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particular, logic N underlines all modal logics admitting necessitation rule, for example,

dynamic logic.

One subject not discussed in the paper is the complexity of membership for the conse-

quence operator in logic N. Proposition 2.2 and Theorem 5.2 can be used to obtain some

estimates.
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I we have to determine whether

p 2 Cn

N

(I [ f:L':' =2 E(fpg)):

From Corollary 6.4, it follows that it is enough to check whether

p 2 Cn

N

(I [ f:Lq;:L:Lpg):

To resolve this, we could use either the method of tableaux or the method described in

Section 5. We take this latter approach here. First, we eliminate formulas of depth greater

than 1 by introducing new atoms: a for Lq and b for Lp. Theory I [ f:Lq;:L:Lpg can

be now replaced by I

0

= fLq ! a;:Lq ! :a;Lp ! b;:Lp ! :b; L:a ! p; L:b !

q;:a;:L:bg which has the same modal-free consequences in the language generated by p

and q as I[f:Lq;:L:Lpg. Finally, using Proposition 5.3 and the de�nition of the operator

B we establish that p;:a; b are in Cn

N

(I

0

). Thus

p 2 Cn

N

(I [ f:Lq;:L:Lpg)

and E(fpg) is an N-expansion of I. 2

7 Conclusions

In this paper we investigated both proof theory and semantics for the pure logic of necessita-

tion N. Logic N is naturally related to various topics of current investigations in knowledge

representation in particular, default logic. Our results provide new methods for computing

default extensions and a tool for studying possible entailment relations in default logic.

We believe that logic N deserves further investigations. The natural rigor of provability

in logic N makes it suitable for formalizations of various processes of computation. In
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Claim 1. If ' 2 L

1

, then for each m 2M

1

, M

1

;m j= ' if and only if M;m j= '.

Claim 2. If ' 2 L

2

, then for each m 2M

2

, M

2

;m j= ' if and only if M;m j= '.

The �rst claim implies that M 6j= �. Consider now ' 2 B. If ' 2 A, then both claims

together imply that M j= '. If ' 62 A, then ' = :L , where L 2 L

2

n L

1

. By the second

claim, M; m j= :L for each m 2M

2

. In particular, it follows that M;m

0

j= : , for some

m

0

2M

2

. By the de�nition of R , we obtain that M; m j= :L , for each m 2M

1

. Thus,

M j= :L (= '). Consequently, M j= B and B 6`

N

�. 2

Let I � L

L

. Every formula L' that occurs in a formula of I is called a modal atom of I.

The collection of modal atoms of I is denoted ma(I). Let us denote by L

ma(I)

the language

generated by the atoms of L and all the atoms in ma(I).

Corollary 6.4 Let U � L and I � E(U). Then Cn

N

(I [ f:L':L' 2 ma(I) n E(U)g) \

L

ma(I)

= Cn

N

(I [ f:L':' =2 E(U)g) \ L

ma(I)

.

Proof: Directly from Theorem 6.3 by applying it to L

1

= L

ma(I)

, L

2

= L

L

, A = I [

f:L':L' 2 ma(I) nE(U)g and B = I [ f:L':' =2 E(U)g. 2

Now, to check whether U � Cn

N

(I[f:L':' =2 E(U)g) we check whether U � Cn

N

(I[

f:L':L' 2 ma(I) nE(U)g). The set I [ f:L':L' 2 ma(I) n fL : 2 E(U)gg) is �nite.

Thus, methods developed in Sections 4 and 5 can be used.

Example 6.1 We will use methods of Sections 5 and 6 to compute N-expansions of I =

fL:Lq ! p; L:Lp ! qg. There are four candidate theories for an N-expansion since

there are four subsets of the set fp; qg. Consider one of these candidates: E(fpg). Clearly,

I � E(fpg) (general algorithms to verify membership in a stable set are described in

[MT91]). According to Theorem 6.2(2), to determine whether E(fpg) is an N-expansion of
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Thus, to compute all consistent N-expansions of I we need to consider all consistent

sets U � f!

i

: i 2 Sg and for each such set we need to check whether I � E(U) and U �

Cn

N

(I [ f:L':' =2 E(U)g). Algorithms to acomplish the �rst of these two tasks are given

in [MT91]. Below we will describe how to check whether U � Cn

N

(I [ f:L':' =2 E(U)g).

Since I [ f:L':' =2 E(U)g is in�nite, algorithms developed in Sections 4 and 5 cannot be

used directly. To overcome this di�culty, we prove the following general result.

Theorem 6.3 Let L

1

and L

2

be subsets of L

L

such that if ' 2 L

i

, i = 1; 2, then  2 L

i

for each subformula  of '. Let A � L

1

and B � L

2

meet the following conditions:

1. B is N-consistent;

2. A � B;

3. if � 2 B nA then � is of the form :L�, where L� 2 L

2

n L

1

.

Then, for � 2 L

1

, A `

N

� if and only if B `

N

�.

Proof: The implication from left to right is immediate from 2. Now, suppose A 6`

N

�.

Then there is an N-model M

1

= hM

1

; fR

1

'

g

'2L

L

; V

1

i so that M

1

j= A but M

1

6j= �. Since

B is N-consistent, there is an N-structure M

2

= hM

2

; fR

2

'

g

'2L

L

; V

2

i so that M

2

j= B.

Without loss of generality we can assume that M

1

\M

2

= ;.

Construct a new structure M = hM; fR

'

g

'2L

L

; V i as follows. Put M =M

1

[M

2

,

R

'

=

(

(M

1

�M

2

) [R

2

'

if L' =2 L

1

R

1

'

[R

2

'

otherwise.

and let V be the smallest valuation containing both V

1

and V

2

.

The following two claims can be proved by induction on the complexity of '.

30



compute extensions of default theories.

First, we recall several related notions and results. Moore [Moo85] de�ned an expansion

of a theory I � L

L

to be any theory T satisfying

T = Cn(I [ fL':' 2 T g [ f:L':' =2 Tg):

Expansions of a theory I are stable (see [Moo85], [MT91]). A stable theory T is uniquely

determined by its objective, that is modal-free, part T \ L. For U � L, let E(U) be the

unique stable theory such that E(U) \ L = Cn(U).

Expansions of a �nite theory I were characterized by Marek and Truszczynski [MT91].

Since propositionally equivalent theories have the same expansions, without loss of general-

ity we may assume that I consists of formulas of the form � _ !, where � is built of modal

literals only and ! is built of propositional literals, say I = f�

i

_ !

i

: i 2 Sg, for some �nite

set of indices S. For such a theory I we have the following result.

Theorem 6.1 ([MT91]) A consistent theory T is an expansion of I if and only if

T = E(f!

i

: i 2 S

T

g);

where S

T

= fi 2 S::�

i

2 Tg.

In [MT90] the following results on N-expansions are proved.

Theorem 6.2 Let I � L

L

.

(1) Every N-expansion of I is an expansion of I.

(2) Theory E(U), where U � L, is an N-expansion of I if and only if I � E(U) and

U � Cn

N

(I [ f:L':' =2 E(U)g).
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f�

j

: j 2 J

0

g is consistent. Let v

1

be a valuation of At

1

such that v

1

(�

j

) = 1 for all j 2 J

0

.

Combine v

1

and v

2

into a single valuation v of At. This is possible since At

1

\ At

2

= ;.

Now, let j 2 S. If j 2 J

0

, then v

1

(�

j

) = 1 and so v(�

j

_ !

j

) = 1. If j =2 J

0

, then v

2

(!

j

) = 1

and so v(�

j

_ !

j

) = 1. Consequently, v evaluates all I as 1. Since v coincides with v

2

on

At

2

, ! =2 Cn(I) \ L

2

. 2

Now we will describe a method to compute B(I) for a theory I � L

L;1

. First, without

loss of generality, we may assume that each formula in I is of the form �_!, where � is built

only of modal atoms and ! is built only of propositional atoms, say I = f�

i

_ !

i

: i 2 Sg,

for some set of indices S. For each n, we produce a set U

n

� f!

J

:J � Sg such that

B

n

(I) = Cn(U

n

). Proposition 5.3 implies that for U

0

we can take f!

J

:J 2 H

I

g. To

compute U

n+1

, we proceed as follows. First we �nd all modal atoms L� occurring in I

such that � 2 B

n

(I) (= Cn(U

n

)). De�ne I

0

to be the union of such modal atoms and I .

Then, Proposition 5.3 implies that U

n+1

= f!

J

: J 2 H

I

0

g satis�es B

n+1

(I) = Cn(U

n+1

).

Clearly, B(I) = Cn(

S

1

n=0

U

n

). If I is �nite, then for some n, U

n

= U

n+1

. At that point the

construction can be stopped and B(I) = Cn(U

n

).

Clearly, the method just described, together with Theorem 5.2, allows one to �nd for

every �nite I � L

L

a �nite set U such that Cn

N

(I) \ L = Cn(U).

6 Computing N-expansions

In this section we will use some of the previously obtained results to design a method

of computing all consistent N-expansions of a �nite theory I � L

L

. (Theory I has an

inconsistent expansion if and only if I is N-inconsistent, which can be checked directly

using the results of Section 4 or 5.) This, in view of Theorem 1.1, yields a method to
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and

B(I) =

1

[

n=0

B

n

(I):

It easily follows from the de�nition of the operator A that if I � L

L;1

then

B

n+1

(I) = Cn(I [ LB

n

(I)) \ L:

Consequently,

Cn

N

(I) \ L = B(I):

Thus, to �nd Cn

N

(I) \ L it su�ces to describe a method to compute B(I).

First, we will prove a technical fact. Let L

1

, L

2

be two propositional languages with

disjoint sets of atoms, At

1

and At

2

, respectively. Let L be the language generated by the

union At = At

1

[At

2

.

Each formula ' in L can be represented as a conjunction of disjunctions � _ ! with

� 2 L

1

and ! 2 L

2

. Thus, each theory I has a propositionally equivalent theory consisting

of such disjunctions.

Let I = f�

i

_ !

i

: i 2 Sg, where each �

i

2 L

1

and each !

i

2 L

2

. De�ne H

I

=

fJ :J is �nite; f�

i

: i 2 Jg `?g. For a �nite set J � S de�ne !

J

=

W

f!

i

: i 2 Jg.

Proposition 5.3 Cn(I) \ L

2

= Cn(f!

J

:J 2 H

I

g).

Proof: Clearly, if f�

i

: i 2 Jg `?, then f�

i

_ !

i

: i 2 Jg ` !

J

. Thus, for each J 2 H

I

,

!

J

2 Cn(I) \ L

2

.

We now prove the converse inclusion. Let ! 2 L

2

and ! =2 Cn(f!

J

:J 2 H

I

g). Then

there is a valuation v

2

of At

2

such that v

2

(!) = 0 and v

2

(!

J

) = 1 for every J 2 H

I

. Let

J

0

= fj: v

2

(!

j

) = 0g. Consider now f�

j

: j 2 J

0

g. Since v

2

(!

J

0

) = 0, J

0

=2 H

I

. Thus,
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Cn

N

(I).) 2

Thus we introduced an operator e which, given a theory I � L

L

, produces a theory

e(I) in a modal language with more propositional atoms. This theory e(I) carries the

information de�ning some propositional atoms as equivalent to modal atoms. There are

two important features of the theory e(I). Firstly, as long as I is �nite and its L-depth is

bigger than 1, e(I) is �nite and has a smaller L-depth. Secondly, the consequences of e(I)

in the original propositional language L are same as those of I .

Now we shall iterate this construction.

Theorem 5.2 For every theory I � L

L

there exists a theory J consisting of formulas of

depth at most 1 and such that

Cn

N

(I) \ L = Cn

N

(J) \ L:

Proof: Let I

n

consist of all formulas of I that have L-depth at most n. By e

n

denote the

operator resulting from iterating n times the operator e. De�ne J

0

= I

0

, J

1

= I

1

and

J

n

= e

n�1

(I

n

) for n � 2, and assume that when constructing J

n

the same propositional

atoms are used for the modal atoms that occur in I

n�1

that were used when constructing

J

n�1

. This additional assumption guarantees that J

n�1

� J

n

. De�ne J =

S

1

n=0

J

n

. Clearly,

each formula in e

n�1

(I

n

) has L-depth at most 1 and Lemma 5.1 implies that Cn

N

(I

n

)\L =

Cn

N

(J

n

) \ L. Since I =

S

1

n=0

I

n

, J =

S

1

n=0

J

n

, I

0

� I

1

� : : :, and J

0

� J

1

� : : :, the

assertion follows. 2

We now restrict to theories contained in L

L;1

. For such theory I de�ne (see Section 2

for the de�nitions of the operators A

n

and A)

B

n

(I) = A

n

(I) \ L
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be dealt with in a similar fashion. Thus, assume that  = L�. If � has L-depth at least

1, then  = L�. Consequently, the statement M

e

;m j=  is equivalent to the statement:

M

e

; m

0

j= � for each m

0

such that (m;m

0

) 2 R

e

�

. Since R

e

�

= R

�

, by the induction

hypothesis it follows that this last statement is equivalent to the statement: M;m

0

j= � for

each m

0

such that (m;m

0

) 2 R

�

, which is equivalent to M;m j= L�.

If � has L-depth 0, then  = a

�

. Since M

e

j= L� $ a

�

, the statement M

e

; m j=  is

equivalent to M

e

;m j= L�. Since � 2 L, � = �. Thus, R

e

�

= R

e

�

= R

�

. Therefore, the

statement M

e

; m j= L� is equivalent to M;m j= L�.

Let now ' 2 Cn

N

(I)\L. Suppose thatM

e

satis�es e(I). The claim we proved implies

that M (de�ned as before) satis�es I. Consequently, M j= '. Since ' 2 L, ' = '. Thus,

again by the claim we proved, M

e

j= '. By Theorem 3.6, ' 2 Cn

N

(e(I)).

The converse inclusion can be proved in a similar fashion. Consider an arbitrary N-

structure M = hM; fR

 

g

 2L

L

; V i. De�ne an N-structure M

e

= hM; fR

e

 

g

 2L

e

L

; V

e

i as

follows. For  2 L

L

set R

e

 

= R

e

 

= R

 

. All other relations R

e

 

are chosen arbitrarily.

Finally, for an atom p 2 L put V

e

(p;m) = V (p;m) and for each new atom a

'

de�ne

V

e

(a

'

; m) = 1 if and only if M; m j= L'. Similarly as before, for each such M

e

the

following statements can be established (we omit the details):

(1) For every # 2 L, M

e

;m j= # if and only if M;m j= #.

(2) For every m 2M , M

e

; m j= L'$ a

'

(3) For every m 2M , and  2 L

L

, M; m j=  if and only if M

e

;m j=  .

Let now ' 2 Cn

N

(e(I))\ L. Consider an arbitrary N-structure M satisfying I. Then,

by (2) and (3), M

e

satis�es e(I). Consequently, M

e

j= ' and, by (1), M j= '. Thus,

' 2 Cn

N

(I). (Note that this reasoning proves a stronger inclusion: Cn

N

(e(I)) \ L

L

�
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determine whether I `

N

�. In this section we will study a restricted variant of the problem

in which � is modal-free, that is, � 2 L. In fact, for this restricted variant of the membership

problem we will describe an algorithm which, given a �nite theory I � L

L

produces a �nite

set S � L such that

Cn

N

(I) \ L = Cn(S):

The �rst step is to replace an arbitrary theory I � L

L

by a theory J which consists

of formulas of L-depth at most 1. This requires introducing new propositional atoms. We

now describe the basic step in the construction of J . For each modal atom L' of L-depth 1

occurring in I we introduce a new propositional atom a

'

. In each formula  2 I we replace

all occurrences of modal atoms of L-depth 1 by the corresponding new propositional atoms.

The resulting formula will be denoted by  . Finally, we add formulas L'$ a

'

, for all new

atoms a

'

. The resulting theory will be denoted by e(I). The language obtained from L by

adding to it atoms a

'

will be denoted by L

e

.

Lemma 5.1 Cn

N

(I) \ L = Cn

N

(e(I)) \ L

Proof: Let M

e

= hM; fR

e

 

g

 2L

e

L

; V

e

i be an N-structure. For  2 L

L

de�ne R

 

= R

e

 

. For

an atom p 2 L de�ne V (p;m) = V

e

(p;m). Finally, de�ne M = hM; fR

 

g

 2L

L

; V i. We will

prove that for every  2 L

L

and every m 2M ,

M

e

;m j=  if and only if M;m j=  .

We proceed by induction on the length of  . If  is an atom of L, then the claim follows

from the de�nition of V and from the equality  =  . Assume that  = :�. Then  = :�.

By the induction hypothesis, M

e

; m j= � if and only if M; m j= �. Thus, the equivalence

M

e

; m j=  if and only if M; m j=  follows. The cases of other Boolean connectives can
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We shall now de�ne an entailment relation for defaults as follows: Let � = hD;W i be

a default theory, and let d be a default. We say that � entails d, in symbols � > d if the

extensions of � and �

0

= hD [ fdg;W i are exactly the same.

It is easy to see that this relation > has the properties of re
exivity and cumulative

transitivity (cf. [Mak89]).

The relation > can be characterized in the language L

!

1

;!

that is, the propositional lan-

guage admitting denumerable conjunctions and disjunctions, using the methods of [MNR90].

Here we give a �nitary su�cient condition for the entailment � > d to hold.

Proposition 4.12 Let d be a default rule, and � a default theory. Let tr(d); tr(�) be

translations into modal language. Then tr(�) `

N

tr(d) implies � > d.

Proof: Assume tr(�) `

N

tr(d). Set �

0

= hD[fdg;W i. Let S be any extension of �. Then

E(S) is an N{expansion of tr(�). This means

T = Cn

N

(tr(�) [ f:L':' =2 T g)

Since tr(�) `

N

tr(d),

T = Cn

N

(tr(�) [ ftr(d)g [ f:L':' =2 Tg) = Cn

N

(tr(�

0

) [ f:L':' =2 Tg)

Thus E(S) is an N{expansion of tr(�

0

) and since S is closed under consequence, S is an

extension of �

0

.

The converse implication is proved in a similar manner. 2

5 Modal-free consequences in logic N

In the previous section we presented a method to solve the membership problem for the

consequence operator of logic N: given a �nite theory I � L

L

and a formula � 2 L

L

,
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Theorem 4.10 (Finite universe property) Ley I � L

L

be �nite and let ' 2 L

L

be

such that I 6`

N

'. Then, there is an N-structure M with �nite universe such M j= I and

M 6j= '.

The proof of Lemma 4.9 provides a bound (in terms of the total length of formulas in I)

for the size of the universe.

In the case of N-structures, even if the universe of an N-structure is �nite there are

in�nitely many accessibility relations to deal with. So, after restricting the size of the

universe the next task is to reduce the number of accessibility relations. This can be

achived by means of the following theorem. Its proof is standard and is omitted.

Theorem 4.11 Let I 2 L

L

and let M

i

= hM

i

; fR

i;'

g

'2L

L

; V

i

i, i = 1; 2, be N-structures

such that M

1

=M

2

, V

1

= V

2

and R

1;'

= R

2;'

for every subformula ' of I. Then, for every

m 2M

1

(=M

2

), M

1

; m j= I if and only if M

2

; m j= I. In particular, M

1

j= I if and only

if M

2

j= I.

If I is �nite, Theorems 4.10 and 4.11 allow a restriction to models with �nite universes

and �nitely many accessibility relations. Furthermore, standard methods of Kripke struc-

tures allow a restriction of domains of valuations to atoms actually appearing in formulas

of I .

The proof procedure presented in this section can be used to get some results on default

logic. Recall that under the translation tr(�) which assigns to a default

�:M�

1

;:::;M�

n

!

the

formula of L

L

: L� ^ LM�

1

^ : : : ^ LM�

n

! !, default extensions of a default theory

� = hD;W i are in a one-to-one correspondence with the N{expansions of tr(�), that is

solutions to the equation T = Cn

N

(tr(�) [ f:L':' =2 Tg).
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we extend the tableau using the formula of level 2. The right branch is closed at this point.

At the level 8 we extend the tableau using the formula of level 1. Again the right branch

is closed immediately. The left branch is not closed at this point and the tableau T 1 is not

closed. We select now a formula of the form :L	 on an open branch (T1 has just one open

branch). We build now a tableau for I and 	. In our case it is the tableau T2. Thus, in

the tableau T2, after initial four levels listing I we put :	. In our case 	 is :La. Thus at

level 5 we put in the tableau T 2 the formula ::La. The tableau T2 is then developed and

it is a closed tableau - all its branches are closed. This closes the last non-closed branch of

the tableau T 1. Thus, I `

N

a holds. 2

Several normal modal logics S possess the �nite model property that is, if I is �nite and

I 6`

S

', then there is a Kripke structure M for S with a �nite universe such that M j= I

and M 6j= '. The situation here is similar. We have the following theorem which can be

proved by using the N-structure constructed in the proof of Lemma 4.9.
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that  

1

and  

2

2 m. By the induction hypothesis, M;m j=  

i

, i = 1; 2. Consequently,

M; m j= #.

3. Finally, suppose # = L . Since B is S-open, :L 62 m. Thus, no world in M can

be accessed from m via R

 

. Consequently, M; m j= L . This completes the proof of the

claim.

Now the assertion follows easily. Let B be an S-open branch in the root tableau of

S . Clearly, :' 2 B. Then, the claim implies that there is a world m 2 M such that

M; m j= :'. Consequently, M; m 6j= '. On the other hand, each branch of S contains I.

Then, again using the claim, we obtain that M j= I. 2

Proof of the theorem 4.5.

We use Lemmas 4.8 and 4.9. Let S be a :'-saturated set of modal tableaux for :'. Suppose

that the root tableau of S has an S-open branch. Then, Theorem 3.6 and Lemma 4.9 imply

that I 6`

N

'. Conversely, suppose that the root tableau of S is S-closed. Then, by Lemma

4.8, :' is not I-satis�able. That means, that for each N-structure M if M j= I , then for

each world m ofM, M;m 6j= :' or, equivalently,M;m j= '. Then, again by Theorem 3.6,

I `

N

'. 2

Example 4.1 Consider the theory I = fLa ! b; L:La ! b;:Lb _ a;:bg. Does I `

N

a

hold? We have seen in Example 2.1 that the answer is yes. Now, we will show how to use

the method of modal I-tableaux to resolve this problem. The Figure 1 shows a :a-saturated

set S of I-tableaux. The tableau T1 in the picture is the root tableau and the tableau T 2 is

its :La-child. Branches marked by * are directly closed. Tableau T1 is a complete classical

tableau for I and a. Levels of T1 1-4 contain I. level 5 is :a. At the level 6 we extend the

tableau using the formula of level 3. The right branch is closed at this point. At the level 7
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Lemma 4.9 Let I � L

L

be �nite and let S be a :'-saturated set of modal I-tableaux for

:'. If the root tableau of S has an S-open branch, then there is an N-structure M, such

that M j= I, and M 6j= '.

Proof: De�ne M to consist of the theories of the S-open branches of the tableaux from S.

Let m 2 M and let p be an atom. Set V (m; p) = 1 if and only if p 2 m. Finally, for a

# 2 L

L

de�ne a relation R

#

as follows: (m

1

;m

2

) 2 R

#

if :L# 2 m

1

, and :# 2 m

2

. Put

M = hM; fR

#

g

#2L

L

; V i. We �rst prove the following claim.

Claim: If # 2 m, then M;m j= #. (Note that in the canonical structure used in the proof

of the completeness result in Section 3, all worlds were complete theories and we were able

to prove the equivalence of these two statements. Here the worlds need not be complete

and we can prove only implication one way.)

Proof of the Claim: Let m be the set of formulas on an S-open branch B. We proceed by

induction on the length of #. If # is an atom, the claim holds by de�nition.

1. Assume that # = : . Since B is S-open,  62 m. If  is an atom, then M;m 6j=  ,

by the de�nition of V . If  = : 

1

, then  

1

2 m (by the de�nition of classical tableaux).

By the induction hypothesis, M;m j=  

1

. Thus, M;m j= #. If  = '

1

^ '

2

then for

some i, i = 1 or 2, :'

i

2 m (by the de�nition of classical tableaux). By the induction

hypothesis, M; m j= :'

i

. Thus, M;m j= : . The last possibility is  = L 

1

. Since B is

not directly closed and S is :'-saturated, there is a : 

1

-child T of B in S. The tableau T

is a classical I-tableau for : 

1

. Since B is S-open, there is an S-open branch B

0

in T . Let

m

0

be the theory of B

0

. Then, : 

1

2 m

0

and (m;m

0

) 2 R

 

1

. By the induction hypothesis,

M; m

0

j= : 

1

. Thus, M;m j= :L 

1

.

2. Next suppose that # =  

1

^  

2

. It follows from the de�nition of the development rules
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Proof: The proof is by induction on the number of applications of the classical tableau

rules. It is standard and we omit the details. 2

The next lemma plays a key role in the proof of the su�ciency part of Theorem 4.5.

Lemma 4.8 Let S be a '-saturated set of modal I-tableaux for '. An S-closed tableau in

S is not I-satis�able.

Proof: Let T be an S-closed tableau in S. We proceed by induction on the rank of T . If

the rank of T is 1, then T is directly closed. Let B be any branch of T . Then there are

formulas � and :� on B, for some � 2 L

L

. Consequently, B is not I-satis�able. Thus,

since B was an arbitrary branch of T , T is not I-satis�able.

Suppose that the lemma holds for all S-closed tableaux with rank less than k and

consider an S-closed tableau T 2 S with rank k. Tableau T is a classical I-tableau for some

formula  . Assume that T is I-satis�able. Then, there is a branch B in T such that the set

F of formulas on B is I-satis�able. It follows that B is not directly closed. Thus, since B

is S-closed, there is a formula :L� on B and a classical I-tableau T

0

for :� such that T

0

is

in S, T

0

is S-closed and T

0

has rank smaller than k. Since the set of formulas on B, F , is

I-satis�able, there is an N-structure M and a world m such that M j= I and M; m j= F .

In particular, M; m j= :L�. Consequently, there is a world m

0

such that M; m

0

j= :�.

Thus, both f:�g and, by Lemma 4.7, T

0

are I-satis�able. Tableau T

0

has a smaller rank

than T and is S-closed. By the induction hypothesis it follows that T

0

is not I-satis�able,

a contradiction. Hence, T is not I-satis�able. 2

Next we show that if a root tableau of a :'-saturated set of modal I-tableaux for :'

has an S-open branch, then I 6`

N

'.
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tableaux of S have rank 1. It is easy to see that all other tableaux have ranks greater than

1.

We have now the following theorem.

Theorem 4.5 Let S be a :'-saturated set of modal I-tableaux for :'. Then I `

N

' if

and only if the root tableau of S is S-closed.

This theorem proves correctness of the following algorithm for deciding whether a for-

mula ' is a consequence in the logic N of a �nite theory I : using the algorithms mentioned

or outlined above construct a :'-saturated set S of modal I-tableaux for :'. Next com-

pute the set C of S-closed tableaux. If C contains the root tableau of S, then I `

N

'.

Otherwise, I 6`

N

'.

In order to prove Theorem 4.5 we need some technical facts. We begin with a de�nition

of the auxiliary concept of I-satis�ability, and three lemmas.

De�nition 4.6 Let I; J � L

L

. Theory J is I-satis�able if there is an N-structure M and

a world m of M such that M j= I and M; m j= J . A branch B of a classical I-tableau is

I-satis�able if the set of all formulas on B is I-satis�able. A classical tableau is I-satis�able

if it has an I-satis�able branch.

We have the following simple lemma.

Lemma 4.7 Let I be a �nite theory, f'g be I-satis�able, and let T be a classical I-tableau

for '. Then there is a branch B in T such that the set of formulas on B is I-satis�able. In

other words, T is I-satis�able.
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Now we extend the de�nitions of closure to the case of modal tableaux contained in a

'-saturated set.

De�nition 4.4 Let S be a '-saturated set of modal I-tableaux for '. Let C be the inter-

section of all sets X � S satisfying the following condition:

(�) T 2 X whenever, for each branch B of T , either B is directly closed, or B has an

�-child in X, for some formula �.

Note that X = S satis�es (�), and so the collection of sets satisfying (�) is nonempty. Note

also that C contains all directly closed tableaux in S. Each tableau in C is called S-closed.

A branch of a tableau from S is S-closed if it is directly closed or if for some formula � it

has an S-closed �-child in S. A branch is S-open if it is not S-closed.

The set C can be easily constructed by the following algorithm.

C := ;;

repeat

C

0

:= ;;

for all T 2 S n C do

if each branch B of T is directly closed or, for some formula

�, B has an �-child in C then C

0

:= fT g [ C

0

rof

C := C [ C

0

;

until C

0

= ;.

The proof of correctness of this algorithm is simple and we omit the details. Note that

the algorithm allows us to assign ranks to tableaux in C. De�ne the rank of a tableau in

C to be the number of the iteration in which the tableau was included in C. For example,

each directly closed tableau is included into C in the �rst iteration. Thus, all directly closed

16



:L�. Let T

0

be a maximal classical I-tableau for :�. Tableau T

0

is a modal I-tableau

for '; we call it an :�-child of B.

Our tableaux method will construct maximal sets of tableaux (which will be called '-

saturated sets), and will use them to decide whether a formula is derivable in N from a

theory I . We give now a precise de�nition of a '-saturated set.

De�nition 4.3 A set S of modal I-tableaux for ' is called '-saturated provided:

1. S contains a classical I-tableau for ', and

2. for each T 2 S, for each open branch B of T , and for each formula :L� on B, there

is in S a classical I-tableau for :� (that is, an :�-child of B).

Notice that if S is '-saturated, then it consists only of maximal classical tableaux.

There is a straightforward algorithm for constructing '-saturated sets. For the following,

I is a �xed �nite set, and ' is a formula.

T := a maximal classical I-tableau for ';

S := fTg;

while S is not '-saturated do

select a tableau in S, with an open branch B, containing a formula

:L� with no classical I-tableau for :� in S;

T := a maximal classical I-tableau for :�;

S := S [ fT g. od

It is evident that this algorithm will always terminate, and at termination, S will be

'-saturated. Note also that '-saturated set produced by the algorithm contains exactly one

classical I-tableau for '. In the remainder of this section, we restrict our considerations only

to '-saturated sets that can be produced by the algorithm above and we call the unique

classical I-tableau for ' in such a set the root tableau.

15



2. If T is a classical I-tableau for ', then the result T

0

of applying one of the following

tableau development rules to T is another classical I-tableau for '.

(a) If a formula ::� occurs on an open branch B of T but � does not, then extend

branch B by adding a new node to the end of B and label it with �;

(b) If a formula � ^ � occurs on an open branch B of T but at least one of � or �

does not, then extend B by adding two new nodes to the end of B, one following

the other, and label them � and �;

(c) If a formula :(� ^ �) occurs on an open branch B of T but neither :� nor :�

occurs, then add two new nodes as left and right children of the last node of B,

and label one with :�, the other :�.

The tableau development rules above are well-known and yield a tableaux method for

propositional calculus. They will be referred to as classical tableau rules. If needed the list

can be amended in a straightforward manner to cover other connectives such as _, ! and

$ (see for example [Smu68] or [Fit90]).

A classical I-tableau for ' is maximal if no classical tableau rule applies to it. Since I

is �nite, each classical I-tableau can be extended to a maximal one in a �nite number of

steps. An algorithm is straightforward and we omit the details.

Now we take the modal connective into account, and de�ne a broader notion of tableaux.

De�nition 4.2 A modal I-tableau for a formula ' is de�ned recursively, as follows:

1. A maximal classical I-tableau for a formula ' is a modal I-tableau for '.

2. Suppose T is a modal I-tableau for ', with an open branch B containing a formula

14



(b) Next, consider the theory I = fa _ b;:La;:Lb; L(a ! b)g. Theory I is inconsistent

in logic K, the least normal modal system. We will show that I is N-consistent. To

this end, consider the N-structure M de�ned as follows: M = fm

1

;m

2

g, R

a

= R

b

=

f(m

1

; m

1

); (m

1

; m

2

); (m

2

; m

1

); (m

2

; m

2

)g, R

a!b

= ;. Again, it is easy to see that M j= I.

2

4 A tableaux method for the logic N

In this section we introduce the notion of a modal I-tableau for a �nite theory I and use it

in an algorithm that, for a given formula ', decides whether I `

N

'.

We begin by de�ning a classical I-tableau for '. Such a tableau is a rooted binary tree,

with formulas as node labels. If � occurs as a node label on a branch, we say simply that �

occurs on the branch. We call a branch of such a tree directly closed if both � and :� occur

on it, for some formula �. A classical I-tableau is directly closed if each of its branches

is directly closed. A branch that is not directly closed is called open. In this section, to

simplify the description of the tableax method for N, we assume that the only classical

connectives we use to build formulas in L are : and ^. Illustrating example involves a

theory containing! and _, the tableau development rules for those connectives can easily

be introduced as in [Fit83].

De�nition 4.1 Let I = f�

1

; : : : ; �

n

g. A classical I-tableau for a formula ' is de�ned

recursively, as follows:

1. The tree consisting of a single branch, with n + 1 nodes, labeled �

1

,: : : , �

n

, ', is a

classical I-tableau for '.

13



latter fact is equivalent to # =2 m. Since m is a maximal T -consistent set, by Lemma 3.5

(a) this last statement is equivalent to ' 2 m.

(3) If ' = #

1

^ #

2

or ' = #

1

_ #

2

, then we reason as in (2), using Lemma 3.5 (b) and (c),

respectively.

(4) Finally, we need to consider the case ' = L#. First, assume that L# 2 m. We need

to prove that M; m j= L#. Assume to the contrary that M; m j= :L#. Then, for some

m

1

such that (m;m

1

) 2 R

#

, M;m

1

j= :#. Since (m;m

1

) 2 R

#

, :L# 2 m. Thus both L#

and :L# belong to m, and m is inconsistent, a contradiction with Lemma 3.2. Conversely,

suppose M;m j= L# but L# =2 m. Then, by Lemma 3.5 (a), :L# 2 m. Then, by Lemma

3.3 the set f:#g is T -consistent. Consequently, there exists a maximal T -consistent set

m

1

such that :# 2 m

1

. Since m

1

is consistent, # =2 m

1

. By the induction hypothesis,

M; m

1

j= :#. By the de�nition of R

#

, (m;m

1

) 2 R

#

. Then, M;m j= :L#. This is a

contradiction and it completes the proof of the claim. Claim2

By Lemma 3.5 (d), for all m 2M , T �m. By the claim, for every m 2M , M; m j= T .

Hence, M j= T . On the other hand, there is a maximal T -consistent set m containing : .

Consequently, M; m j= : . Thus M 6j=  . 2

We conclude this section with an example.

Example 3.1 (a) First we will show that L(a _ a) ! La is not a theorem of N. To this

end, consider the N-structure M, such that M = fmg, V (m;a) = 0, R

a

= f(m;m)g

and R

a_a

= ;. It is easy to see that M 6j= L(a _ a) ! La. It is crucial that we have

two di�erent accessibility relations in this structure. If all relations in an N-structure are

identical then it collapses to a usual Kripke structure and each standard Kripke structure

satis�es L(a _ a)! La.

12



Lemma 3.5 If S is a maximal T -consistent set then S possesses these properties:

(a) For every # 2 L

L

, :# 2 S if and only if # =2 S.

(b) For every #

1

; #

2

2 L

L

, #

1

^ #

2

2 S if and only if #

1

2 S and #

2

2 S.

(c) For every #

1

; #

2

2 L

L

, #

1

_ #

2

2 S if and only if #

1

2 S or #

2

2 S.

(d) If T `

N

# then # 2 S. In particular, T � S.

Now, using Lemma 3.5 we prove the completeness of N-structures with respect to prov-

ability in the logic N. Although the argument is similar to the standard one, our de�nition

of accessibility relations is di�erent, and this is the reason why we provide the proof here.

Theorem 3.6 For T � L

L

and ' 2 L

L

, T `

N

 if and only if T j=  .

Proof: The \only if" part was proved in Proposition 3.1. To prove the \if" part we assume

that T 6`

N

 and we build a canonical N-structure M = hM; fR

'

g

'2L

L

; V i which satis�es

T but does not satisfy  . Our assumption implies that T is N-consistent that is that

T 6`

N

?, and that f: g is T -consistent. De�ne M to consist of all maximal T -consistent

sets S. Since f: g is T -consistent, it can be extended to a maximal T -consistent set. Thus,

in particular,M 6= ;. For m 2M and an atomic p, we set V (m; p) = 1 if and only if p 2 m.

Furthermore we de�ne m

1

R

'

m

2

if and only if :L' 2 m

1

and :' 2 m

2

. We �rst prove the

following crucial claim:

Claim: For every m 2M , and every ' 2 L

L

,

M;m j= ' if and only if ' 2 m:

We prove the claim by induction on the length of formula '.

(1) If p is atomic, then the de�nition of V implies the assertion.

(2) If ' = :# then M; m j= ' precisely whenM; m 6j= #. By the induction hypothesis, this

11



set f'

0

; : : : ; '

n

g � S, T 6`

N

:'

0

_ : : : _ :'

n

.

Lemma 3.2 If S is T -consistent, then S is propositionally consistent.

Proof: Suppose that S is propositionally inconsistent. Then there exists a �nite set

f'

0

; : : : ; '

n

g � S such that f'

0

; : : : ; '

n

g ` ?. Hence, using the deduction theorem for

propositional logic ` :'

0

_ : : : _ :'

n

and so T `

N

:'

0

_ : : : _ :'

n

, a contradiction. 2

Next we make an observation that allows us to produce T -consistent sets of formulas.

Lemma 3.3 If S � L

L

is T -consistent and :L' 2 S, then f:'g is T -consistent.

Proof: Assume that f:'g is T -inconsistent. Then, T `

N

::'. Consequently, T `

N

' and

so T `

N

L'. This, of course, implies that T `

N

::L' so S is T -inconsistent. 2

Remark. A related property used in the case of normal modal logics is: if S is T -consistent

and :L' 2 S, then f:'g [ f :L 2 Sg is T -consistent. The schema K plays a critical role

in the proof of this property, and it is not available in N. This forces us to use the weaker

statement, Lemma 3.3.

Now, we will prove the existence of maximal T -consistent sets of formulas.

Lemma 3.4 If S is T -consistent then S is contained in a maximal T -consistent set.

Proof: The union of every �-increasing sequence of T -consistent sets containing S is T -

consistent and contains S. Consequently the Kuratowski-Zorn Lemma is applicable and so

there exists a maximal T -consistent set extending S. 2

Now we list basic properties of maximal T -consistent sets. The proofs are standard (see

[Fit90]) and are omitted.

10



Proof: We proceed by induction on the length n of a derivation '

1

; : : : ; '

n

of #.

Assume, as an induction hypothesis, that the proposition holds for every formula with

a derivation from I of length less than n, and now consider a formula # such that I `

N

#

with a derivation of length n. There are several possibilities.

If # 2 I or is a tautology of the propositional calculus the assertion is evident. These

two cases establish also the basis of induction.

If # is derived from earlier terms ' and ' ! # of the derivation by modus ponens

then both ' and ' ! # have derivations from I of length less than n. By the induction

hypothesis, M; m j= ' and M; m j= ' ! # for every m 2 M. Then, by the de�nition of

the relation of satis�ability, M;m j= #, for every m 2M.

Finally, if # follows from an earlier term ' by necessitation, then ' has a derivation

from I of length less than n and # = L'. By the induction hypothesis for every m

0

2 M ,

M; m

0

j= '. Consequently, for an arbitrary m 2 M and every m

0

such that (m;m

0

) 2 R

'

,

M; m

0

j= '. Then, M;m j= L' that is, M; m j= #. 2

Next, we will prove the completeness of the semantics of N-structures with respect to

provability in N. The proof is standard and follows the general scheme for such arguments.

It is based on construction of a \canonical" structure whose worlds are complete theories in

the language L

L

(see [HC84] for examples of such proofs for several normal modal logics).

We give the proof here for the convenience of readers not familiar with modal logics.

We begin by introducing two crucial notions. We say that S is T -inconsistent if there

exists a �nite set f'

0

; : : : ; '

n

g � S such that T `

N

:'

0

_ : : : _ :'

n

. We say that S is

T -consistent if S is not T -inconsistent. Thus, S is T -consistent if and only if for every �nite

9



Kripke semantics that di�ers from the standard Kripke semantics in that in�nitely many

accessibility relations are required, one for each formula. An N-structure is a triple

M = hM; fR

'

g

'2L

L

; V i

where M is a nonempty set of objects called worlds, V gives valuations of propositional

variables (atoms of L) in the worlds from M , that is V :M �At! f0; 1g, and each R

'

is a

binary relation on M .

Given an N-structure M, the satisfaction relation M; m j= ', for m 2 M and ' 2 L

L

is de�ned by induction on the complexity of ' as follows:

1. If p is an atom, then M; m j= p if V (m; p) = 1

2. If  = :', then M;m j=  if it is not true that M;m j= ' (in symbols: M; m 6j= ')

3. If  = '

1

^ '

2

( = '

1

_ '

2

), then M; m j=  if M;m j= '

1

and M;m j= '

2

(M;m j= '

1

or M;m j= '

2

), the other Boolean connectives are dealt with similarly,

4. If  = L', then M;m j=  if for every m

0

such that (m;m

0

) 2 R

'

;M;m

0

j= '.

We say that an N-structure M satis�es ' (M j= ') if for all m 2M; M;m j= '. We say

that M satis�es a theory I (M j= I) if M j= ' for every ' 2 I .

Each relation R

'

serves the purpose of testing if ' is true in all worlds accessible via

this particular relation. However, a relationship between ' and  does not in any a priori

way re
ect on the relationship between R

'

and R

 

, which ensures that L' and L may

not be equivalent with respect to satis�ability by N-structures even if ' and  are. We

�rst establish soundness of our semantics.

Proposition 3.1 Let I `

N

#. Then for every N-structure M, if M j= I then M j= #.

8



A

0

(I) =

1

[

n=0

A

0

n

(I):

Clearly, Cn

N

(I) = A

0

(I). By induction on n it easily follows that

A

0

n

(I) = A

n

(I):

Thus, Cn

N

(I) = A(I). 2

By the L�depth of a formula ' we mean the maximum depth of nesting of occurrences

of L in '. In modal logics, because of the presence of modal axiom schemata, it is often the

case that any proof of a formula ' from a theory I contains formulas of L-depth exceeding

the maximum L-depth of any formula in I [ f'g. Proposition 2.1 implies that this is not

the case for logic N. Let L

L;k

denote the set of all formulas in L

L

with L-depth at most k.

Proposition 2.2 Let I � L

L;k

. For every formula ' 2 L

L;k

, if I `

N

', then there is a

proof of ' from I in N where each formula is in L

L;k

.

Proof: The proof is by induction on the level of ', de�ned as the minimum n such that

' 2 A

n

(I). The proof is based on the following property of the propositional provability

operator: if ' 2 Cn(I), then there exists a proof of ' from I with each formula built only

of atoms occurring in I [ f'g. We omit the details. 2

In a similar fashion a natural deduction system can be written for N and a cut-

elimination result proved. (see [Gal86] for a de�nition of the cut-rule in natural deduction

systems).

3 A semantics for logic N

The logic N is subnormal, that is, it does not contain the axiom schema K. Consequently,

there is no conventional Kripke semantics for N. In this section we introduce a variant of

7



Example 2.1 (a) One of the basic properties of normal modal systems is that if a ! b is

a theorem, so is La ! Lb. This property fails for logic N. For example, a ! (a _ a) is a

theorem of N but La ! L(a _ a) is not, a formal argument for this claim will be given at

the end of Section 3.

(b) Next we illustrate the concept of proof in logic N. Consider the theory I = fLa !

b; L:La! Lb;:Lb _ a;:bg. The formula a can be proved from I as follows:

1. :b and La! b yield :La (in propositional calculus).

2. Necessitation applied to :La yields L:La.

3. L:La and L:La! Lb yield Lb (in propositional calculus).

4. Lb and :Lb _ a yield a.

2

We will now develop a convenient representation of the provability operator Cn

N

. Let

us de�ne an operator A as follows:

A

0

(I) = Cn(I); A

n+1

(I) = Cn(I [ fL':' 2 A

n

(I)g); and

A(I) =

1

[

n=0

A

n

(I);

where Cn denotes the provability operator in propositional logic.

Proposition 2.1 Cn

N

(I) = A(I).

Proof: First, we de�ne an auxiliary operator A

0

:

A

0

0

(I) = Cn(I); A

0

n+1

(I) = Cn(A

0

n

(I) [ fL':' 2 A

0

n

(I)g); and

6



Such rule, following Reiter, is interpreted informally as follows: if a is known, and if it is

known that each b

i

; i � k, is possible, then establish c.

We assign to d the following formula from L

L

:

tr(d) = La ^ LMb

1

^ : : : ^ LMb

k

! c:

WhereM abbreviates :L:. This translation captures the above interpretation, see [Tru91].

Let us point out that this translation treats the premise part and justi�cation part of a

default rule di�erently. In fact the modalities L and LM are related in the logic N in a very

loose fashion, and the interplay of the formulas of the form L' and LM , with ';  2 L

corresponds precisely to that between the premise a and the premises Mb

i

in the default

logic.

For a default theory � = (D;W ) (D is a set of defaults, W � L) de�ne

tr(�) =W [ ftr(d) : d 2 Dg:

Theorem 1.1 Let � = (D;W ) be a default theory. A theory S � L is an extension of �

if and only if S = T \ L for an N-expansion T of tr(�).

To build nonmonotonic reasoning systems based on N, algorithms constructing all N-

expansions of a �nite theory I are needed. In this paper we �rst develop a theory of the

logic N and then describe algorithms for building N-expansions.

2 Basic properties of provability in logic N

In this section we present several examples and prove some simple properties of the prov-

ability operator in N | Cn

N

.

5



We will now brie
y describe the use of modal logics and in particular of the logic N in

nonmonotonic reasonings. Modal logics were �rst proposed as a means to formalize com-

monsense reasoning by McDermott and Doyle [MD80] and McDermott [McD82]. Let S be

a modal logic. By Cn

S

we mean the consequence operator for the logic S . McDermott and

Doyle described a construction which, for every modal logic S , produces its nonmonotonic

variant. They argued that in a nonmonotonic logic corresponding to S, a theory T can

be considered as a belief (knowledge) set associated with an initial theory I if and only if

T is exactly the set of facts that can be derived from I and all modal facts of the form

\:' is consistent". The formula \:' is consistent" is expressed as :L'. If a theory T is

closed under S-consequence, then :' is consistent with T precisely when ' =2 T . Conse-

quently, McDermott and Doyle [MD80] and McDermott [McD82] introduced the �xed point

equation:

T = Cn

S

(I [ f:L' : ' =2 T g); (1)

and proposed to consider its consistent solutions as candidates for the belief sets of I. They

proposed the following crucial de�nition. A theory T is an S-expansion of I if T is consistent

and satis�es (1). The operator Cn

S

is, of course, monotone. But T appears on both sides

of the equation (1) and the dependence of T on I is no longer monotone. What is more, a

theory may have no S-expansions, exactly one S-expansion, or many S-expansions.

Marek and Truszczynski [MT90] argued that N-expansions can be regarded as knowl-

edge sets of an agent with full introspection capabilities and pointed out the close connection

between extensions of default theories andN-expansions. (For all unde�ned notions related

to default logic see the original paper by Reiter [Rei80] or Marek and Truszczynski [MT90].)

Consider a default rule:

d =

a :Mb

1

; : : : ;Mb

k

c

:

4



the nonmonotonic consequence operator associated with N.

In this paper we restrict our attention to the language which is the standard extension

of some �xed language L of classical propositional calculus by a single modal operator

L. This language will be denoted L

L

. We will allow two inference rules: modus ponens

('; '!  = ) and necessitation ('=L'). A modal logic is normal if it

1. is closed under substitution,

2. uses modus ponens and necessitation as inference rules,

3. contains all axiom schemata for propositional calculus in L

L

,

4. contains all instances of the axiom schema K: L('!  )! (L'! L ).

We call all modal logics that do not contain axiom schema K subnormal.

We call the smallest logic that that satis�es 1 and 2 the pure logic of necessitation. We

denote this logic byN. It does not contain any axiom schemata for modifying modal formu-

las. It di�ers from the propositional calculus in L

L

in that it allows the use of necessitation

in proofs.

Let us stress that the notion of provability we consider here is di�erent in one important

respect from the notion of provability as introduced in Chellas [Che80] and Hughes and

Cresswell [HC84]. Formally, a proof of a formula ' from a set of formulas I in a modal logic

S is a sequence '

1

; '

2

; : : : ; '

n

such that '

n

= ', and for all i � n, either '

i

is an axiom

of S , or '

i

2 I , or '

i

is obtained from preceding formulas in the proof by modus ponens

or the necessitation rule. In particular, the necessitation rule can be applied to formulas in

I , not only to axioms of S. The fact that a formula ' is provable from I using the above

notion of proof is denoted by I `

N

'.

3



the lack of natural applications of subnormal modal logics on the one hand while, on the

other, normal modal logics seem to capture well most intuitive properties of such important

modalities as possibility, necessity, belief or knowledge. Recently, however, important appli-

cations of subnormal modal logics have emerged from the e�orts to formalize commonsense

reasoning with incomplete information. Such reasoning is inherently nonmonotonic | if a

fact p can be concluded from a theory I, it is not necessarily derivable from a theory I

0

which properly contains I. Most formalisms designed to describe nonmonotonic reasoning

can be characterized by means of a �xed point construction applied to the consequence

operator of some (monotone) logic. Two basic nonmonotonic systems, default logic and au-

toepistemic logic, can be characterized in such a way by means of subnormal modal logics

[MT90], [Shv90]. Several subnormal modal logics that yield other nonmonotonic formalisms

are given in [MST90]. These applications of subnormal modal logics in commonsense rea-

soning warrant a thorough study of the topic. In this paper we focus on one subnormal

modal logic, which we call the pure logic of necessitation N. The nonmonotonic formalism

associated with the pure logic of necessitation generalizes the default logic of Reiter [Rei80].

We develop a theory of the logicN. We propose a sound and complete Kripke-like semantics

for N and build a tableaux system for testing whether a formula is provable from a theory

in the logicN. An alternative method to compute modal-free consequences of a �nite theory

is also given.

As mentioned, our main motivation to consider logic N comes from the area of non-

monotonic reasoning. The nonmonotonic variant of N seems to be particularly useful in

investigations of knowledge sets built when only partial information is available. In partic-

ular, logic N is deeply connected with the default logic. In the paper, we apply our results

to problems in nonmonotonic reasoning. In particular, we design algorithms for building

2



The pure logic of necessitation

M.C. Fitting
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, W. Marek

2

and

M. Truszczy�nski
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Abstract

In this paper we discuss the pure logic of necessitation N, that is a modal logic

containing propositional calculus, with modus ponens and necessitation as inference

rules, but without any axioms for manipulating modalities. We develop a theory of the

logic N. We propose a sound and complete Kripke-like semantics for N and build a

tableaux system for testing whether a formula is provable from a theory in logic N. An

alternative method to compute modal-free consequences of a �nite theory is also given.

Our main motivation to consider logic N comes from the area of nonmonotonic reason-

ing. The nonmonotonic variant of N seems to be particularly useful in investigations

of knowledge sets built when only partial information is available. In particular, logic

N is deeply connected with the default logic. In the paper, we apply our results to

problems in nonmonotonic reasoning. In particular, we design algorithms for building

the nonmonotonic consequence operator associated with N.

1 Introduction

Investigations of modal logics so far have mainly been concerned with normal modal logics.

Relatively little is known about subnormal modal logics; major monographs on modal logics

either do not treat subnormal modal logics at all or contain only a very brief discussion of

the subject ([Che80], [HC84], [Fit83]). The reason for this state of a�airs appears to be
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