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Abstract

In the paper, we investigate the way in which
nonmonotonic modal logics depend on their
underlying monotonic modal logics. Most
notably, we study when different monotonic
modal logics define the same nonmonotonic
system. In particular, we show that for an
important class of the so called stratified the-
ories all nonmonotonic logics considered in
the paper, with the exception of S5, coincide.

It turns out that in some cases, nonstandard
(that is, non-normal) logics have interesting
nonmonotonic counterparts. Two such sys-
tems are investigated in the paper in detail.

For the case of finite theories, all nonmono-
tonic logics considered are shown to be de-
cidable and an appropriate algorithm is pre-
sented.

1 INTRODUCTION

Many types of commonsense reasonings can be faith-
fully represented within modal nonmonotonic logic.
These reasonings include: default logic of Re-
iter [Rei80], nonmonotonic logic of belief of Moore
[Moo85], truth maintenance of Doyle [Doy79], and
some important aspects of logic programming [GL88].
Therefore, in this paper we will study three fundamen-
tal issues of modal nonmonotonic logics:
(a) dependence of such logics on the underlying mono-
tonic logic,
(b) characterization of expansions,
(c) computation of expansions.

Most known modal nonmonotonic logics belong to the
family proposed by McDermott [McD82]. In this paper
we focus on these logics only. The reader is referred to

[Kam90], [Tru91], [Sho87] and [LS90] for the discussion
of other modal nonmonotonic systems.

There is a rich variety of different monotonic modal
logics [Che80], [HC84]. An important question is: how
much of this variety carries over to the nonmonotonic
case. The most important and somewhat unexpected
result of our paper is that the structure of the family of
nonmonotonic modal logics is much simpler. Speaking
more formally, it is often the case that different
monotonic modal logics collapse to the same
nonmonotonic system.

The results of this paper focus on modal logics whose
nonmonotonic counterparts are applicable in knowl-
edge representation. We identified three such logics:
K45, N and W5. It turns out that for each of these
logics there is a whole family of monotonic modal log-
ics that generate the same system in the nonmonotonic
case. For nonmonotonic logics K45, N and W5, as
well as many others, we characterize expansions and
provide algorithms for computing them.

Throughout the paper, by Cn we denote the opera-
tor of propositional consequence, and by CnS , where
S stands for a modal logic, the operator of provabil-
ity in logic S. Our further discussion assumes famil-
iarity with basic notions of modal logics as given in
[HC84] and [Che80]. The mechanism of nonmonotonic
modal consequence operation based on the (mono-
tonic) modal logic S has been introduced in [MD80]
and [McD82]. This method can be shortly presented
as follows: Given a modal logic S and a theory I in
the language with one modal operator L, denoted LL,
a theory T ⊆ LL is called an S-expansion of I if it
satisfies the equation:

T = CnS(I ∪ {¬Lϕ : ϕ /∈ T}), (1)

With the interpretation of modal operator L as “is
known” or “is believed”, T is an expansion of I if T
is precisely the collection of these formulas which can



be derived in S from I and statements about “igno-
rance” or “negative introspection” with respect to T .
This circular aspect and self-reference of the concept
of expansion results in the fact that the equation (1)
may have single or multiple solutions, and sometimes
even no solution. Once all such “points of view” T are
identified, we compute the nonmonotonic consequence
of I in S as the intersection of all S-expansions of I.

Once the nonmonotonic counterparts for modal logics
are defined, the following question becomes of funda-
mental importance: Which modal nonmonotonic
logics are applicable in knowledge representa-
tion? Early attempts to identify such logics have been
unsuccessful. The case of S equal to propositional cal-
culus (in the language LL) leads to counterintuitive
expansions, for example, containing both p and ¬Lp.
The other extreme, S = S5, collapses to monotonic
S5 that is, the resulting nonmonotonic consequence
operator coincides with the monotonic S5, [McD82],
[MT90].

In a reaction to the above mentioned failures [Moo85]
introduced a seemingly different scheme:

T = Cn(I ∪ {Lϕ:ϕ ∈ T} ∪ {¬Lϕ:ϕ /∈ T}) (2)

and argued that the solutions to the equation (2) bet-
ter capture the intuitions associated with the states
of belief of a fully introspective agent than the gen-
eral scheme (1). This scheme is very specialized —
notice the absence of modal parameter S in the equa-
tion (2). Yet, it turns out that for consistent theories
T , Moore’s expansions, called autoepistemic or stable
expansions, coincide with K45-expansions [Shv90]. In
other words, the logic of Moore belongs to the family
of nonmonotonic formalisms definable by the scheme
(1).

One of the most widely studied and used nonmono-
tonic formalisms is the default logic of Reiter [Rei80].
Intensive studies were undertaken to find a modal
counterpart of the default logic [Kon88], [MT89a],
[MT90], [LS90]. It turned out that under the trans-
lation that assigns to a default rule α:β1...βn

γ
a modal

formula: Lα ∧ ¬LL¬β1 ∧ . . . ∧ ¬LL¬βn ⇒ γ, exten-
sions of default theories can be faithfully described as
N-expansions, where N is the modal logic of neces-
sitation, that is the modal logic without any scheme
for handling modalities [MT90]. In addition, the same
modal logic can be used to represent stable semantics
for logic programs, as well as ordinary truth mainte-
nance systems ([MT89b]).

Third nonmonotonic modal logic with natural appli-
cations in knowledge representation is the modal non-
monotonic logic associated with the modal logic W5,

which contains one axiom schema:

W5: ¬L¬Lϕ⇒ (ϕ⇒ Lϕ),

a weaker variant of 5. It is shown in [MT90] that the
nonmonotonic logic W5 allows to provide a natural
semantics for two important modes of nonmonotonic
reasoning: logic programming with classical negation
(cf. [GL90]), and truth maintenance systems in which
we admit rules containing literals (not only atoms).

The nonmonotonic logic W5 possesses a semantic
characterization similar to Moore’s characterization of
stable (that is, K45-) expansions. The following fix-
point equation characterizes W5-expansions [MT90]:

T = Cn(I ∪ {ϕ⇒ Lϕ:ϕ ∈ T} ∪ {¬Lϕ:ϕ /∈ T}). (3)

This fixpoint equation relaxes Moore’s definition of au-
toepistemic valuation with index T . Recall that V is
an autoepistemic valuation with index T if V (Lϕ) = 1
precisely when ϕ ∈ T . Here, the class of valuations
V contains, as before, valuations that satisfy condi-
tion V (Lϕ) = 0 if ϕ /∈ T . But, on positive side, for
ϕ ∈ T , we relax the condition as follows: we require
that V (ϕ ⇒ Lϕ) = 1. All autoepistemic valuations
satisfy this condition, but there are other valuations
which need to be considered as well. The intuition
here is that we want V to evaluate Lϕ as 1 providing
that V evaluates ϕ as 1. Since we extended the class
of valuations under consideration, a stronger condition
is imposed on a fixpoint. Any solution of equation (3)
is called a strict expansion of I. The important point
here is that such strict expansions are definable seman-
tically, and in a natural fashion.

Summarizing our discussion, three logics K45, N and
W5 seem to be of particular interest in knowledge rep-
resentaion. These three logics have several puzzling
things in common. First of all, they are clearly off
the main research track of classical modal logic. To
our knowledge, even K45 was very little studied, even
though it has an elegant and well understood Kripke
semantics. Secondly, two of the logics — N and W5
are subnormal that is, do not satisfy axiom schema
K. The third one, K45 is normal but, as proved in
[MT90], it is equivalent to the subnormal modal logic
5 satisfying only axiom schema 5, in the sense that
both logics have the same “nonmonotonic variant”.

The meaning of this last result (collapse of nonmono-
tonic modal logics 5 and K45) was deeply intriguing;
it indicated that different monotonic logics may gen-
erate the same notion of (consistent) expansion, and
consequently the same nonmonotonic consequence op-
eration! In other words, the realm of nonmono-
tonic modal logics is much less diversified than



that of monotonic modal logics. This, in turn,
means that in the nonmonotonic case the axioms to
manipulate modality play a different role than in the
monotonic case.

On a closer inspection these observations seem to be
less puzzling. After all, nonmonotonic S-consequences
of a theory I are often strictly larger than mono-
tonic S-consequences of I due to the powerful prin-
ciple of “negation as failure to prove” which allows us
to use in the reasonings formulas expressing negative
introspection ({¬Lϕ:ϕ /∈ T}). Precisely speaking, let
S1 ⊆ S2 ⊆ S5 be two modal logics. If for every stable
theory T ⊆ LL, and for every instance ψ of any axiom
schema of S2, {¬Lϕ:ϕ /∈ T} ⊢S1

ψ, then nonmono-
tonic logics S1 and S2 are identical.

A number of basic questions arise on the dependence
of the nonmonotonic S-consequences on the underly-
ing logic S. The first question is this: Are there non-
monotonic logics different from the autoepistemic logic
of Moore that can be equivalently defined through
McDermott’s scheme (1) for different monotonic log-
ics S? If so, what are the properties of these logics
and their mutual relationships. Although we do not
have complete answers to these questions, it turns out
that a number of nontrivial facts can be proved about
“ranges” of modal logics collapsing to the same non-
monotonic logic. We shall give a number of such re-
sults in this paper.

Formally, a range is a collection of monotonic modal
logics generating the same concept of a consistent ex-
pansion. A number of ranges will be exhibited be-
low namely, for the logics N, W5 and K45. Impor-
tant open questions are: Are there any trivial (one-
element) ranges? Are there any other nontrivial ranges
than those exhibited in this paper? One needs to
point that the fact that nontrivial ranges exist is, po-
tentially, quite beneficial. For instance a range may
contain very different logics. Some may have a nice
automated theorem proving mechanism, whereas oth-
ers may have an elegant semantics. In such case, for
the nonmonotonic logic associated with the range, we
might have completely different mechanisms for se-
mantical and for syntactical manipulations. In fact
we may have completely different semantics, all “non-
monotonically” equivalent. This is the case for the
range associated with Moore’s logic. The freedom of
selecting different theorem provers may turn out useful
in practical implementations.

In addition, it turns out that syntactic restrictions
on I make some ranges coagulate. Two important
types of syntactic restrictions we study are stratifica-
tion and restriction to formulas with negative intro-

spection only. In each case, the ranges of equivalent
(nonmonotonically) modal logics are exhibited.

Our results on the ranges can be summarized as fol-
lows:

• General theories: Logics N, W5, K45 possess
nontrivial, ranges.

• Theories consisting of formulas with negative in-
trospection only: A wide range from N to KD45.

• Stratified theories: All known ranges collapse to
one.

Next, we consider the problem of characterization of
S-expansions. Several general results were obtained
in [Shv90]. In particular, they imply characterizations
of S-expansions for several normal modal logics in-
cluding K, T, S4, K45. We strengthened the re-
sults of [Shv90] and derived characterizations of N-
expansions and W5-expansions. All characterizations
involve modal atoms appearing as subformulas in for-
mulas of a theory whose expansions we study.

Most importantly, the characterizations we obtained
form the basis for the third component of our inves-
tigation, namely computation of S-expansions. We
present algorithms for computing S-expansions for a
large class of logics (including N, W5 and K45). We
illustrate the algorithms with an example.

The paper is organized as follows. The next section
contains our results on the ranges both for the case of
general theories, as well as those subject to some syn-
tactic restrictions. The results are gathered at the end
of the section in appropriate diagrams. Secton 3 dis-
cusses characterizations of expansions and algorithms
for their computation. Section 4 contains conclusions.

2 S-EXPANSIONS — RANGES

Because of space limitations, we will assume some
familiarity with the results of [Moo85], [Kon89] and
[MT89a]. In addition to standard modal logics such
as K, T, S4, S5, K45 etc., we shall consider logic N
of necessitation (with no axiom scheme at all) and the
following two schemes: W5 (introduced above) and:

WK: L(ϕ ⇒ ψ) ∧ Lϕ ⇒ ¬L¬Lψ (a variant of K
that, given Lϕ and L(ϕ ⇒ ψ), instead asserting
Lψ as K does, asserts ¬L¬Lψ).

We start with investigating the general properties of
S-expansions. First, let us mention several facts con-
cerning stable sets [Sta80, McD82, Moo85, Mar89]. For



each theory S ⊆ L there is a unique stable set T such
that T ∩L is exactly the set of logical consequences of
S. This unique stable set will be denoted by E(S). A
constructive definition of E(S), for a finite S, is given
in [Mar89]. In fact, it can be shown, that

E(S) = CnS5(S ∪ {¬Lϕ:ϕ ∈ L \ Cn(S)}).

Clearly, if a modal logic S contains the necessitation
rule then each S-expansion is stable.

Let us now pass on to investigations of mutual rela-
tionships between classes of S-expansions for various
logics S. We have the following simple result.

Proposition 2.1 ([McD82]) Let S and T be two
modal logics, S ⊆ T ⊆ S5. Then each S-expansion
of I is a T -expansion of I.

The following three theorems show that the notion of
range is nontrivial. First result, obtained in [MT90]
shows that the autoepistemic logic of Moore can be
defined not only by means of the logic K45 or KD45,
which was known already to Konolige [Kon88], but by
any logic in a much wider class. In fact, our result
shows that the crucial role in the autoepistemic
logic is played by the axiom schema 5, which
allows to derive positive introspection from the
negative introspection.

Theorem 2.2 Let S be a modal logic, 5 ⊆ S ⊆
KD45. Let I, T ⊆ LL. The theory T is a stable
expansion of I if and only if T is an S-expansion of I.

Thus, for the whole range of logics between 5 and
KD45 the same notion of expansion is obtained. A
similar result holds for N-expansions.

Theorem 2.3 Let S be a modal logic, N ⊆ S ⊆ WK.
Let I, T ⊆ LL. The theory T is an N-expansion of I
if and only if T is an S-expansion of I.

Our final result of that type concerns the case of strict
expansions. Firstly, it shows that strict expansions can
also be characterized by means of scheme (1). Sec-
ondly, it exhibits the whole range of logics that can be
used for that purpose.

Theorem 2.4 Let S be a modal logic, W5 ⊆ S ⊆
D4W5. Let I, T ⊆ LL. Then, the theory T is a strict
expansion of I if and only if T is an S-expansion of I.

Theorems 2.2, 2.3 and 2.4 give rise to an interesting
theoretical problem. Let S be a monotonic modal
logic. By R(S) we denote the range of all monotonic
modal logics T ⊆ S5 “nonmonotonically equivalent”

to S. A general question that arises is: What is the
structure of the set R(S)? It is easy to see that if T1,
T2 ∈ R(S), then for every modal logic T such that
T1 ⊆ T ⊆ T2 we have T ∈ R(S). Thus, each R(S) is
an interval in the partial ordering of modal logics by
inclusion relation. The following question is still open:
Does each such interval have the least element, the
greatest element? Another general question is: Does
each interval R(S) always contain logics other than S?

We have already seen that for the whole ranges of log-
ics S, the notions of expansions defined by these logics
are equivalent (Theorems 2.2, 2.3 and 2.4). Below we
show that if we restrict the class of theories I, even
stronger results hold. Namely, we have the following
two theorems. First of them was proved in [Shv90],
the second one in [MT90].

Theorem 2.5 Let I ⊆ L be consistent. For each logic
S such that
(a) N ⊆ S, and
(b) S ⊆ KD45 or S ⊆ S4,
the theory E(I) is the only S-expansion of I.

Theorem 2.5 says that there is a big range of modal
logics in the case of objective theories.

Theorem 2.6 Let S be a modal logic contained in
KD45. If I consists only of modal clauses with neg-
ative introspection, then T is an S-expansion of I if
and only if T is an N-expansion of I.

Theorem 2.5 can be generalized to a wider class of
theories. A theory I is strongly stratified if

STRAT1 Each formula in I is of the form a(ϕ) ⇒
c(ϕ), c(ϕ) ∈ L, for ϕ ∈ I, and {c(ϕ) : ϕ ∈ I} is
consistent.

STRAT2 I has a partition (called stratification) I =
I1 ∪ · · · ∪ In into disjoint and nonempty sets such
that for each ϕ ∈ Ij , 1 ≤ j ≤ n, propositional
letters occurring in c(ϕ) do not occur in formulas
of I1 ∪ · · · ∪ Ij−1 and do not occur in formulas of
Ij under the scope of the operator L.

This notion of stratification is closely related to strat-
ification of logic programs, as introduced in [ABW87]
and extends the concept of stratification as introduced
in [Gel87]. The difference is that where Gelfond re-
quires that the consequents c(ϕ) of formulas in I are
disjunctions of atoms, we impose a weaker condition,
namely that these consequents form a consistent the-
ory. We will see that as long as we restrict ourselves to
strongly stratified theories all ranges collapse into one
large range. This is the subject of the next theorem.
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Figure 1: The hierarchy of modal logics

Theorem 2.7 Let I ⊆ L be strongly stratified. For
each logic S such that
(a) N ⊆ S, and
(b) S ⊆ KD45 or S ⊆ S4,
the theory I has exactly one S-expansion and for all
these logics S, S-expansions of I coincide.

We collect now the results on the relationships among
the classes of expansions discussed in the paper. We
considered the following logics: N, WK, K, T, S4,
S5, W5, D4W5, 5, KD45. Inclusion relation dia-
gram for these logics is shown in Figure 1. An arrow
in the diagram directed from a logic S1 to a logic S2

indicates that S1 ⊆ S2.

All of these inclusions are straightforward. To see that
WK ⊆ T simply check that the axiom schema WK
holds in every T-Kripke model (that is, in every Kripke
model with a reflexive admissibility relation).

According to Proposition 2.1 (b), the same inclusion
relations hold for classes of S-expansions. In addi-
tion, for each theory I, a WK-expansion of I is also
an N-expansion of I (Theorem 2.3) and, therefore, a
K-expansion of I. Theorems 2.2, 2.3 and 2.4 state
that logics N and WK, 5 and KD45, and W5 and
D4W5, respectively, define the same notion of expan-
sion. All these properties are summarized in the di-
agram in Figure 2. The arrow between the symbols
for two logics S and T indicates that for each theory
I, every S-expansion of I is a T -expansion of I. The
ranges of logics that define the same notion of expan-
sion are indicated by ovals. In all other cases, there
are theories, for which different logics define different
classes of expansions. This is illustrated by examples
given in Section 3.

Thus, the only generally true inclusion relationships
between the classes of expansions shown in Figure 2

W5 - D4W5

5 - KD45N - WK S5

S4TK

Figure 2: The hierarchy of modal nonmonotonic logics

are those indicated by arrows.

3 CHARACTERIZATIONS OF

S-EXPANSIONS AND

ALGORITHMS

Continuing our program, we move to characterize S-
expansions. In the case of many modal logics includ-
ing logics K, T, S4, K45, the problem was solved by
Shvarts [Shv90]. Below we strengthen his results and
extend them to logics N and W5.

By IL we denote the set of all subformulas of the for-
mulas from I of the form Lψ. Let T be a consis-
tent stable theory containing I. Let Ψ = IL ∩ T , and
Φ = IL \ Ψ. We denote by ¬Φ the set {¬ϕ:ϕ ∈ Φ}.
Obviously, if Lψ ∈ T then ψ ∈ T , and if Lϕ ∈ Φ then
ϕ /∈ T and ¬Lϕ ∈ T . Hence I∪¬Φ∪Ψ∪{ψ : Lψ ∈ Ψ}
is consistent and is contained in T . Furthermore, for
every Lϕ ∈ Φ, ϕ /∈ Cn(I ∪ ¬Φ ∪ Ψ ∪ {ψ : Lψ ∈ Ψ}).
These observations motivate the following definition.
Let Φ ⊆ IL,Ψ = IL \Φ. Φ is said to be admissible for
I iff I ∪¬Φ∪Ψ∪ {ψ : Lψ ∈ Ψ} is propositionally con-
sistent and for each Lϕ ∈ Φ, ϕ /∈ Cn(I ∪¬Φ∪Ψ∪{ψ :
Lψ ∈ Ψ}). Given a modal logic S, we call a set
Φ ⊆ IL S-admissible if Φ is admissible for I and for
each Lψ ∈ Ψ, I ∪ ¬Φ ⊢S ψ.

In what follows, the stable set generated by Cn(I ∪
¬Φ ∪ Ψ ∪ {ψ : Lψ ∈ Ψ}) ∩ L plays a special role. We
will denote it by

TI,Φ = E(Cn(I ∪ ¬Φ ∪ Ψ ∪ {ψ:Lψ ∈ Ψ}) ∩ L).

The role of the stable set TI,Φ is explained by the fol-
lowing result of Shvarts [Shv90].

Theorem 3.1 Let S be any modal logic contained in
S5, and let Φ be S-admissible for I. Then TI,Φ is an
S-expansion of I.

We will first extend general results of [Shv90] to a
wider class of logics. A class of frames C is closed if for
all (M1, R1), (M2, R2) ∈ C such that M1 ∩M2 = ∅,



the frame (M1∪M2, R1∪(M1×M2)∪R2) belongs to C.
In the next theorem, we need yet another concept. If
F is a complete frame, that is F = (M,M ×M), then
by one-element extension (1-extension) of F we mean
a frame of the form (M ∪{a}, ({a}×M)∪M ×M) or
(M ∪ {a}, ({< a, a >} ∪ {a} ×M) ∪M ×M), where
a /∈ M . Thus, 1-extension of the complete frame F
adds to F one new world a from which all the worlds
of F are accessible. In addition a may be accessible
from itself or not. By the (1-ext) property of a logic S
we mean the following property:

(1-ext) For any complete frame F , at least one 1-
extension G of F is a frame for S.

Theorem 3.2 Let S ⊆ S5 be a modal logic.
(a) If S has the property (1-ext) then for each set Φ
that is S-admissible for a theory I, TI,Φ is the only
consistent S-expansion of I containing I ∪ ¬Φ.
(b) If S has the property (1-ext) and, in addition, S is
characterized by a closed class of frames C, then T is
an S-expansion of I if and only if T = TI,Φ, for some
set Φ which is S-admissible for I.

This theorem is a slight extension of Theorems 3.2 and
3.3 from [Shv90]. A minor modification of the original
arguments from [Shv90] can be used to prove it. We
omit the details here.

Theorem 3.2 (a) applies to the logics N, W5, K, T,
KD45 and S4, and Theorem 3.2 (b) applies to logics
K, T and S4. In this paper, using different methods,
we show that its statement holds also for the logic N.
All these results are gathered in the following propo-
sition.

Theorem 3.3 (a) Let S be any of N, K, T, S4,
K45, and let Φ be S-admissible for I. Then TI,Φ is
the unique S-expansion of I containing I ∪ ¬Φ.
(b) Let S be any of N, K, T, S4. Then, T is an
S-expansion of I if and only if T = TI,Φ, for some
S-admissible Φ.

Theorem 3.3(b) does not hold for logics K45 and W5.
For example, theory I = {Lp ⇒ p} has a stable ex-
pansion TI,∅, but ∅ is not K45-admissible for I. To
deal with the case of logic K45 we need the follow-
ing notion. A set Φ, admissible for I, is said to be
propositionally admissible for I if for each Lψ ∈ Ψ,
I ∪ ¬Φ ∪ Ψ ⊢ ψ. Shvarts [Shv88, Shv90] proved the
following characterization of K45-expansions (stable
expansions).

Theorem 3.4 T is a stable expansion (that is, a
K45-expansion) of I if and only if T is TI,Φ for some
Φ that is propositionally admissible for I.

We apply here a similar technique to deal with the
case of strict expansions that is, W5-expansions. Let
Φ ⊆ IL, Ψ = IL \ Φ. The set Φ is said to be strictly
admissible for I, if Φ is admissible for I and for each
Lψ ∈ Ψ, I ∪ ¬Φ ∪ {ϕ⇒ Lϕ : Lϕ ∈ Ψ} ⊢ ψ.

Theorem 3.5 If T is consistent, then T is a strict
expansion (that is, a W5-expansion) of I if and only
if T = TI,Φ for some Φ being strictly admissible for I.

Now we are in a position to show that the inclusions
between classes of S-expansions shown in Figure 2 are
the only ones that hold in general.
Example:

1. Let I1 = ∅. Each stable theory is an S5 -
expansion of I1. Not every stable theory is an
S4-expansion of I1, or a stable expansion (KD45-
expansion) of I1. Thus, in general, the notions
of S5-expansion and S4-expansion, and of S5-
expansion and KD45-expansion are different.

2. Let I2 = {L(Lp ⇒ LLp) ⇒ p}. It is easy to
see that E(p) is an S4-expansion of I2 (in fact,
the only S4-expansion of I2). By Theorem 3.3
(b), E(p) = TI2,Φ, where Φ = IL

2
\ (IL

2
∩ E(p)).

Clearly, in our case, Φ = ∅. Consider the T-
model M = (M,R,W ), where M = {a, b, c},
R = {(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)}, and
W (a) = W (b) = {p} and W (c) = ∅. It is easy
to see that M |= I2 but M 6|= p. Thus, I2 6⊢T p.
Consequently, Φ = ∅ is not T-admissible for I2
and E(p) is not a T-expansion of I2.

3. Let I3 = {L(LLp ∧ L(Lp ⇒ p) ⇒ Lp) ⇒ p}}.
Using similar methods as before, we show that K-
expansions are not, in general, W5-expansions.

4. Theory I4 = {L(Lp ⇒ p) ⇒ p} shows that T-
expansions are not K-expansions.

5. Theory I5 = {L(¬L¬Lp ⇒ (p ⇒ Lp)) ⇒ p}
shows that W5-expansions are not , in general,
S4-expansions, and that KD45-expansions are
not, in general, S4-expansions.

6. Let I6 = {Lp ⇒ p}. Put T = E(p). It is easy
to see that Φ = {Lp} is propositionally admissi-
ble and that TI6,Φ = E(p). Thus, T is a K45-
expansion of I6. Consider a valuation v of LL

such that v(p) = 0, and v(Lϕ) = 1 if and only if
ϕ 6= p and ϕ ∈ T . Then, v(I6 ∪ {ϕ ⇒ Lϕ : ϕ ∈
T} ∪ ¬LT ) = 1 and v(p) = 0. But then, T is not
a W5-expansion of I6.

7. Let I7 = {Lp}. Using similar techniques as in
2 and in 6, one easily shows that E(p) is a T-
expansion of I7 but not a 5-expansion of I7.



Theories given in the example indicate that the only
generally true inclusion relationships between the
classes of expansions shown in Figure 2 are those in-
dicated by arrows.

Theorems 3.2, 3.4 and 3.5 imply algorithms for com-
puting S-expansions of finite theories for a wide class
of logics S. The algorithm we give below can be used
for each logic S to which Theorem 3.2(b) applies and
for which there exists a decision procedure for the
membership problem: given a finite I ⊆ LL and ϕ ∈ L,
does I ⊢S ϕ hold? In particular, the algorithm applies
to the logics N, K, T and S4.

Algorithm:

compute IL;
for each Φ ⊆ IL do

Ψ := IL \ Φ;
if Φ is S-admissible then

compute a finite set A such that
Cn(A) = Cn(I ∪¬Φ∪Ψ∪ {ψ:Lψ ∈ Ψ)∩L;
output E(A) as an S-expansion of I

fi
rof

To check S-admissibility of Φ we need a decision proce-
dure for propositional calculus to check admissibility of
Φ (many such procedures are available), and a decision
procedure for logic S, to check whether I ∪ ¬Φ ⊢S ψ,
for each ψ such that Lψ ∈ Ψ. Since all the theories
involved (Φ, Ψ, I ∪¬Φ∪Ψ∪{ψ:Lψ ∈ Ψ} and I ∪¬Φ)
are finite, verifying S-admissibility can be done in a fi-
nite number of steps. For the same reason, computing
the set A can be executed in finite time.

Only small changes are needed in the algorithm above
to produce a method for computing all K45- or W5-
expansions. One simply has to replace checking S-
admissibility of Φ by checking propositional admissi-
bility of Φ (for K45-expansions) and strict admissibil-
ity of Φ for W5-expansions.

Another approach to computing expansions is possi-
ble. It is not directly based on the notion of admis-
sibility. This other approach results in simpler and
more efficient algorithms and will be presented in the
full version of the paper.

We conclude this section with an example illustrating
how our algorithm works. Suppose we want to com-
pute all S4-expansions of the theory I = {¬Lp ⇒
q,¬Lq ⇒ p}. First, the theory IL is computed.
Clearly, IL = {Lp,Lq}. There are four sets Φ that
have to be verified for S4-admissibility: Φ1 = ∅,

Φ2 = {Lp}, Φ3 = {Lq} and Φ4 = {Lp,Lq}. For
the set Φ1, the condition I ∪ ¬Φ1 ⊢S4 ψ, for all
Lψ ∈ IL \Φ1 is not met. For instance, I ∪¬Φ1 6⊢S4 p.
Sets Φ2 and Φ3 are S4-admissible and generate S4-
expansions E(p) and E(q). For Φ4, it is the case that
p ∈ Cn(I ∪ ¬Φ4 ∪ Ψ ∪ {ψ:Lψ ∈ Ψ}). Therefore Φ4 is
not even admissible.

4 CONCLUSIONS

In this paper we found that the structure of the fam-
ily of modal nonmonotonic logics is much simpler than
that of the family of underlying modal logics. This
phenomenon is explained by the fact, first observed
by McDermott [McD82], that the additional tool em-
ployed by modal nonmonotonic logics, namely “nega-
tion as failure to prove”, permits to prove nonmono-
tonically various (monotone) axiom schemata that are
not provable monotonically. This phenomenon, al-
though expected, has not been known until now.

An additional result is the demonstration of applicabil-
ity of subnormal logics in the domain of knowledge rep-
resentation. This seems to indicate certain incompat-
ibility of the research in classical modal logic (where
most effort has been devoted to normal logics) and the
needs of knowledge representation.

Finally, expansions for a variety of modal nonmono-
tonic logics have been characterized and procedures to
compute them described.

5 PROOFS

In this section, we give proofs of the new results of the
paper.

Theorem 2.2 Let S be a modal logic, 5 ⊆ S ⊆ KD45.
Let I, T ⊆ LL. The theory T is a stable expansion of
I if and only if T is an S-expansion of I.

Proof: It is easy to see that if T ⊆ LL is stable and con-
sistent, then Cn(LT ∪ ¬LT ) contains all instances of
axiom schemata K, D, 4 and 5. Consider for example
a formula ψ = ¬Lϕ∨LLϕ, equivalent to an instance of
4. If ϕ /∈ T , then ¬Lϕ ∈ ¬LT and so ψ ∈ Cn(¬LT ). If
ϕ ∈ T , then Lϕ ∈ T and ψ ∈ Cn(LT ). The remaining
axiom schemata can be dealt with similarly.

In addition, ¬LT ⊢5 LT . Indeed, let ϕ ∈ T . Then,
since T is stable and consistent, ¬Lϕ /∈ T , ¬L¬Lϕ ∈
T , and ¬L¬Lϕ ⊢5 Lϕ.

These observations imply that if T is stable and con-
sistent, then

Cn(I ∪ LT ∪ ¬LT ) = CnS(I ∪ ¬LT ),



which immediately implies the assertion. 2

Theorem 2.3Let S be a modal logic, N ⊆ S ⊆ WK.
Let I, T ⊆ LL. The theory T is an N-expansion of I
if and only if T is an S-expansion of I.

Proof: Let T be stable and consistent. Consider ϕ,ψ ∈
LL. If ϕ /∈ T or (ϕ⇒ ψ) /∈ T , then Lϕ∧L(ϕ⇒ ψ) ⇒
¬L¬Lψ ∈ Cn(¬LT ). Otherwise, ψ ∈ T and, since T
is stable and consistent, Lψ ∈ T and ¬Lψ /∈ T . Thus,
again Lϕ ∧ L(ϕ⇒ ψ) ⇒ ¬L¬Lψ ∈ Cn(¬LT ). Conse-
quently, CnWK(I ∪¬LT ) ⊆ CnN(I ∪¬LT ). The con-
verse inclusion is evident. Hence CnWK(I ∪ ¬LT ) =
CnN(I ∪ ¬LT ), and the result follows. 2

Theorem 2.4Let S be a modal logic, W5 ⊆ S ⊆
D4W5. Let I, T ⊆ LL. Then, the theory T is a strict
expansion of I if and only if T is an S-expansion of I.

Proof: The proof is almost identical to that of Proposi-
tion 2.2. We show that if T ⊆ LL is stable and consis-
tent, then Cn({ϕ⇒ Lϕ : ϕ ∈ T} ∪ ¬LT ) contains all
instances of axiom schemata D, 4 and W5, and that
¬LT ⊢W5 {ϕ ⇒ Lϕ : ϕ ∈ T}. These observations
imply that if T is stable and consistent, then

Cn(I ∪ {ϕ⇒ Lϕ : ϕ ∈ T} ∪ ¬LT ) = CnS(I ∪ ¬LT ),

which immediately implies the assertion. 2

Now we will prove our results on stratification. To this
end, we need two auxiliary lemmas. Let I be strongly
stratified and let I1 ∪ · · · ∪ In be a stratification of
I. For any propositional variable p, let r(p) = 0, if p
does not occur in c(ϕ) for any ϕ ∈ I. If p occurs in
c(ϕ) for ϕ ∈ Ti, then put r(p) = i. By the definition
of strong stratifability, such i is unique. By r(ϕ) we
denote max{r(p) : p occurs in ϕ}. By m(ϕ) we denote
the maximal depth of nesting of L in ϕ.

Lemma 5.1 Let I be strongly stratified, Φ proposi-
tionally admissible for I and let Ψ = IL \Φ. Consider
Lψ ∈ Ψ such that r(ψ) = r and m(Lψ) = m. Then

I ∪ ¬Φ ∪

{Lη ∈ Ψ : r(η) < r or (r(η) = r, m(Lη) < m)} ⊢ ψ.

Proof: Let V be any propositional valuation such that
V (I) = 1, V (Φ) = 0 and V (Lη) = 1 for each Lη ∈ Ψ
such that r(η) < r or (r(η) = r and m(Lη) < m).

Since {c(ϕ) : ϕ ∈ I} is consistent, there is a valuation
W such that W (c(ϕ)) = 1 for each ϕ ∈ I. Define a
valuation U as follows. For a propositional variable
p, if r(p) ≤ r then put U(p) = V (p). Otherwise, put
U(p) = W (p). For a modal atom Lϕ, put U(Lϕ) = 0,
if Lϕ ∈ Φ, and U(Lϕ) = 1, otherwise.

Observe that if ϕ ∈ Ij , j > r, then U(c(ϕ)) =
W (c(ϕ)) = 1. Thus, U(ϕ) = 1. Consider ϕ ∈ Ij
with j ≤ r. For each propositional variable p occur-
ring in ϕ, r(p) ≤ r. Hence, U(p) = V (p). Let Lα
be a modal atom occurring in ϕ. If Lα ∈ Φ, then
U(Lα) = 0 = V (Lα). If Lα ∈ Ψ then, since Lα occurs
in the formula ϕ ∈ Ij , r(α) < j ≤ r. Thus, U(Lα) =
1 = V (Lα). Consequently, U(ϕ) = V (ϕ) = 1. Thus,
U(I) = 1. By the definition of U , U(¬Φ ∪ Ψ) = 1.
Since Φ is propositionally admissible for I, U(ψ) = 1.

Now, let p be a propositional atom occurring in ψ.
Then, r(p) ≤ r and U(p) = V (p). Consider a modal
atom Lα occurring in ψ. If Lα ∈ Ψ, then r(α) ≤ r and
m(Lα) < m. Thus, U(Lα) = V (Lα). Since U and V
agree on all modal atoms Lα ∈ Φ, it follows that U and
V agree on all atoms occurring in ψ. Consequently,
V (ψ) = 1. This completes the proof of the lemma. 2

Lemma 5.2 Let I be strongly stratified and let I1 ∪
· · ·∪In be a stratification of I. Let Φ be S4-admissible
for I and define Ψ = IL \Φ. Let Lψ ∈ Ψ and r(Lψ) =
r. Then

I ∪ {¬Lϕ : Lϕ ∈ Φ, r(ϕ) < r} ⊢S4 ψ.

Proof: Assume that

I ∪ {¬Lϕ : Lϕ ∈ Φ, r(ϕ) < r} 6⊢S4 ψ.

Then for some S4-Kripke model N =< N,Q,W >,
N |= I ∪ {¬Lϕ : Lϕ ∈ Φ, r(ϕ) < r}, but for some
a ∈ N , N , a 6|= ψ. (Let us recall that in a Kripke
model < N,Q,W >, N stands for a nonempty set (of
worlds), Q ⊆ N × N is an accessibility relation and
for each b ∈ N , W (b) is the set of all propositional
variables true in the world b.)

We will construct another S4-Kripke model K such
that K |= I ∪ ¬Φ and K, a 6|= ψ. This will contradict
the assumption that Φ is S4-admissible for I, and will
prove the assertion of the lemma.

First, observe that since Φ is S4-admissible for I, T =
TI,Φ is a consistent, stable theory containing I∪¬Φ∪Ψ.
Thus, there exists a S4-Kripke model M = (M,R, V )
such that M |= T .

Next, since I is strongly stratified, there is a valuation
U such that for every ϕ ∈ I, U(c(ϕ)) = 1. We use U
to modify the valuation W of N as follows: for each
b ∈ N put

W ′(b) = {p : (r(p) < r and p ∈W (b)) or

(r(p) ≥ r and U(p) = 1)}.

Now we define K to be the concatenation of (N,Q,W ′)
and (M,R, V ), that is

K = (N ∪M,Q ∪ (N ×M) ∪R,W ′ ∪ V ).



Clearly, K is an S4-Kripke model.

By an I-formula we mean a formula constructed from
elements of IL and propositional variables by means
of propositional connectives. We will show now by the
induction on the complexity of a formula that for each
I-formula ϕ such that r(ϕ) < r, and for each b ∈ N ,

N , b |= ϕ if and only if K, b |= ϕ. (4)

In the case when ϕ is a propositional atom p with
r(p) < r, (4) follows easily from the fact that for each
world b ∈ N , p ∈ W (b) if and only if p ∈ W ′(b). The
cases when a formula ϕ is of the form ¬ϕ1, ϕ1 ∨ ϕ2

or ϕ1 ∧ ϕ2 are easy and their discussion is omitted.
Let us consider now the last case, when ϕ is of the
form Lγ. Consider b ∈ N and assume that N , b |= Lγ.
Then, N , c |= γ for each c such that (b, c) ∈ Q. By the
induction hypothesis, K, c |= γ for each c ∈ N such
that (b, c) ∈ Q.

Since r(Lγ) < r and N , b |= Lγ, it follows that Lγ /∈
Φ. Thus, since ϕ = Lγ is an I-formula, Lγ ∈ Ψ.
Consequently, since T is consistent, γ ∈ T . Thus, for
each c ∈ M , M, α |= γ. Consequently, K, b |= Lγ, as
required. The converse implication in (4) is evident.

The property (4) implies that K, a 6|= ψ. Let ϕ ∈ I.
Consider b ∈ M. Then, K, b |= ϕ because M, b |= ϕ.
Assume now that b ∈ N . If ϕ ∈ Ij , j < r, then
K, b |= ϕ, by (4). If ϕ ∈ Ij , where j ≥ r, then for
every propositional atom p of c(ϕ), r(p) ≥ r and, con-
sequently, p ∈ W ′(b) if and only if U(p) = 1. Hence,
K, b |= c(ϕ) which, in turn, implies that K, b |= ϕ.
Consequently, K |= I.

Consider now Lγ ∈ Φ. Then M |= ¬Lγ. This means
that for each b ∈ M , K, b |= ¬Lγ. In addition, it
follows that for some b0 ∈ M , K, b0 6|= γ. Thus, by
the definition of the accessibility relation of K, K, b |=
¬Lγ, for each b ∈ N . Consequently, K |= ¬Φ. 2

Now, we are ready to prove Theorem 2.7.

Theorem 2.7 Let I ⊆ L be strongly stratified. For
each logic S such that
(a) N ⊆ S, and
(b) S ⊆ KD45 or S ⊆ S4,
the theory I has exactly one S-expansion and for all
these logics S, S-expansions of I coincide.

Proof: Assume that I is strongly stratified and Φ is
propositionally admissible for I. Define Ψ = IL\Φ and
let Lψ ∈ Ψ. Then, for each Lψ ∈ Ψ, where Ψ = IL\Φ,
we have I ∪ ¬Φ ⊢N ψ. Indeed, this claim follows
easily by induction on (r,m), where r = r(ψ) and
m = m(Lψ) — both the basis of the induction and the
induction step follow from Lemma 5.1. In other words,

for a strongly stratified theory I, if Φ is propositionally
admissible for I then Φ is N-admissible for I. Conse-
quently, each KD45-expansion of I is an N-expansion
of I. The converse implication always holds thus, the
classes of N-expansions and KD45-expansions coin-
cide for strongly stratified theories. Since, by the result
of [MT91], a strongly stratified theory I has a unique
KD45-expansion, it is also the unique N-expansion of
I.

Next we show that if T1 and T2 are S4-expansions of a
strongly stratified theory I, then T1 = T2. To this end
we proceed as follows. Let T1 and T2 be determined by
sets Φ1 and Φ2 that are S4-admissible for I. Put Ψi =
IL\Φi, i = 1, 2. Let r be the smallest integer such that
for some Lψ with r(Lψ) = r, Lψ ∈ (Φ1\Φ2)∪(Φ2\Φ1).
Without loss of generality, suppose that Lψ ∈ Φ1 \Φ2.
Then, Lψ ∈ Ψ2 and, by Lemma 5.2,

I ∪ {¬Lϕ : Lϕ ∈ Φ2, r(ϕ) < r} ⊢S4 ψ.

By the choice of r,

{¬Lϕ : Lϕ ∈ Φ2, r(ϕ) < r} =

{¬Lϕ : Lϕ ∈ Φ1, r(ϕ) < r}.

Thus, we obtain that I∪¬Φ1 ⊢S4 Lψ. This is a contra-
diction with the consistency of I∪¬Φ1. Thus, Φ1 = Φ2

and T1 = T2.

In other words, a strongly stratified theory has at most
one S4-expansion. Since each N-expansion is an S4-
expansion, that statement of the theorem follows from
our previous remarks and from Proposition 2.1. 2

Theorem 3.3 (a) Let S be any of N, K, T, S4, K45
, and let Φ be S-admissible for I. Then TI,Φ is the
unique S-expansion of I containing I ∪ ¬Φ.
(b) Let S be any of N, K, T, S4. Then, T is an
S-expansion of I if and only if T = TI,Φ, for some
S-admissible Φ.

Proof: Part (a) follows from Theorem 3.2(a). The
proof of part (b), for for all logics except for N, is
given in Shvarts [Shv90].

To prove part (b) for logic N, one has to show that
if T is an N-expansion of I, then T = TI,Φ, for some
N-admissible set Φ. To this end, observe that T is
also a K-expansion of T . Define Ψ = T ∩ IL and
Φ = IL \Ψ. By (b) for the logic K, it follows that Φ is
K-admissible for I. To complete the proof, it remains
to show that Φ is N-admissible for I. We will prove
a slightly stronger fact that if I ∪ ¬LT ⊢N γ, where
γ = ψ or γ = Lψ, for Lψ ∈ Ψ, then I ∪ ¬Φ ⊢N γ.

We will proceed by the induction on the length of the
proof of γ in the logic N and from I ∪ ¬LT . If the



length of the proof is 1, then γ is a tautology or γ ∈
I ∪ ¬LT . The former case is obvious. In the latter,
since {γ}L ⊆ IL, it follows that γ ∈ I ∪ ¬Φ.

Consider now a proof P of γ (in N and from I ∪¬LT )
of length n > 1. If γ is derived by means of the neces-
sitation rule, then γ = Lα and α has a shorter proof
than γ. Moreover, by the definition of γ, Lα ∈ Ψ or
LLα ∈ Ψ. In this latter case, since T is consistent and
stable, it follows that Lα ∈ Ψ. Thus, in both cases the
induction hypothesis applies to α and I ∪ ¬Φ ⊢N α.
Consequently, I ∪ ¬Φ ⊢N Lα.

Otherwise, if γ is not derived by an application of ne-
cessitation, it follows that I∪¬LT ∪X ⊢ γ, where X is
the set of all modal atoms Lα that appear in the proof
P and were derived by necessitation. Since {γ}L ⊆ IL,
it follows that I ∪¬Φ∪ (X ∩ IL) ⊢ γ. Clearly, for each
atom Lα ∈ X, Lα ∈ T . Thus, X∩IL ⊆ Ψ. Since each
α such that Lα ∈ X has a shorter proof than γ, by
the induction hypothesis, I ∪ ¬Φ ⊢N α, for Lα ∈ X.
Consequently, I ∪ ¬Φ ⊢N γ. 2

Theorem 3.5 If T is consistent, then T is a W5-
expansion of I if and only if T = TI,Φ for some Φ
being strictly admissible for I.

Proof: Consider a set Φ strictly admissible for I. De-
fine I ′ = I ∪ {ϕ ⇒ Lϕ : Lϕ ∈ Ψ}. Then, for each
Lψ ∈ Ψ,

I ′ ∪ ¬Φ ⊢ ψ.

This implies that I ′ ∪ ¬Φ ⊢W5 ψ. Consequently, Φ
is W5-admissible for I ′. Thus, by Theorem 3.1, T =
TI′,Φ is a W5-expansion of I ′. By Proposition 2.4

T = Cn(I ∪ {ϕ⇒ Lϕ : Lϕ ∈ Ψ}

∪ {ϕ⇒ Lϕ : ϕ ∈ T} ∪ ¬LT ).

But Ψ ⊆ TI′,Φ = T . Thus, since T is consistent,

{ϕ⇒ Lϕ : Lϕ ∈ Ψ} ⊆ {ϕ⇒ Lϕ : ϕ ∈ T}.

Consequently,

T = Cn(I ∪ {ϕ⇒ Lϕ : ϕ ∈ T} ∪ ¬LT ),

that is, T is a W5-expansion of I. It remains to show
that TI′,Φ = TI,Φ, but this follows immediately from
the definition of TI,Φ and the equality:

Cn(I ∪ ¬Φ ∪ Ψ ∪ {ϕ : Lϕ ∈ Ψ}) =

Cn(I ∪ {ϕ⇒ Lϕ : Lϕ ∈ Ψ} ∪ ¬Φ ∪ Ψ ∪ {ϕ : Lϕ ∈ Ψ}).

To prove the “only if” part, we proceed as follows.
Let T be a W5-expansion of I. Then T is a K45-
expansion of I. Define Ψ = T ∩ IL and Φ = IL \ Ψ.

Then Φ is propositionally admissible for I and T =
TI,Φ. It remains to prove that Φ is strictly admissible
for I. Let Lψ ∈ Ψ. Then, ψ ∈ T and, since T is a
strict expansion, we have

I ∪ {¬Lϕ : ϕ /∈ T} ∪ {ϕ⇒ Lϕ : ϕ ∈ T} ⊢ ψ. (5)

n order to show that Φ is strictly admissible, it is suf-
ficient to prove that

I ∪ {¬Lϕ : Lϕ ∈ IL \ T} ∪ {ϕ⇒ Lϕ : Lϕ ∈ Ψ} ⊢ ψ.
(6)

Consider any propositional valuation V evaluating the
premises of (6) as 1. Define a valuation W by

1. W (Lϕ) = 0, for Lϕ /∈ T ∪ IL,

2. W (Lϕ) = 1, for Lϕ ∈ T \ IL,

3. W (ϕ) = V (ϕ), for all other atoms.

Since T is stable, ϕ ∈ T if and only if Lϕ ∈ T . Thus,
all the premises in (5) are evaluated as 1 by W . Hence
W (ψ) = 1. Since {ψ}L ⊆ IL, W (ψ) = V (ψ). Thus,
for each valuation V satisfying the premises of (6),
V (ψ) = 1. Consequently, (6) holds. Hence, Φ is
strictly admissible for I. 2
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