such that 〈U,N〉
has 2ℵ0 extensions and if a is the degree of any extension E of 〈U,N〉 and b is
any recursively enumerable degree such that a <T b, then b ≡T 0′.

6. If a is any recursively enumerable Turing degree, then there is a highly recursive
nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has 2ℵ0 extensions and the
set of recursively enumerable degrees b which contain an extension of 〈U,N〉 is
precisely the set of all recursively enumerable degrees b ≥T a.

Now the situation for locally finite recursive NRS rule systems is very similar to
the situation for highly recursive NRS systems except that the degrees of extensions
may be more complex. Essentially every result in Corollaries 4.4 and 4.5 hold for
locally finite recursive NRS systems where each statement is taken relative to an 0′

oracle. See [MNR92c] for further details. However, the situation for general recursive
NRS systems is quite different. That is, for general recursive NRS systems the set
of elements of E(S) may be extremely complex. For example, all we can say in the
positive direction is the following.

Corollary 6.6 1. Every recursive NRS system S = 〈U,N〉 which has an extension
has an extension E such that E ≤T B where B is a complete Π1

1-set.

2. If S = 〈U,N〉 is a recursive NRS system with a unique extension E, then E is
hyperarithmetic.

In the opposite direction we have the following results, see[MNR92b].

Corollary 6.7 1. There a recursive NRS system S = 〈U,N〉 such that S has an
extension but S has no extension which is hyperarithmetic.

2. For each recursive ordinal α, there exists a recursive NRS system S = 〈U,N〉
possessing a unique extension E such that E ≡T 0(α).

37

6.2 Recursion theory of extensions of FC-normal NRS

In this subsection, we shall state our results on the complexity of extensions in a re-
cursive FC-normal nonmonotonic rule systems. Our first result of this subsection will
show that under the assumption of FC-normality that even recursive nonmonotonic
rule systems are guaranteed to have at least one relatively well behaved extension
which is in great contrast to Corollary 6.7.

Theorem 6.8 Suppose that S = 〈U,N〉 is a recursive nonmonotonic rule system
and S is FC-normal. Then S has an extension E such that E is r.e. in 0′ and hence
E ≤T 0′′.

We note that Theorem 6.8 is in some sense the best possible. That is, results from
[MNR93a] show that the following holds. Given sets A,B ⊆ ω, let A ⊕ B = {2x :
x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Theorem 6.9 Let A be any r.e. set and B be any set which is r.e. in A, i.e.
B = {x : ϕe(x) ↓}. Then there is a recursive FC-normal NRS S = 〈U,N〉 such S
has a unique extension E and E ≡T A ⊕ B. In particular, if B is any set which is
r.e. in 0′ and B ≥T 0′, then there is an FC-normal NRS S such that S has a unique
extension E and E ≡T B.

However we shall show that if either mon(S) or nmon(S) is finite, then we can
improve on Theorem 6.8. That is, we have the following.

Theorem 6.10 Let S = 〈U,N〉 be a recursive rule system such that S is FC-normal
and nmon(S) is finite, then every extension of S is r.e.

We say that a recursive nonmonotonic rule system S = 〈U,N〉 is monotonically
decidable if the monotonic closure of any finite set F is recursive and there is a
uniform effective procedure to go from a canonical index of a finite set F to a recursive
index of the clmon(F), i.e. if there is a recursive function f such that for all k, φf(k) is
the characteristic function of clmon(Dk). It is easy to see that if mon(S) is finite, then
the recursive nonmonotonic rule system S = 〈U,N〉 is automatically monotonically
decidable.

Theorem 6.11 Let S = 〈U,N〉 be a recursive nonmonotonic rule system such that
S is FC-normal and monotonically decidable, then S has an extension which is r.e.

38

Next we consider the case where S = 〈U,N〉 is a finite FC-normal nonmonotonic rule
system, i.e. we assume that both U and N are finite. In this case, we shall see that
our forward chaining algorithm runs in polynomial time.

For complexity considerations, we shall assume that the elements of U are coded
by strings over some finite alphabet Σ. Thus every a ∈ U will have some length

which we denote by ||a||. Next, for a rule r =
a1, . . . , an : b1, . . . , bm

c
, we define

||r|| = (
∑

i≤n ||ai||) + (
∑

i≤m ||bj||) + ||c||. Finally, for a set Q of rules, we define

||Q|| =
∑

r∈Q

||r||.

Theorem 6.12 Suppose S = 〈U,N〉 is a finite FC-normal nonmonotonic rule sy-
stem and ≺ is some well-ordering of nmon(S). Then E≺ as constructed via our
forward chaining algorithm can be computed in time O(||mon(S)|| · ||nmon(S)|| +
||nmon(S)||2).

We note that we did not make any explicit assumptions that the underlying con-
sistency property of a recursive FC-normal NRS S = 〈U,N〉 is any way effective.
Indeed none of the above results require that the underlying consistency property has
any effective properties. We define a consistency property Con for S to be finitely
decidable if there is an effective procedure which applied to the canonical index of
any finite subset X of U determines whether X ∈ Con. Then the following result
easily follows from our completeness theorem for FC-normal NRS’s.

Theorem 6.13 Let S = 〈U,N〉 be a highly recursive rule system such that S is FC-
normal with respect to a decidable consistency property Con. Then {u ∈ U : u is in
some extension of S} is recursive.

Finally we have the following result about recursive FC-normal nonmonotonic rule
systems.

Theorem 6.14 Let T be a recursive tree in 2<ω such that [T] 6= ∅. Then there is
an FC-normal recursive NRS S = 〈U,N〉 such that there is an effective one-to-one
degree preserving correspondence between [T] and E(S).

Reiter ([Rei80]) proved that there is a recursive normal default theory with no re-
cursive extension. Theorem 6.14 generalizes his result but also gives much finer in-
formation even for recursive normal default theories since the set of degrees of paths
through highly recursive trees have been extensively studied. Our correspondence
will allow us to transfer all results about the possible degrees of paths through highly

39

recursive trees to results about the degrees of extensions of recursive FC-normal NRS
systems. That is, all the results of Corollary 6.5 continue to hold if we replace recur-
sive nonmonotonic rule system by FC-normal recursive nonmonotonic rule system in
each part of its statement. Moreover, we note that the proof of Theorem 6.14 ex-
plicitly constructs recursive FC-normal NRS’s such that the underlying consistency
property is not finitely decidable.

Corollary 6.15 1. There is an FC-normal recursive nonmonotonic rule system
〈U,N〉 such that 〈U,N〉 has 2ℵ0 extensions but no recursive extensions.

2. There is an FC-normal recursive nonmonotonic rule system 〈U,N〉 such that
〈U,N〉 has 2ℵ0 extensions and any two extensions E1 6= E2 of 〈U,N〉 are Turing
incomparable.

3. If a is any Turing degree such that 0 <T a ≤T 0′, then there is a highly recursive
nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has 2ℵ0 extensions but no
recursive extensions and 〈U,N〉 has an extension of degree a.

4. If a is any Turing degree such that 0 <T a ≤T 0′, then there is an FC-normal
recursive nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has ℵ0 extensions,
〈U,N〉 has an extension E of degree a and if E ′ 6= E is an extension of 〈U,N〉,
then E ′ is recursive.

5. There is an FC-normal recursive nonmonotonic rule system 〈U,N〉 such that
〈U,N〉 has 2ℵ0 extensions and if a is the degree of any extension E of 〈U,N〉
and b is any recursively enumerable degree such that a <T b, then b ≡T 0′.

6. If a is any recursively enumerable Turing degree, then there is an FC-normal
recursive nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has 2ℵ0 extensions
and the set of recursively enumerable degrees b which contain an extension of
〈U,N〉 is precisely the set of all recursively enumerable degrees b ≥T a.

Theorem 6.8 allows us to compare the FC-normal nonmonotonic rule systems (and
thus FC-normal logic programs) with another class of rule systems that always have
extensions.

To this end, motivated by Apt, Blair and Walker [ABW87] and Przymusinski [Prz88]
consider the class of locally stratified rule systems. These are rule systems S = 〈U,N〉
with the following property: There exists a function rank : U → Ord such that for
every rule

α1, . . . , αm : β1, . . . , βn
γ

in N , for all 1 ≤ i ≤ m, rank(αi) ≤ rank(γ) and for all 1 ≤ j ≤ n, rank(βj) < rank(γ).

40

Apt, Blair and Walker [ABW87] (see also [MT93]) show that a stratified NRS pos-
sesses a unique extension. Hence, stratified NRS systems share with FC-normal NRS
systems the property that an extension always exists. This similarity is, however,
superficial. We will show that the classes of stratified and FC-normal systems are
very different.

Example 6.1 1. There exists a locally stratified NRS system which is not FC-
normal,

2. There exist FC-normal NRS system which is not stratified.

(1) It follows from the results of [BMS91] that for every recursive ordinal number α
there exists a recursive locally stratified nonmonotonic rule system Sα such that its
unique extension has the degree ≥T 0(α). By Theorem 6.8 Sα cannot be FC-normal
for α > 3, as every recursive FC-normal NRS system possesses an extension of the
degree ≤ 0′′.
(2) Since there are FC-normal NRS systems with more than one extension, such
systems cannot be locally stratified.

Next, we notice that the locally stratified have another property that makes their use
for belief revision awkward. Namely, that the locally stratified NRS systems do not
possess the semimonotonicity property.

Example 6.2 Let U = {a, . . . , z} and let N be composed of these three rules:

: r

w

q : s

r

p :

q

Then 〈U,N〉 is stratified and {w} is its unique extension. Now add the rule

: t

p

The new system is again stratified, but its unique extension is now {p, q, r}. Thus
semimonotonicity fails for stratified programs.

7 Proofs of general results on FC-normal Non-

monotonic Rule Systems

In this section, we shall give the proof of the results stated in Section 4.

41

¿From now on we assume all FC-normal nonmonotonic rule systems have the consi-
stency property given by Con.

Theorem 4.1 Every FC-normal nonmonotonic rule system has an extension.

Proof: We shall show that our forward chaining construction will always produce
an extension. Thus fix some well-ordering ≺ of nmon(S). Our well-ordering ≺
determines some listing of the rules of nmon(S),{rα : α ∈ γ}, where γ is some
ordinal. Let Θγ be the least cardinal such that γ ≤ Θγ. In what follows, we shall
assume that the ordering among ordinals is given by ∈. Recall our forward chaining
construction an increasing sequence of sets {E≺

α }α∈Θγ
as follows.

The forward chaining construction of E≺.

Case 0. Let E≺
0 = clmon(∅).

Case 1. α = η + 1 is a successor ordinal.

Given E≺
η , let ℓ(α) be the least λ ∈ γ such that rλ = α1, . . . , αp : β1, . . . , βk

ψ
where

α1, . . . , αp ∈ E
≺
η and β1, . . . , βk, ψ /∈ E≺

η . If there is no such ℓ(α), then let E≺
η+1 =

E≺
α = E≺

η . Otherwise, let

E≺
η+1 = E≺

α = clmon(E
≺
η ∪ {cln(rℓ(α))}).

Case 2. α is a limit ordinal. Then let E≺
α =

⋃

β∈αE
≺
β .

We then let E≺ =
⋃

α∈Θγ
E≺
α .

It is straightforward to prove by (transfinite) induction that Con(E≺
α) holds for all

α ∈ Θγ and hence Con(E≺) holds. Next we want to prove by (transfinite) induction
that E≺

α ⊆ CE≺(∅) for all α ∈ Θγ. If α = 0, then clearly E≺
0 = clmon(∅) ⊆ CE≺(∅).

Suppose α is a successor ordinal and η + 1 = α. Assume by induction that E≺
η ⊆

CE≺(∅). Then if E≺
η 6= E≺

η+1, there exists one rule rℓ(η+1) = α1, . . . , αp : β1, . . . , βk
ψ

where α1, . . . , αp ∈ E≺
η , β1, . . . , βk /∈ E≺

η , and E≺
η+1 = clmon(Eη ∪ {ψ}). But since

rℓ(η+1) is FC-normal, we know that E≺
η ∪ {ψ, βi} is not consistent for all i ≤ k. Since

E≺ is consistent, it must be the case that E≺
η ∪ {ψ, βi} 6⊆ E≺ for all i ≤ k since

subsets of consistent sets are consistent. Thus for all i ≤ k, βi /∈ E
≺. Hence rℓ(η+1)

shows that ψ ∈ CE≺(∅). But then E≺
η ∪ {ψ} ⊆ CE≺(∅) from which it easily follows

that clmon(E
≺
η ∪ {ψ}) = E≺

η+1 ⊆ CE≺(∅). For α a limit, we can assume by induction
that E≺

β ⊆ CE≺(∅) for all β ∈ α and so E≺
α =

⋃

β∈αE
≺
β ⊆ CE≺(∅). Thus we have

shown E≺
β ⊆ CE≺(∅) for all β ∈ Θγ and hence E≺ =

⋃

β∈Θγ
E≺
β ⊆ CE≺(∅).

To prove that CE≺(∅) ⊆ E≺, we proceed by induction on the length of minimal
proof schemes. That is, suppose that if p is a minimal proof scheme of length ≤ m

42

such that supp (p) ∩ E≺ = ∅, then cln(p) ∈ E≺. Now suppose q =<< α0, rη0 , G0 >
, . . . , < αm, rηm

, Gm >> is a minimal proof scheme of lengthm+1 where Gm∩E
≺ = ∅.

Then by induction α1, . . . , αm−1 ∈ E
≺ and hence α1, . . . , αm−1 ∈ E

≺
α for some α ∈ Θγ.

Suppose rηm
= αi0 , . . . αis : β1, . . . , βk

αη
where i0 < . . . < is < m and β1, . . . , βk /∈ E

≺.

Now it is easy to see that our construction ensures that if rℓ(η+1) is defined, then
cln(rℓ(η+1)) /∈ E

≺
η . Hence if λ 6= η and rℓ(λ) and rℓ(η) are defined, then rℓ(λ) 6= rℓ(η).

Thus the function ℓ() is one-to-one on its domain. Now suppose that αη /∈ E
≺. Then

for all λ+ 1 greater than α, rηm
is a candidate to be rℓ(λ+1) at stage λ+ 1. Hence it

must be that case that rℓ(λ+1) is defined and ℓ(λ + 1) ∈ ηm. But this is impossible.
That is, if Θγ is infinite, then the cardinality of {rℓ(λ+1) : ηm ∈ λ ∈ Θγ} is equal to
the cardinality of Θγ which is strictly greater than the cardinality of {δ : δ ∈ ηm}.
Similary if Θγ is finite, then the fact that rℓ(λ) is defined for all λ ≤ Θγ and ℓ() is one-
to-one would mean that the cardinality of {rℓ(λ) : λ ∈ Θγ} is equal to the cardinality
of nmon(S) so that every rule r ∈ nmon(S) must be equal to rℓ(λ) for some λ. Thus
in either case we have shown that if αn /∈ E

≺, then for some µ ∈ Θγ, rηn
is the least

rule r = δ1, . . . , δs : γ1, . . . , γt
ψ

such that δ1, . . . , δk ∈ E
≺
µ and γ1, . . . , γt, ψ /∈ E≺

µ . But

then by construction αn ∈ E
≺
µ+1 ⊆ E≺. Thus αn must be in E≺. Hence CE≺(∅) ⊆ E≺

and E≺ is an extension as claimed. 2

Note that the proof of Theorem 4.1, remains unchanged if instead of starting with
clmon(∅) at stage 0, we start with clmon(I) where I ∈ Con. Thus we also have the
following.

Theorem 4.2 Let S = 〈U,N〉 be an FC-normal nonmonotonic rule system with
respect to consistency property Con. Let I be a subset of U such that I ∈ Con. Then
there exists an extension I ′ of S such that I ⊆ I ′.

Next we want to show that every extension of an FC-normal NRS S = 〈U,N〉 can be
constructed by our forward chaining construction relative to an appropriate ordering
of the nmon(S).

Theorem 4.3 If S = 〈U,N〉 is an FC-normal NRS, and ≺ is any well-ordering of
nmon(S), then :
(1) E≺ is an extension of S.
(2) (completeness of the construction). Every extension of S is of the form E≺ for a
suitably chosen ordering ≺ of nmon(S).

Proof: (1) follows from our proof of Theorem 4.1.
(2) We prove the following fact:
Let F be an extension of an FC-normal NRS S = 〈U,N〉. Let µ = card (NG(F,S))
and let ≺ be some well-ordering of nmon(S) such that the listing of nmon(S) deter-

43

mined by ≺, {rα : α ∈ γ}, is such that µ ≤ γ and NG(F,S) = {rα : α ∈ µ}. Then
(i) F = clmon({cln(r) : r ∈ NG(F,S)}) and
(ii) F = E≺ where E≺ is constructed by our forward chaining construction.

For (i), note that for each r = α1, . . . , αn : β1, . . . , βk
ψ

∈ NG(F,S), cln(r) ∈ F .

Moreover for any set W ⊆ CF (∅), clmon(W) ⊆ CF (∅) so that clmon({cln(r) : r ∈
NG(F,S)}) ⊆ CF (∅). Then a straightforward induction on the length of a minimal
proof scheme p will show that if supp (p) ∩ F = ∅, then cln(p) ∈ clmon({cln(r) : r ∈
NG(F,S)}). It then follows that CF (∅) = clmon({cln(r) : r ∈ NG(F,S)}).

For (ii), let {E≺
α : α ∈ Θγ} be constructed by the forward chaining construction

relative to the well-ordering of rules {rα : α ∈ γ}. Then we claim E≺
µ = F and

E≺
α = E≺

µ for α > µ. First it is easy to show by induction that clmon(E
≺
α) = E≺

α for
all α. Next we claim that if α ∈ µ, then E≺

α ⊆ F and moreover if E≺
α 6= E≺

α+1, then
ℓ(α + 1) ∈ µ. That is, E≺

0 = clmon(∅) ⊆ F . Next suppose by induction that E≺
β ⊆ F

for all β ∈ α. Then if α is a limit ordinal, E≺
α =

⋃

β∈αE
≺
β ⊆ F . If α is a successor

ordinal, we can assume by induction that E≺
η ⊆ F where η + 1 = α. Now consider

E≺
η . If E≺

η = F , then for any rule r = α1, . . . , αn : β1, . . . , βk
ψ

in nmon(S), it must

be the case that either {β1, . . . , βk} ∩ F 6= ∅, {α1, . . . , αn} 6⊆ F , or ψ ∈ F since F is
an extension. That is, if E≺

η = F , then ℓ(η + 1) must be undefined and hence E≺
η =

E≺
η+1 = F . If E≺

η 6= F , then consider some a ∈ F − E≺
η . Since a ∈ F , there is some

minimal proof scheme p =<< α0, r0, G0 >, . . . , < αm, rm, Gm >> where αm = a and
Gm∩F = ∅ which witnesses that a ∈ F . Since a /∈ E≺

η , there must be some k < m such

that α1, . . . , αk−1 ∈ E≺
η and αk /∈ E≺

η . Then consider rk = αi0 , . . . , αij : β1, . . . , βt

αk
where i0 < · · · < ij < k. Now it cannot be that {β1, . . . , βt} = ∅ since otherwise
αk ∈ clmon(E

≺
η) = E≺

η . Thus {β1, . . . , βt} 6= ∅. But since {β1, . . . , βt} ⊆ Gm and
Gm∩F = ∅, it must be the case that {β1, . . . , βt}∩E

≺
η = ∅ and {β1, . . . , βt}∩F = ∅.

Hence rm ∈ NG(F,S) and rm is a candidate to be rℓ(η+1). But this means that if
rm = rβ in our ordering of rules in nmon(S), then ℓ(η + 1) ≤ β < µ. But for any
δ ∈ µ, cln(rδ) ∈ F by our choice of our well-ordering. Thus cln(rℓ(η+1)) ∈ F so that
E≺
η ∪ {cln(rℓ(η+1))} ⊆ F and hence clmon(E

≺
η ∪ {cln(rℓ(η+1))}) = E≺

η+1 = E≺
α ⊆ F .

It follows that E≺
µ ⊆ F since Eµ =

⋃

α∈µE
≺
α and E≺

α ⊆ F for all α ∈ µ. We claim
that it must be the case that E≺

µ = F for otherwise E≺
µ ⊂ F and hence for all α ∈ µ,

E≺
α ⊂ F . But our argument above shows that if E≺

α ⊂ F , then E≺
α ⊂ E≺

α+1 and
ℓ(α + 1) ∈ µ. This fact, in turn, will allow us to prove by induction on the length
of a minimal proof scheme that for all r ∈ NG(F,S), cln(r) ∈ E≺

µ . That is, suppose
ψ = cln(r) for some r ∈ NG(F,S). Now ψ = cln(p) for some minimal proof scheme
p =<< α0, r0, G0 >, . . . , < αm, rm, Gm >> where Gm ∩ F = ∅ and αm = ψ. Now
assume by induction that for all ϕ such that ϕ = cln(r) for some r ∈ NG(F,S) and
ϕ is the conclusion of some minimal proof scheme q such that supp (q) ∩ F = ∅ and

44

length of q < m is in E≺
η . Note that each rk for k < m is either in mon(S) or in

NG(F,S) since p shows α1, . . . , αn ∈ F and cons(rk) ⊆ Gm where Gm ∩ F = ∅. It
follows that each αi for i < m such that ri ∈ NG(F,S) is in E≺

µ by our induction
hypothesis. But then {α1, . . . , αm−1} ⊆ clmon(E

≺
µ) = E≺

µ . So consider rm. Now if
rm ∈ mon(S), then ψ = αm ∈ clmon{α1, . . . , αm−1} ⊆ E≺

µ . If rm ∈ NG(F,S), then
rm = rξ in our orderings of rules where ξ < µ. Moreover there is some λ ∈ µ such
that {α1, . . . , αm−1} ⊆ E≺

λ . But then for any λ ≤ δ ≤ µ, if ψ /∈ E≺
δ then rξ is a

possible candidate to be rℓ(δ+1). Hence it must be that case that rℓ(δ+1) is defined and
ℓ(δ + 1) ∈ ξ. But this is impossible. That is, if µ is infinite, then the cardinality of
{rℓ(δ+1) : λ ∈ δ ∈ µ} is equal to the cardinality of µ which is strictly greater than the
cardinality of {α : α ∈ ξ}. Similary if µ is finite, then the fact that rℓ(λ) is defined for
all λ ≤ µ and ℓ() is one-to-one would mean that the cardinality of {rℓ(λ) : λ ≤ µ} is
equal to the cardinality of µ so that every rule rδ with δ ≤ µ must be equal to rℓ(λ)

for some λ ≤ µ. Thus in either case we have shown that if ψ /∈ E≺
µ , then for some

δ ≤ µ, rξ = rℓ(δ). But then by construction ψ ∈ E≺
δ ⊆ E≺

µ . Thus ψ must be in E≺
µ .

Thus we have shown that {cln(r) : r ∈ NG(F,S)} ⊆ E≺
µ if E≺

µ ⊂ F . But this is a
contradiction since by (i), F = clmon({cln(r) : r ∈ NG(F,S)}) ⊆ clmon(E

≺
µ) = E≺

µ .
Thus it must be the case that E≺

µ = F .

Note we have already shown that if E≺
α = F , then E≺

α = E≺
α+1. Thus since E≺

µ = F
it easily follows that E≺

λ = F for all µ ≤ λ ≤ Θγ. Hence E≺ =
⋃

α∈Θγ
Eα = F as

claimed. 2

Since every E≺ is in Con, we immediately get the following corollary.

Corollary 4.4 Let S = 〈U,N〉 be an FC-normal nonmonotonic rule system with
respect to consistency property Con, then every extension of S is in Con.

Next we show that if our FC-normal nonmonotonic rule system 〈U,N〉 is countable,
i.e. if U is countable which automatically implies that N is countable, then every ex-
tension of 〈U,N〉 can be constructed via the countable forward chaining construction
relative to some well-ordering ≺ of nmon(〈U,N〉) of the order type of ω.

Theorem 4.5 If S = 〈U,N〉 is a countable FC-normal nonmonotonic rule system,
then

1. E≺ constructed via the countable forward chaining construction with respect to
≺, where ≺ is any any well-ordering of nmon(S) of order type ω, is an exten-
sion of S.

2. (completeness of the construction). Every extension of S is of the form E≺ for a
suitably chosen ordering ≺ of nmon(S) of order type ω where E≺ is constructed
via the countable forward chaining construction.

45

Proof. We note that if ≺ is a well-ordering of nmon(S) of order type ω, the countable
forward chaining algorithm is just the first ω steps of the forward chaining algorithm.
Thus to prove (1), we must show that if we construct E≺ with respect the forward
chaining algorithm, then E≺

ω = E≺
λ for all λ ≥ ω. In fact, we need only show that

E≺
ω = E≺

ω+1. Now suppose that rℓ(ω+1) = α1, . . . , αn : β1, . . . , βk
ψ

is defined. Thus

α1, . . . , αn ∈ E≺
ω and β1, . . . , βk, ψ /∈ E≺

ω . Moreover rℓ(ω+1) = rq for some q where
{rn}n∈ω is the ordering of rules determined by ≺. But since E≺

ω =
⋃

n∈ω E
≺
n , there

must be some s such that α1, . . . , αn ∈ E
≺
s . Hence for all t ≥ s, β1, . . . , βk, ψ /∈ E≺

t

so that rq is candidate to be rℓ(t) for all t > s. Since the function ℓ(t) is one-to-one,
it easily follows that there would have to be some finite t such that rq = rℓ(t). Thus
rℓ(ω+1) must not be defined and hence E≺

ω = E≺.

Next we consider the proof of (2). Note that if we apply the proof of Theorem 4.3 to
F in this case the most natural thing to do is to order the rules of NG(F,S) first,
say NG(F,S) = {s0, s1, . . .}, and then follow this ordering by a listing all the rules
of nmon(S) − NG(F,S) = {t0, t1, . . .}. Now if NG(F,S) is finite, then our listing
of rules determines a well-ordering ≺ of order type ω in which the proof of Theorem
4.3 shows that F = E≺. If NG(F,S) is infinite, then our listing of rules determines
a well-ordering ≺ of order type ω+ ω. It then follows from the proof of Theorem 4.3
that

E≺
0 ⊆ E≺

1 ⊆ . . . ⊆ E≺
ω = E≺

1+ω =

and that E≺
ω = F . The key point to note is that for any r = α1, . . . , αn : β1, . . . , βk

ψ
which is not inNG(F,S), it must be the case that {β1, . . . , βk}∩F 6= ∅ or {α1, . . . , αn} 6⊆
F . But since F =

⋃

i∈ω E
≺
i , it also follows that either

(a) for some i, {β1, . . . , βk} ∩ E
≺
i 6= ∅ or

(b) for all j, {α1, . . . , αn} 6⊆ E≺
j .

In case (a) if we insert r between sk and sk+1 where k = ℓ(i), then this change will
have no effect on the construction of the E≺

i ’s. That is, the construction of E≺ up
to stage i can depends only on s0, . . . , sℓ(i) and hence we will get the same sets, E≺

j

for j ≤ i, for any ordering which starts out s0, . . . , sℓ(i). Thus if we take the ordering
s0, . . . , sℓ(i), r, s1+ℓ(i), . . ., then because {β1, . . . , βk} ∩ E

≺
i 6= ∅, r is not a candidate

to be to be rℓ(k) for any k > i and hence the insertion of r does not effect the rest
of the construction of E≺. In case (b), we can insert r anywhere in the initial ω
part of the list and it will have no effect on the construction of the E≺

i ’s for i ∈ ω
because the premises of r are never contained in such E≺

i ’s. In this way, we can
see that it is possible to interleave all the r’s in nmon(S)−NG(F,S) into the basic
ordering s0, s1, . . . so as to create an ordering of order type ω but with out changing
the sequence E≺

0 , E
≺
1 , Thus it will still be the case that F = E≺

ω =
⋃

i<ω E
≺
i . 2

Theorem 4.6 follows immediately from the following result:

46

Theorem [Semi–monotonicity] Suppose S = 〈U,N〉 is an FC-normal NRS. Let D ⊆
nmon(S). Then

1. S ′ = (U,mon(S) ∪D) is FC-normal NRS and

2. if E ′ is an extension of S ′, then there is an extension E of S such that

(a) E ′ ⊆ E and

(b) NG(E ′,S ′) ⊆ NG(E,S)

Proof: The fact that S ′ is an FC-normal NRS is an immediate consequence of our
definitions. For part (ii), let µ = cardinality of NG(E ′,S ′) and choose a well-ordering
of NG(E ′,S ′), {rα : α ∈ µ}. Then extend this well-ordering to a well-ordering
{rα : α ∈ γ} of nmon(S). It follows that if E≺ is constructed via our forward chaining
algorithm with respect to the well ordering ≺ determined by {rα : α ∈ γ}, then proof
of Theorem 4.3 shows E ′ = E≺

µ so that E ′ ⊆ E≺.

It remains to prove that NG(E ′,S ′) ⊆ NG(E≺,S). Now suppose

r = α1, . . . , αn : β1, . . . , βk
ψ

∈ NG(E ′,S ′).

Then {α1, . . . , αn} ⊆ E ′ ⊆ E≺ and {β1, . . . , βk} ∩ E
′ = ∅. But note that Con(E ′)

holds since E ′ = E≺
µ . By Theorem 4.3 E ′ = clmon({cln(r) : r ∈ NG(E ′,S ′)}). Thus

ψ ∈ E ′ and hence by the FC-normality of r, E ′ ∪ {ψ, βi} is not consistent for any
i = 1, . . . , k. But since E≺ is consistent, E ′ ∪ {ψ, βi} 6⊆ E≺ for any i = 1, . . . , k.
Hence βi /∈ E

≺ for all i = 1, . . . , k and r ∈ NG(E≺,S). 2

We prove now the result on the orthogonality of extensions.

Theorem 4.7 [Orthogonality of Extensions] Let S = 〈U,N〉 be an FC-normal NRS
with respect to a consistency property Con. Then if E1 and E2 are two distinct
extensions of S, E1 ∪ E2 /∈ Con.

Proof: By Theorem 4.3, E =
⋃

α∈Θγ
E≺
α where {E≺

α }α∈Θγ
is the sequence constructed

by the forward chaining construction relative to some well ordering ≺ of nmon(S).
Let α be the least ordinal such that E≺

α ⊂ F but E≺
α+1 ⊂/ F . Note there must be

such an α since otherwise E ⊆ F and then by the minimality of extensions, E = F .

Thus the rule rℓ(α+1) = α1, . . . , αn : β1, . . . , βk
ψ

is such that {α1, . . . , αn} ⊆ E≺
α , ∅ 6=

{β1, . . . , βk}, {β1, . . . , βk} ∩ E
≺
α = ∅ and E≺

α+1 = clmon(E
≺
α ∪ {ψ}). Since E≺

α+1 6⊆ F ,
it must be that ψ /∈ F . But this means that βi ∈ F for some i since otherwise
rℓ(α+1) ∈ NG(F,S) which would imply that ψ ∈ F because F is an extension. By the

47

FC-normality of rℓ(α+1), E
≺
α ∪{ψ, βi} is not consistent. But since E≺

α ∪{ψ, βi} ⊆ E∪F ,
E ∪ F is also not consistent. 2

Theorem 4.8 Suppose S = 〈U,N〉 is an FC-normal NRS with respect to consistency
property Con such that clmon({cln(r) : r ∈ nmon(S)}) is in Con. Then S has a
unique extension.

Proof: For a contradiction, assume S has two distinct extensions, E1 and E2. Then
by our proof of Theorem 4.3 , Ei = clmon({cln(r) : r ∈ NG(Ei,S)}) for i = 1, 2. But
then for i = 1, 2, Ei ⊆ clmon{cln(r) : r ∈ nmon(S)}. Thus E1 ∪ E2 is contained in a
consistent set so that E1 ∪ E2 is consistent, contradicting Theorem 4.7. 2

Theorem 4.9 Let S = 〈U,N〉 be an FC-normal NRS with respect to a consistency
property Con. Then ϕ ∈ U is an element of some extension of S if and only if ϕ has
a consistent proof scheme with respect to Con.

Proof: Clearly if β ∈ E where E is an extension, then Con(E) by Corollary 4.4. Thus
since β ∈ CE(∅), there is a consistent minimal proof scheme for ϕ.

Conversely suppose p =<< ϕ0, r0, G0 >, . . . , < ϕm, rm, Gm >> is a consistent mini-
mal proof scheme for β. Let 0 ≤ i1 < · · · < ik ≤ m be set of all i ≤ m such that
ri ∈ nmon(S). Now well-order nmon(S) so that ri, . . . , rik are the first k elements in
the list. Then if we construct an extension via our forward chaining construction, it
is easy to show by induction on k that β ∈ E≺

k . Hence β ∈ E≺ which is an extension.
2

Theorem 4.10 Suppose S = 〈U,N〉 is an FC-normal NRS and that D ⊆ nmon(S).
Suppose further that E ′

1 and E ′
2 are distinct extensions of (U,D ∪mon(S)). Then S

has distinct extensions E1 and E2 such that E ′
1 ⊆ E1 and E ′

2 ⊆ E2.

Proof: By Theorem 4.9, we know that there are extensions of S, E1 and E2, such that
E ′

1 ⊆ E1 and E ′
2 ⊆ E2. But then the orthogonality of extensions for (U,D∪mon(S))

ensures E ′
1 ∪ E

′
2 is not consistent. Hence E1 ∪ E2 is not consistent so that E1 6= E2.

2

8 Recursive FC-normal NRS Systems and the

Complexity of their Extensions

In this section, we shall give all the proofs of Theorems stated in Section 6.

48

Our first result will show that under the assumption of FC-normality that once again
even recursive NRS systems are guaranteed to have at least one relatively well behaved
extension.

Theorem 6.8 Suppose that S = 〈U,N〉 is a recursive nonmonotonic rule system and
S is FC-normal. Then S has an extension E such that E is r.e. in 0′ and hence
E ≤T 0′′.

Proof: It is easy to see that since N is recursive, mon(S) is also recursive. It then
easily follows that if X ⊆ U and X is r.e., then clmon(X) is also r.e. In fact, there is
a recursive function f such that for all e, Wf(e) = clmon(We) where We is the eth r.e.
set = {x : ϕe(x) ↓}. We shall show that for any recursive well-ordering ≺ of nmon(S)
of order type ω, E≺ is r.e. in 0′ where E≺ is constructed via the countable forward
chaining algorithm with respect to ≺. That is, ≺ determines an effective listing of
nmon(S), r0, r1, Then the countable forward chaining construction relative to
≺ constructs a sequence of sets, E≺

0 ⊆ E≺
1 ⊆ It is straightforward to prove

by induction that E≺
n is r.e. for all e. That is, suppose E≺

n = Wen
for some en.

Then either E≺
n = E≺

n+1 or E≺
n 6= E≺

n+1 so that E≺
n+1 = clmon(E

≺
n ∪ {cln(rℓ(n+1)}) =

clmon(Wen
∪ {cln(rℓ(n+1)}) which is clearly r.e.. Now there are two cases. Either

there is an n such that E≺
n = E≺

n+1 in which case E≺
n = E≺ so that E≺ is r.e.

Otherwise, E≺
n 6= E≺

n+1 for all n and hence rℓ(n+1) is defined for all n. In this case
given an 0′–oracle, we can test for membership in E≺

n and hence it is easy to see that

given rk = α1, . . . , αs : β1, . . . , βt
ψ

∈ nmon(S), we can test whether α1, . . . , αs ∈ E
≺
n ,

β1, . . . , βk, ψ /∈ E≺
n . Thus given an 0′–oracle, we can effectively find rℓ(n+1). However

given rℓ(n+1) and an r.e. index en such thatWen
= E≺

n , then we can effectively produce
an index r.e. index en+1 such that Wen+1

= clmon(E
≺
n ∪ {cln(rℓ(n+1))}) = E≺

n+1. Thus
there is an 0′–effective sequence e0, e1, . . . such that E≺

n = Wen
for all n. Hence

E≺ =
⋃

nE
≺
n is r.e. 0′ in this case. Thus in either case, E≺ will be r.e. in 0′. 2

Note that Theorem 6.8 is in great contrast to the case of arbitrary recursive NRS
S = 〈U,N〉 where, for example as in Theorem 6.7 (a), there exists a recursive NRS
S ′ such that S ′ has an extension but S ′ has no hyperarithmetic extension.

Theorem 6.10 Let S = 〈U,N〉 be a recursive rule system such that S is FC-normal
and nmon(S) is finite, then every extension of S is r.e.

Proof: This Theorem follows immediately from our argument in Theorem 6.8 once
we observe that if nmon(S) is finite, then there is some finite stage such that E≺

n

equals E≺ for all well-ordering ≺ of nmon(S). 2

Another situation where a recursive FC-normal NRS S = 〈U,N〉 is guaranteed to
have an r.e. extension is when S is monotonically decidable. In particular if mon(S)
is finite, then S = 〈U,N〉 is guaranteed to have an r.e. extension.

49

Theorem 6.11 Let S = 〈U,N〉 be a recursive rule system such that S is FC-normal
and monotonically decidable, then S has an extension which is r.e..

Proof: We shall show exactly as in Theorem 6.8 that for any recursive well-ordering
≺ of nmon(S) of order type ω, E≺ is r.e. where E≺ is constructed via the countable
forward chaining algorithm with respect to ≺. Again, there are two cases. If there is
some n such that E≺

n = E≺
n+1, then E≺

n = E≺ and E≺ is r.e. Otherwise, E≺
n 6= E≺

n+1

for all n and hence rℓ(n+1) is defined for all n. In this case, it is easy to prove by
induction that E≺

n = clmon({rℓ(1), . . . , rℓ(n)}) for all n ≥ 1. Because S is monotonically
decidable, it follows that E≺

n is recursive for all n. Indeed there is a recursive function
f such that ϕf(k) is characteristic function of clmon(Dk). Thus given {rℓ(1), . . . , rℓ(n)},
we can effectively find kn such that Dkn

= {rℓ(1), . . . , rℓ(n)} and then ϕf(kn) will be
the characteristic function of E≺

n . But then we can use ϕf(kn) to effectively find
rℓ(n+1). Thus we can effectively find the sequence of rules rℓ(1), rℓ(2), . . . and since
E≺ = clmon({rℓ(1), rℓ(2), . . .}), E

≺ is r.e.. 2

Next we consider the case where S = 〈U,N〉 is a finite FC-normal nonmonotonic rule
system, i.e we assume that both U and N are finite. In this case, we shall see that
our forward chaining algorithm runs in polynomial time.

For complexity considerations, we shall assume that the elements of U are coded
by strings over some finite alphabet Σ. Thus every a ∈ U will have some length

which we denote by ||a||. Next, for a rule r =
a1, . . . , an : b1, . . . , bm

c
, we define

||r|| = (
∑

i≤n ||ai||) + (
∑

i≤m ||bj||) + ||c||. Finally, for a set Q of rules, we define

||Q|| =
∑

r∈Q

||r||.

Theorem 6.12 Suppose S = 〈U,N〉 is a finite FC-normal nonmonotonic rule sy-
stem and ≺ is some well-ordering of nmon(S). Then E≺ as constructed via our
forward chaining algorithm can be computed in time O(||mon(S)|| · ||nmon(S)|| +
||nmon(S)||2).

Proof. First observe that our forward chaining algorithm will stop after stage n where
n = |nmon(S)| since ℓ(k) is a one-to-one function, i.e. at then end of stage n, there
will be no possible candidate for rℓ(n+1) so that E≺

n = E≺
n+1 = E≺.

Next consider a stage k+1 in the forward chaining construction. Given E≺
k , we must

make a pass in order through the rules to check for each rule r =
a1, . . . , an, b1, . . . , bm

c
whether {a1, . . . , an} ⊆ E≺

k and {b1, . . . , bm, c} ∩ E
≺
k = ∅ . Notice that at a cost of

maintaining an appropriate data structure we can perform this check in C||r|| steps
for some constant C and we call such a check a rule check. Now assuming that
we process the rules in order, if r is the first rule such that {a1, . . . , an} ⊆ E≺

k

50

and {b1, . . . , bm, c} ∩ E
≺
k = ∅, then r = rk+1, E

≺
k+1 = clmon({c} ∪ E

≺
k). Moreover if

{b1, . . . , bm, c} ∩E
≺
k 6= ∅, then we know that r can never be a candidate to rj for any

j > k so that we can just mark rule r and never consider it again. Of course we also
mark rk+1 at stage k + 1 if it is defined so that at each stage we will mark at least
one r ∈ nmon(S). Moreover, if rk+1 is not defined, then we can stop since then we
know E≺

k = E≺.

It follows that at stage k+ 1, we need to look at most |nmon(S)| − k rules and hence
perform at most |nmon(S)|−k rule checks. Since the construction must stop at stage
|nmon(S)|, it follows that the entire construction requires at most

(a)

(

|nmon(S)|+ 1
2

)

rule checks,

(b) |nmon(S)| operations of computing clmon(E
≺
k ∪ {c}) and

(c) the computation of clmon(∅).

Now if ||nmon(S)|| = k|nmon(S)| for some k, then the rule checks could require
O(||nmon(S)||2) steps. Next consider the computations clmon(A) which are required
for (b) and (c) above. We claim all this can be done O(||mon(S)|| · ||nmon(S)||)
steps. Since in our construction all the elements of E≺

k must appear in one of the
rules, we can assume ||A|| ≤ ||mon(S)|| + ||nmon(S)||. Now we can first make a
pass through all the rules of nmon(S) to get a list of all the elements of U which
occur in one of the rules. Call this set V . Another pass through the rules will allow
us to set up a system of pointers from each c ∈ V to the set of rules r ∈ mon(S)
such that c occurs in the set of premises of r. We can also mark which c are in
A. All this will require C1(||mon(S)||+ ||nmon(S)||) ≤ C1(||mon(S)|| · ||nmon(S)||)
steps. Now for each c ∈ A, use the pointers from c to the rules r ∈ mon(S) to
update each r by marking each premise of r in A. Now if a rule r ∈ mon(S) has
all of its premises marked, we mark the conclusion of r, i.e., we add the cln(r) to
clmon(A) and use the pointers from cln(r) to rules in mon(S) to further update the
premises of each rule by marking cln(r). We continue in this fashion until there are
no more rules to update in which case A together with the marked conclusions will
form the clmon(A). Now assuming that updates can be performed in constant time,
each rule r ∈ mon(S) can require at most ||r|| updates in this process since once all
the premises of a rule have been marked we no longer have to consider it. Thus we
require at most ||mon(S)|| updates so the entire process takes at most O(||mon(S)||)
steps. Thus to compute the monotonic closures required in (b) and (c) above takes
O((1 + |nmon(S)|) · ||mon(S)||) ≤ O(||mon(S)|| · ||nmon(S)||) steps. 2

We pause to make one further observation about any highly recursive FC-normal NRS
S = 〈U,N〉 for which the underlying consistency property Con is finitely decidable.
That is, if S is highly recursive, then we can effectively find the set of minimal proof

51

schemes for any x ∈ U . If Con is finitely decidable, then we can effectively tell if any
of the proof schemes for x are consistent. By Theorem 4.9, x has a consistent proof
scheme if and only if x is in some extension of S. Thus in this case, we can effectively
decide whether x in some extension of S. Thus we have proved the following result.

Theorem 6.13 Let S = 〈U,N〉 be a highly recursive rule system such that S is FC-
normal with respect to a decidable consistency property Con. Then {u ∈ U : u is in
some extension of S is recursive.

We end this section with a result that shows that recursive FC-normal NRS’s are at
least as expressive as highly recursive NRS.

Theorem 6.14 Let T be a recursive tree in 2<ω such that [T] 6= ∅. Then there is
an FC-normal recursive NRS S = 〈U,N〉 such that there is an effective one-to-one
degree preserving correspondence between [T] and E(S).

Proof: We can assume T is (0, 2)–tree, i.e., that for all α ∈ T either α is a terminal
node or both α 0̂ and α 1̂ are in T . For if T is not a (0, 2)–tree simply replace T by
T ∗ = T ∪ {α 0̂, α 1̂ : α ∈ T}. It is then easy to see T ∗ is a recursive (0, 2)–tree such
that [T] = [T ∗]. So assume T is a recursive (0, 2)–tree ⊆ 2<ω such that [T] 6= ∅.

We let U = {∅} ∪ {α, α : α ∈ T −{∅}}. We let N consist of the following 9 classes of
rules.
(1) :

∅
.

(2) :
α

for all α ∈ T which are terminal nodes.

(3) α:
αˆ0

α:
αˆ1

for all α ∈ T such that α is not a terminal node.

(4) αˆ0,αˆ1:
α

for all α ∈ T such that α is not a terminal node.

(5) α:αˆ0
αˆ1

α:αˆ1
αˆ0

for all α ∈ T such that α is not a terminal node.

(6) αˆ1:
αˆ0

αˆ0
αˆ1

for all α ∈ T such that α is not a terminal node.

(7) α,α:
ϕ

for all α ∈ T − {∅} and all ϕ ∈ U .

(8) α:
β

for all α ∈ T and β < α.

(9) α,αˆ0:
αˆ1

α,αˆ1:
αˆ0

for all α ∈ T such that α is not a terminal node.

It is easy to see that S = 〈U,N〉 is a recursive nonmonotonic rule system. Given a
path π = (π(0), π(1), . . .) through T , let Eπ = {α : α is a node on π}
∪{α : α is not a node on π}. We claim that E is an extension of S if and only if
E = Eπ for some π ∈ [T]. It is easy to see that Eπ is an extension for every π ∈ [T].
That is, (1) shows that ∅ ∈ CEπ

(∅) and repeated use of the rules in (5) will allow us
to show that (π(0), . . . , π(n)) ∈ CEπ

(∅) for all n. Then the rules in (6) will allow us

52

to show that for every n, (π(0), . . . , π(n− 1), δ(n)) ∈ CEπ
(∅) where

δ(n) =

{

0 if π(n) = 1
1 if π(n) = 0.

Now suppose α ∈ T and α is not on π. Then there is an n such that
(π(0), . . . , π(n− 1), δ(n)) ⊑ α. Hence repeated use of the rules in (3) will allow us to
show α ∈ CEπ

(∅). Thus Eπ ⊆ CEπ
(∅).

A straightforward proof by induction on the length of a derivation will show that
CEπ

(∅) ⊆ Eπ. Hence Eπ = CEπ
(∅) and Eπ is an extension of S.

Next assume that E is an extension. First we claim that E 6= U . For if E = U ,
then consider a node η ∈ T − {∅}. If U is an extension, there must be a minimal
proof scheme p =<< α0, r0, G0 >, . . . , < αm, rm, Gm >> such that αm = η and
Gm ∩ U = ∅, i.e., Gm = ∅. Pick η so that η has a minimal proof scheme q with the
shortest possible length of all α ∈ CU(∅)−{∅} and assume p is a minimal proof with
the smallest possible length for η. But note the only rules which have conclusion η
and has an empty set of constraints are the rules in (7) or (8). Thus rm = α,α:

η
for

some α ∈ T or rm = α:
η

for some α = η. But this contradicts our choice of η since

α must have a shorter minimal proof scheme than η. It follows that if |η| ≥ 1, then
η /∈ CU(∅) and hence U is not an extension. Once we know that U is not an extension,
the rules in (7) show that for any α ∈ T − {∅}, E can contain at most one of α and
α. Now assume by induction on n that there is a node βn = (β(0), . . . , β(n − 1))
of length n such that βn is on some infinite path through T and for all α ∈ T with
|α| ≤ n, α ∈ E if and only if α ⊑ βn and α ∈ E if and only if α 6⊑ βn. Now the
rules in (3) ensure that if γ ∈ T is such that |γ| > n and γ does not extend βn, then
γ ∈ E. Thus the only possible nodes, γ of length n+ 1 such that γ ∈ E are γ = βn 0̂
and γ = βn 1̂. Because we are assuming that βn is on an infinite path through T , we
know that at least one of βn 0̂ and βn 1̂ must be on an infinite path through T . Now
suppose βn 0̂ is not on an infinite path through T . Then A0 = {η : η ⊒ βn 0̂ & η ∈ T}
is finite by König lemma. Note if η ∈ A0 and η is a terminal node η ∈ E by (2). But
then it is easy to see that since T is a (0, 2)–tree, repeated use of the rules of (4) will
allow us to show η ∈ E for all η ∈ A0. In particular, βn 0̂ ∈ E and hence by rule

(9), βn,βnˆ0:
βnˆ1

, βn 1̂ ∈ E. Thus we have shown that if βn 0̂ is not on an infinite path
through T , then βn 1̂ ∈ E, βn 1̂ is on an infinite path through T , and for all η ∈ T
such that |η| ≤ n+1, η ∈ E if and only if η ⊑ βn 1̂ and η ∈ E if and only if η ⊑ βn 1̂.
Thus our inductive hypothesis holds at n+ 1 with βn+1 = βn 1̂. A similar argument
will show that our inductive hypothesis holds at n+1 with βn+1 = βn 0̂ if βn 1̂ is not
on an infinite path through T . Thus we can assume that both βn 0̂ and βn 1̂ lie on
infinite paths through T . Now consider the rules R0 = βn:βnˆ0

βnˆ1
and R1 = βn:βnˆ1

βnˆ0
from

(5). Note that R0 shows βn 1̂ ∈ E if βn 0̂ /∈ E and R1 shows βn 0̂ ∈ E if βn 1̂ /∈ E.
Thus at least one of βn 0̂ and βn 1̂ must be in E. We claim that it cannot be the case
that both βn 0̂ and βn 1̂ are in E. For if βn 0̂, βn 1̂ ∈ E, then consider the minimal

53

proof scheme
p =<< α0, r0, G0 >, . . . , < αm, rm, Gm >>

of shortest possible length such that Gm ∩E = ∅ and αm = βn 0̂. Note that any rule
r with conclusion βn 0̂ is either R1 or comes from (7) or (8). Now rm 6= R1 since R1

is blocked for E if {βn 0̂, βn 1̂} ⊆ E. Since U 6= E, we cannot use any rule from (7).
Thus rm = γ:

βnˆ0
where γ = βn 0̂. It follows that γ = αi for some i. It cannot be that

i < m− 1 since otherwise the proof scheme

p′ = << α0, r0, Gm >, . . . , < αi, ri, Gi >,< βn 0̂,
γ :

βn 0̂
, Gi >>

would violate our choice of p since it could be refined to a minimal proof scheme p′′

of length < the length of p such that cln(p′′) = βn 0̂ and supp (p′′) ∩ E = ∅. Thus

γ = αm−1. But then rm−1 = δ:
γ

where γ < δ from (8) or rm−1 = α:αˆ(1−i)
αˆi

where

α î = γ from (5). If rm−1 = δ:
γ
, then δ = αj for some j < m − 1 and as before, the

proof scheme << α0, r0, G0 >, . . . , < αj, rj, Gj >,< βn 0̂, δ:
βnˆ0

, Gj >> would violate

our choice of p. If rm−1 = α:αˆ(1−i)
αˆi

, then either (i) α = βn 0̂ and α = αj for some
j < m − 1 or (ii) α = βn 0̂ and βn 0̂ = αj for some j < m − 1. In either case, we
would violate our choice of p. Thus there can be no such p and hence βn 0̂ /∈ CE(∅) if
{βn 0̂, βn 1̂} ⊆ E. Hence if {βn 0̂, βn 1̂} ⊆ E, E 6= CE(∅) which contradicts the fact
that E is an extension. Thus we must conclude that exactly one of βn 0̂ and βn 1̂ is
in E. Now if βn 0̂ ∈ E, then the rule βnˆ0:

βnˆ1
from (9) shows βn 1̂ ∈ E and our induction

hypothesis holds at n + 1 with βn+1 = βn 0̂. If βn 1̂ ∈ E, then the rule βnˆ1:

βnˆ0
shows

that βn 0̂ ∈ E and our induction hypothesis holds at n + 1 with βn+1 = βn 1̂. This
completes our induction and shows that ∅ = β0 < β1 < β2 < . . . determines a path Π
through T and that E = Eπ.

It now follows that the corresponding π 7→ Eπ is our desired effective one-to-one
degree preserving correspondence between P(T) and E(S). Thus to complete our
proof of the theorem, we need only check that S is FC-normal with respect to some
consistency property. We define X ⊆ U to be consistent, Con(X), if and only if
X ⊆ Eπ for some π ∈ [T]. It is easy to check that properties (1), (2), and (4) hold
for Con. For property (3), note that if X ⊆ Eπ, then clmon(X) ⊆ CEπ

(∅) = Eπ
since Eπ is an extension. Thus Con defines a consistency property. Finally we
must check that all rules r ∈ nmon(S) are FC-normal with respect to Con. Note
the only rules r ∈ nmon(S) are of the form α:αˆ0

αˆ1
and α:αˆ1

αˆ0
from (5). Now clearly

{α 0̂, α 1̂} is not consistent so that all we need to show is that if X ⊂ U is such
that Con(X), clmon(X) = X, α ∈ X, α (̂1 − i) /∈ X, then X ∪ {α î} is consistent.
Now consider the possibilities for a monotonically closed consistent set X. For some
π = (π(0), π(1), . . .) ∈ [T], X ⊆ Eπ = {α : α is on π} ∪ {α : α is not on π}. First
suppose for infinitely many n, (π(0), . . . , π(n)) ∈ X. Then rules of the form (8) show
(π(0), . . . , π(m)) ∈ X = clmon(X) for every m. Next rules of the form (6) allow us to

54

show (π(0), . . . , π(n− 1), 1− π(n)) ∈ X = clmon(X) for all n and then rules of the
form (3) will allow us to show α ∈ X = clmon(X) for all α not on π. That is, X = Eπ
if for infinitely many n, (π(0), . . . , π(n)) ∈ X. But in such a case, α ∈ Eπ = X,
α (̂1 − i) /∈ Eπ = X implies α î ∈ Eπ = X so that Con(X ∪ {α î}) holds. Thus we
must assume that there is a largest m, say n, such that (π(0), . . . , π(m)) ∈ X. Then
rules of the form of (8) will allow us to show that (π(0), . . . , π(m)) ∈ X = clmon(X)
for all m ≤ n. Next rules of the form (6) will allow us to show that for all m ≤ n,
(π(0), . . . , π(m− 1), 1− π(m)) ∈ X = clmon(X) and then rules of the form (3) will
allow us to show that α ∈ X = clmon(X) for all α ∈ T such that α and η are
incomparable where η = (π(0), . . . , π(n)). Next we claim that it must be the case
that both η 0̂ and η 1̂ lie on infinite paths through T . For if not, suppose η î does not
lie on an infinite path through T . Then by König’s Lemma {β : β ∈ T & β ⊒ η î} is
finite and we can argue as above that repeated use of the rules in (2) and (4) will show

η î ∈ clmon(∅) ⊆ X. But then the rule η,ηˆi:
ηˆ(1−i)

from (9) shows η (̂1−i) ∈ clmon(X) = X

violating our choice of η. Next suppose that η î does not lie on π and η (̂1 − i) lies
on π. Now consider the set A = {α : α = η î and α /∈ X}. Note that rules of the
form (3) ensure that if α ∈ A and η î ⊑ β ⊑ α, then β ∈ A. That is, if β /∈ A, then
β ∈ X and hence α ∈ clmon(X) = X by repeated use of the rules in (3). Thus the set
of nodes in A determine a subtree of T rooted a η. We claim that there are no nodes
β ∈ A which are terminal with respect to A and hence A is infinite. For suppose
β ∈ A is a node which is terminal with respect to A. Thus β /∈ X and hence β is not a
terminal node of T because otherwise the rules of (2) would ensure β ∈ clmon(∅) ⊆ X.
But then it must be the case that β 0̂, β 1̂ ∈ T and β 0̂, β 1̂ ∈ X. But then the rule
βˆ0,βˆ1:

β
from (4) would show that β ∈ clmon(X) = X violating our choice of β. Thus

A has no terminal nodes and hence A is infinite since η î ∈ A. But this means that
there is a least one path π∗ = (π∗(0), π∗(1), . . .) through T such that η î is on π∗ and
(π∗(0), . . . , π∗(k)) /∈ X for all k. Thus X ⊆ Eπ and X ⊆ Eπ∗ . Finally, it is easy to
see that the only rules of the form α:αˆj

αˆ(1−j)
such that α ∈ X, α ĵ /∈ X are such that

1. (a) α < η and α (̂1− j) ⊑ η,

2. (b) α = η, j = i, and α (̂1− j) = η (̂1− i), or

3. (c) α = η, j = 1− i, and α (̂1− j) = η î.

In cases (a) or (b), α (̂i − j) is on the path π and hence X ∪ {α (̂1 − j)} ⊆ Eπ
so that Con(X ∪ {α (̂1 − j)}) holds. In case (c), α (̂1 − j) is on the path π∗ and
X ∪ {α (̂1 − j)} ⊆ Eπ∗ so that Con(X ∪ {α (̂1 − j)}) also holds in this case. Thus
we have shown that all rules of nmon(S) are FC-normal with respect to Con. 2

Note that in the case where [T] has no recursive elements,
{η ∈ T : η is an infinite path through T} is not recursive and hence we will not be

55

able to effectively decide whether a finite set S ⊆ U is consistent. Thus it is crucial
that we make no assumptions about the effectiveness of the consistency property.

9 Conclusions

In this paper we exhibited and investigated a natural condition which ensures that
a logic program always has a stable model or a default theory or truth maintenance
system always has an extension. This condition, called in our paper “FC-normality”
is an abstraction of Reiter’s notion of normality in default logic coupled with Scott’s
notion of Information System. This condition can be formulated in the general setting
of nonmonotonic rules systems and hence can be immediately translated into other
nonmonotonic reasoning formalisms including logic programming with negation as
failure, default logic, and truth maintenance systems..

We have shown that FC-normal nonmonotonic rule systems (and, consequently. FC-
normal logic programs, FC-normal logic programs with classical negation, FC-normal
truth maintenance systems) have all the desirable properties of Reiter’s normal de-
fault theories such as the existence of extensions, the semimontonicity property of
extensions, and the orthogonality of extensions. Indeed, when FC-normal nonmono-
tonic rule systems are translated into the language of default logic, we get a class of
default theories which we call extended normal default theories, which strictly contain
the class of normal default theories of Reiter and yet continue to have all the desirable
properties of Reiter’s normal default theories.

We gave a general construction, which we called the forward chaining construction,
which constucted all possible extensions of an FC-normal nonmonotonic rule system
based on well orderings of the set of nonomontonic rules of the system. By analyzing
the foward chaining construction, we were able to establish bounds on the complexity
of reasoning with FC-ormal systems. For example, while there are recursive non-
monotonic rule systems which have extensions but which have no hyperarithmetic
extensions, we showed that every recursive normal nonmonotonic rule systems has an
extension which is r.e. in 0′. Moreover, for any finite nonmonotonic rule system, we
showed that one can always construct an extension in polynomial time.

We hope that the technique presented in this paper can serve as an indication to
designers of intelligent systems, in particular to monitoring systems, as well as to logic
programmers why some programs behave better than other programs. FC-normal
programs offer a “smooth transition” from one belief state to another. In particular
modification of belief rules (but not of “hard facts”) can be handled smoothly by
such systems. This is one way to maintain programs in a way which permits one to
expand the present belief set to a larger one in the presence of new rules.

It is expected that a further research into the nature of consistency properties for non-

56

monotonic rule systems and their complexity will produce general techniques for writ-
ting and maintaining FC-normal nonmonotonic rule system (and hence FC-normal
logic programs, extended normal default logics, and FC-normal truth maintenance
systems) for specific applications.

References

[AB90] K. Apt and H.A. Blair. Arithmetical classification of perfect models of
stratified programs. Fundamenta Informaticae, 12:1 – 17, 1990.

[ABW87] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative know-
ledge. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 89–142, Los Altos, CA, 1987. Morgan Kaufmann.

[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of Theo-
retical Computer Science, pages 493–574. Cambridge, MA, 1990, MIT
Press.

[BF91] N. Bidoit and Ch. Froidevaux. Negation by default and unstratifiable logic
programs. Theoretical Computer Science, 78:85–112, 1991.

[BMS91] H. Blair and W. Marek and J. Schlipf, Expressiveness of locally stratified
programs, Technical Report, University of Syracuse, SU-CIS-91-28, 1991.

[dK86] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127–
162, 1986.

[Doy79] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272,
1979.

[Eth88] D. W. Etherington. Reasoning with Incomplete Information. London,
1988, Pitman.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th International
Symposium on Logic Programming, pages 1070–1080, Cambridge, MA.,
1988. MIT Press.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In
D. Warren and P. Szeredi, editors, Logic Programming: Proceedings of
the 7th International Conference, pages 579–597, Cambridge, MA., 1990.
MIT Press.

[JS72a] C.G. Jockusch and R.I. Soare. Degrees of members of π0
1 classes. Paciific

Journal of Mathematics, 40:605–616, 1972.

57

[JS72b] C.G. Jockusch and R.I. Soare. π0
1 classes and degrees of theories. Tran-

sactions of American Mathematical Society, 173:33–56, 1972.

[MNR90] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems i.
Annals of Mathematics and Artificial Intelligence, 1:241–273, 1990.

[MNR92a] W. Marek, A. Nerode, and J. B. Remmel. The stable models of predi-
cate logic programs. In K.R. Apt, editor, Proceedings of International
Joint Conference and Symposium on Logic Programming, pages 446–460,
Boston, MA, 1992. MIT Press.

[MNR92b] W. Marek, A. Nerode, and J.B. Remmel. How complicated is the set of
stable models of a recursive logic program? Annals of Pure and Applied
Logic, 33:229–263, 1992.

[MNR92c] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems ii.
Annals of Mathematics and Artificial Intelligence, 5:229–263, 1992.

[MNR93a] W. Marek, A. Nerode, and J. B. Remmel. Computing jumps with an
FC-normal nonmonotonic rule system. In preparation., 1993.

[MNR93b] W. Marek, A. Nerode, and J. B. Remmel. Rule Systems and Well-
Orderings, Forward Chaining Construction. In preparation., 1993.

[MT89b] W. Marek and M. Truszczyński. Relating autoepistemic and default logics.
In Principles of Knowledge Representation and Reasoning, pages 276–288,
San Mateo, CA., 1989. Morgan Kaufmann.

[MT91] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the
ACM, 38:588 – 619, 1991.

[MT93] W. Marek and M. Truszczyński. Nonmonotonic Logic – Context-dependent
reasonings Heidelberg, 1993, Springer.

[McD82] D. McDermott. Nonmonotonic logic ii: Nonmonotonic modal theories.
Journal of the ACM, 29:33–57, 1982.

[MD80] D. McDermott and J. Doyle. Nonmonotonic logic i. Artificial Intelligence,
13:41–72, 1980.

[Prz88] T. Przymusinski, On the declarative semantics of stratified deductive
databases and logic programs, In J. Minker, editor, Foundations of De-
ductive Databases and Logic Programming, pages 193–216, Los Altos, CA,
1987. Morgan Kaufmann.

58

[RDB89] M. Reinfrank, O. Dressler, and G. Brewka. On the relation between truth
maintenance and non-monotonic logics. In Proceedings of IJCAI-89, pages
1206–1212, San Mateo, CA., 1989. Morgan Kaufmann.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

[Sco82] D. Scott. Domains for denotational semantics. In Proceedings of ICALP-
82, pages 577–613, Heidelberg, 1982. Springer Verlag.

[Tar56] A. Tarski. Logic, Semantics, Metamathematics. Oxford, 1956, Oxford
University Press.

59

