
A theory of nonmonotonic rule systems

W. Marek,1 A. Nerode2 and J. Remmel3

1 Introduction

In mathematics, a consequence drawn by a deduction from a set of premises can
also drawn by the same deduction from any larger set of premises. The deduction
remains a deduction no matter how the axioms are increased. This is monotonic
reasoning, much imitated in other, less certain, disciplines. The very nature
of monotonic reasoning makes mathematical proofs permanent, independent
of new information. Thus it has been since Euclid and Aristotle. Theorems
with complete proofs are never withdrawn due to later knowledge. It is little
exaggeration to say that mathematicians never reject the completed proofs of
their predecessors, except to complain about their constructivity.

Mathematicians build directly on the works of their forebearers stretching
back two and a half millenia to Euclid. Our current mathematical reasoning is
merely a fleshed-out version of Euclid’s. Monotonic reasoning marks theoretical
mathematics as a discipline. The traditional systems of mathematical logic are
monotonic since they simple reflect mathematical usage. Tarski [43] described a
calculus of deductive systems and captured in a simple way the general concept
of a monotonic formal system. His formulation includes all logics traditionally
studied, intuitionistic, modal, and classical. He did not qualify his definition,
as we do, with the adjective “monotone,” because there were no other systems
studied at that time.

Minsky [32] suggested that there is another sort of reasoning which is not
monotonic. This is reasoning in which we deduce a statement based on the
absence of any evidence against the statement. Such a statement is in the
category of beliefs rather than in the category of truths. Modern science offers

1Department of Computer Science, University Kentucky, Lexington, KY 40506–0027. Cur-

rently in Mathematical Sciences Institute at Cornell University. Work partially supported by

N.S.F. grant RII 8610671 and Kentucky EPSCoR program and the ARO contract DAAL03-

89-K-0124
2Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853. Work partially

supported by NSF grant MCS-83-01850 and ARO contract DAAG629-85-C-0018.
3Department of Mathematics, University of California at San Diego, La Jolla, CA 92903.

Work partially supported by NSF grant DMS-87-02473.

1

as a tool for establishing provisional beliefs statistics, but in many instances we
have no basis for applying statistics, due to a lack of governing distributions or
samples for the problem at hand.

What role does belief play in our affairs? Often we must make sharp “yes
or no” decisions between alternative actions. There may be no deductive or
statistical base which justifies our choice, but we may not be able to wait for
missing information, it may never materialize anyway. Often all we have as a
basis for decision is surmise; that is, deductions from beliefs as well as truths
and statistically derived statements. These beliefs are often accepted and used
as premises for deduction and choice of action due to an unquantified lack of
evidence against them.

A philosopher’s much-quoted example is about Tweety. We observe only
birds that can fly, and accept the belief that all birds can fly from the absence of
evidence for the existence of non-flying birds. We are told that Tweety is a bird,
and conclude that Tweety can’t fly using our belief as premise. Later, we observe
that Tweety is a pet ostrich and clearly can’t fly. We reject our previous belief
set and conclusions as a basis for decision making, and are forced to choose a new
belief set. The new set of beliefs may also include equally uncertain statements,
accepted due to a lack of evidence against. But we blithly draw consequences
from the new belief set and make decisions on that basis till contrary evidence
on some accepted belief is garnered, at which time we again have to acquire a
new set of beliefs.

This has happened in the history of practically every subject except math-
ematics. The principles of physics, or biology, have been changed with every
scientific revolution, even though unreflective practitioners of each age think
that final principles have been found. Even for mathematics, the Dutch mathe-
matician and philosopher L.E.J. Brouwer would have argued that the belief in
theorems established by “non-constructive methods” was unjustified, and that
a new belief set based on constructive principles should be adopted in its place.
Other mainstream mathematicians such as Hilbert did not agree with this po-
sition. Some philosophers of mathematics living now would argue that, even
within classical mathematics, the independence proofs for propositions of set
theory, such as the continuum hypothesis or the axiom of choice, indicate there
are several incompatible axiomatic systems which, as belief sets, could be the
foundation of mathematics.

One can envisage making up non-monotone logics describing the mathemat-
ical nature of belief. The exact result depends on the definition chosen for “lack
of evidence against”. McCarthy [30], initiated the study of non-monotonicity
with his notion of circumscription. With all relation symbols but one, R̄, of a
model (the world we are discussing) held fixed, and given axioms ϕ(R̄) relating
that R̄ to the other (fixed) relations of the model, the belief should be that,
lacking further evidence to the contrary, we should posit that R̄ denotes the
least relation R, if any, satisfying ϕ(R̄). If further evidence in the form of an

2

axiom ψ(R̄) becomes available, then we should believe that R̄ denotes the least
R satisfying (ϕ ∧ ψ)(R̄), if any, instead, in a changed belief set.

There are now many different non-monotonic system, abstracted from differ-
ent questions in computer science and AI. Among the other systems that have
been studied are

The theory of multiple believers of Hintikka, [18].

Truth Maintenance systems of Doyle, [8]

Default logic of Reiter, [40]

Autoepistemic logic of Moore, [34]

Theory of individual and common knowledge and belief of Halpern and
Moses [17]

Logic programming with negation as failure [?].

This, by no means, exhausts the list. What issues in artificial intelligence or
computer science motivates these systems?

Suppose that we build a robot in a “blocks world” to navigate in a room
and avoid obstacles and perform simple tasks, such as crossing the room with
variable obstacles. We want the robot to learn principles from experience as to
how to cross the room. At any given point, one may imagine that the robot
should have a consistent deductively closed set of beliefs which are the current
basis for its actions, including such provisional beliefs as “I can always traverse
the left edge of the room since there has never been anything in the way there”.
But when such a principle is contradicted by new obstacles, the robot has to
choose another belief set. So an important problem is to define what a belief set
is and how to compute them and how to update them based on new evidence.
Moore’s autoepistemic logic [34], is really a first try at this problem, mostly for
propositional logic.

In computers, the operating system and program obey rules which compute
how to change state. In the absence of exceptional behaviour, such as error
conditions or failures to access resources, there is a system of decision rules
(beliefs) computing how to change the state of the machine in this “normal
behavior”, or “default” case. But when an exceptional behavior happens, we
are thrown to a different set of decision rules for change of state, a different set
of “beliefs”. One wants to be able to deduce what is true of the machine in
states when it is a particular such “belief set”. A logic for dealing with one such
belief set at a time is Reiter’s default logic.

In databases, facts and rules are stored as entries (the PROLOG model).
Often also the database computes and stores conclusions, such as summary
statistics or rules or tables computed from the database. These act as a de-
ductive base for the set of current beliefs. When we query the database, we

3

are asking for consequences of this belief set. When we update the database,
all old entries that have changed have to be replaced, every consequence that
uses these entries has to be recomputed and changed too. This is the process
of replacing an old belief set by a new one. One often makes decisions on the
basis of the absence of information in the database as well. A logic appropriate
for describing a single such belief set is Doyle’s truth-maintenance system [8].
See also de Kleer [6]. Also stable models for logic programming with negation
as failure ([10]) arise in this way.

We expressed these examples informally in terms of the anthropomorphic
notion of belief so as to bring out their common features. The actual non-
monotonic logics have much in common, and a number of translations between
them have been proposed ([23], [12],[13], [39],[28]). They have been investi-
gated principally for propositional logic. Predicate versions suitable for actual
applications are, up to now, pretty minimal.

Study of monotonic rule systems can be traced to the work of Post on “pro-
duction systems” and to work of Tarski on the abstract properties of conse-
quence relation for classical logic systems. The investigation of nonmonotonic
component is of much more recent nature and seems to appear first in the work
of Reiter on default logic. Reiter’s investigations involved finding a natural
extension of classical logic which allows one to handle the negative information.

Independently Clark, and subsequently Apt, Blair and Walker, and also (ex-
tending their work) Gelfond and Lifschitz, studied “negation as failure” in logic
programming. It has turned out that these investigations are in a common direc-
tion. The mutual relations were uncovered by Bidoit and Froidevaux and Marek
and Truszczynski, who exhibited the precise nature of the connection between
logic programming and default logic. The reevaluation of default extensions in
terms of “context-dependent proofs” by Marek and Truszczynski, which has its
roots in the Apt, Blair and Walker’s “elementary interpreter”, for which it may
serve as a clarifying definition, is a point of departure for the investigations of
this paper. Here, drawing on all the research mentioned above for inspiration,
we present a coherent unified theory of nonmonotonic formal systems.

At our level of abstraction we finally saw that non-monotone systems per-
vade ordinary mathematical practice. There is no sign of any realization of the
existence of such mathematical examples in the previous non-monotonic logic
literature. Perhaps these connections can only be seen by having a common
abstract notion. What this commonality does for us is to make available known
mathematical techniques from other areas of conventional mathematics for con-
structing and classifying belief sets (extensions), and simultaneously make ev-
ident a common thread among disparate parts of mathematics and disparate
non-monotonic systems from artificial intelligence and computer science.

On the level of Mathematical Philosophy there is a connection worth stating
as well. Non-monotone reasoning takes place during the process of discovery

4

of mathematical theorems, when one posits temporarily some proposition on
the basis that there is no evidence against it, and explores the consequences
of such a belief until new mathematical facts force their abandonment. These
non-monotone belief sets have their traces eradicated when final belief sets are
achieved and demonstrative proofs are finished and published. The only hint of
provisional belief sets left in mathematical papers is in the motivational remarks
explaining what obstacles were overcome and by what changes in viewpoint the
proof was achieved.

Here is the main definition. A non-monotone rule system consists of a set
U and a set of triples (α, β, γ) called rules, where α = (α1, . . . , αk) is a finite
sequence of elements of U , called premises, β = (β1, . . . , β1) is a finite sequence
of elements from U , called guards, and γ is an element of U . This is written,
generalizing a notation of default logic, as

α1 . . . , αn:β1, . . . , βk
γ

The informal reading is: From α1, . . . , αk being established, and β1, . . . , βk not
being established now or ever, conclude γ. You may substitute “computed” for
“established” for an informal reading in many applications. A subset S of U is
called deductively closed if for every rule of the system, whenever α1, . . . , αk are
in S and β1, . . . , βn are not in S, then γ is in S. There are no variables here,
these are not schema, this version is not the one appropriate for non-monotone
predicate logics. Nonmonotonic predicate logics cannot be exposited in a few
lines and we defer that to a later paper.

The intersection of all deductively closed sets containing a set I is generally
not deductively closed. But the intersection of a descending chain of deductively
closed sets is deductively closed, and I may be contained in many minimal de-
ductively closed sets over I. In the context of nonmonotone logic the intersection
of all deductively closed sets containing I is a (non-deductively closed) set, called
the the set of secure consequences of I. These are the propositions a “skepti-
cal reasoner” would take as beliefs based on I. The most important notion of
contemporary nonmonotonic logic is that of extension. For a fixed subset S of
U , one defines (finite) derivations from I, where all guards encountered are out-
side S, all premises encountered are conclusions of previous rules or in I. This
defines the set CS(I) of S-consequences of I. Extensions are those S such that
S = CS(I). These are minimal deductively closed sets containing I, but not
conversely. These represent the “deductively closed, grounded, belief sets” that
contain I. In these sets, if the negative guards are all obeyed, we are reduced
to monotone reasoning. See Section 2 for the exact definition.

These simple definitions capture the common content of the several theories
of non-monotonicity listed above, and of many mathematical theories as well.
For example, the set of all marriages of the “marriage problem” can be formu-
lated as exactly the set of all extensions in a non-monotone rule system; similarly
for the set of all k-colorings of graphs, the set of chain covers of a partial order,

5

the Stone space of all maximal ideals of a Boolean algebra, etc. Similarly, for
a commutative ring with unit there is a non-monotone rule system such that
the deductively closed sets are the prime ideals, the McCoy radical (the set of
nilpotents) is the set of secured consequences of {0}, etc. There are similar non-
monotonic systems associated with virtually every algebraic systremn for which
radicals of some sort have been defined and characterized. These mathematical
examples have suggested a whole new set of techniques for finding extensions be-
cause of the availability of algorithms already investigated in the mathematical
literature on one or another of these problems, not previously known to be rele-
vant in the artificial intelligence community. They not arise in logic, but really
in operations research. Finally, in recursion theory, prioric constructions can be
construed as non-monotone systems, sets constructed by the priority argument
as extensions. These ideas give many constructions of recursively enumerable
extensions.

We spend a lot of effort in both this and subsequent papers to answer the
following question. Exactly how complicated is the set of extensions of a recur-
sively enumerable nonmonotonic system, and what is its structure? This is the
analogue of the classical logic question, how complicated is the set of complete
theories containing a recursively enumerable theory, and what is its structure?
In classical logic, this leads to analyzing the character of the set of maximal ide-
als containing given recursively enumerable ideal in a recursively presented free
Boolean Algebra, a subject in which two of the authors have a lot of experience
(see [42], [35]). The simplest case covering many nonmonotonic systems aris-
ing from mathematics is that of “highly recursive” nonmonotone rule systems.
There, it turns out that extensions can be, up to a one-to-one recursive map,
exactly any bounded Π0

1 class os sets of natural numbers. So, even in this case,
the computational problems are of the same level of difficulty as (say) solving
“marriage problem” for highly recursive societies, or finding of recursively pre-
sented formally real field ([31]), or finding an abcissa between 0 and 1 where a
given recursive continuous function on [0,1] takes a maximum value ([19]). Now
this recursion-theoretic methodology can be refined to give complexity-theoretic
results on the same problems about extensions, as has been done in algebra by
Nerode and Remmel in [36], [37], and [38]. Since this is a more delicate matter
than recursion theory, these developments are deferred again to a later paper.

Next, we turn to investigations of the semantics for nonmonotonic rule sys-
tems. The fundamental common semantics we have found comes from Lω1ω,
and generalizes the Clark completion of logic programming. It is perfectly gen-
eral, and gives systematic semantics and completeness for all the nonmonotonic
logics discussed above. Such uniform semantics are new. Some of the subjects
never before had a decent semantics. We find semantical representations of
extensions, weak extensions and deductively closed sets. This representation re-
quires creation of an additional infinitary language LS which properly encodes
not only rules as “first order objects”, but also additional (infinitary) objects al-
lowing characterization of the intended structures (extensions, weak extensions

6

etc.). The previously established characterization of default logic, in terms
of nonmonotonic rule systems, provides us with a semantics for default logic.
This semantics, in opposition to the attempt of Etherington, satisfies Tarski’s
conditions. That is, it allows us to introduce for defaults (virtual) negations,
conjunctions etc, and also a natural entailment relation. Finally, the Lω1,ω proof
procedures also yield new algorithms based on recursive well-founded trees.

This short summary indicates that there is a great wealth of problems and
results which naturally arise from nonmonotonic rule systems. Our study de-
lineates the role of (parametized) deducibility in nonmonotonic logics. This, in
turn, connects our work naturally with studies of inductive definability. The
latter indicates that logic programming will profit by less emphasis on predi-
cate calculus, and more emphasis on inductive definability. Although this is a
paradigm different from Kowalski’s, we do not claim that this is the only “cor-
rect” position. But we do claim that it leads to a new direction for research.

The predicate logic case is not treated in this paper. It will come out from a
schematic version of our theory, analogous to Post production systems. There, U
is the set of all strings of an alphabet. There are typed “metavariables” ranging
over specific subsets of U called “types”, there are “metastrings”. These are
built from the alphabet of U and string variables, as sequence of elements of
U and variables. Rules are of the same form as before, but use metastrings
instead of strings. This point of view gives rise not only to a general theory,
but also gives outright syntax, semantics, and completeness for new predicate
versions of all the logics mentioned above. It also gives non-monotone classical,
or intuitionistic, or modal predicate and propositional logics.

2 Nonmonotonic formal systems

Inspired by Reiter [40], and Apt [?], we introduce the notion of a nonmono-
tonic formal system < U,N >. A nonmonotonic rule of inference is a triple
< P,G,ϕ >, where P = {α1, . . . , αn}, G = {β1, . . . , βm} are finite lists of
objects from U and ϕ ∈ U . Each such rule is written in form

r =
α1, . . . , αn:β1, . . . , βm

ϕ
(1)

Here {α1, . . . , αn} are called the premises of rule r, {β1, . . . , βm} are called the
guards of rule r.

Either, or both, lists P , G may be empty. If P = G = ∅ then the rule r is
called an axiom.

A nonmonotonic formal system is a pair < U,N >, where U is a non-empty
set and N is a set of nonmonotonic rules.

A monotonic formal system is a nonmonotonic system in which each rule

7

has no guards. That is, each monotonic formal system can be identified with
the nonmonotonic system in which every monotonic rule is given an empty set
of guards.

A subset S ⊆ U is called deductively closed if for every rule of N , if all
premises α1, . . . , αn are in S and all guards β1, . . . , βm are not in S then the
conclusion ϕ belongs to S.

In nonmonotonic systems, deductively closed sets are not generally closed
under arbitrary intersections as in monotone case. But deductively closed sets
are closed under intersections of descending chains. By the Kuratowski-Zorn
Lemma, any I ⊆ U is contained in at least one minimal deductively closed set.
The intersection of all the deductively closed sets containing I is called the set
of secured consequences of I. This set is also the intersection of all minimal
deductively closed sets containing I. Deductively closed sets are thought of as
representing possible “points of view”. The intersection of all deductively closed
sets containing I represents the common information present in all such “points
of view”, containing I. (Generally in the literature, if we assign to a given I a
collectionM of subsets of U , then assigning to I the intersection ofM is called
the skeptical reasoning associated with M and I.) Depending on the context
we may talk about deductively closed sets containing I, weak extensions of I or
extensions of I.

Example 2.1 Let U = {α, β, γ}.
(a) Consider U with N1 = { :

α
, α:β
β
}. there is only one minimal deductively

closed set S = {α, β}. Then {α, β} is the set of secured consequences of < U,N1.
(b) Consider U with N2 = { :

α
, α:β
γ
, α:γ
β
},

then there are two minimal deductively closed sets, S1 = {α, β}, S2 = {α, γ}.
{α} is the set of secured consequences of < U,N2 >.

Example 2.1, (b) shows that the set of all secured consequences is not, in general,
deductively closed.

Given a set S and an I ⊆ U , an S-deduction of ϕ from I in < U,N > is a
finite sequence < ϕ1, . . . , ϕk > such that ϕk = ϕ and, for all i ≤ k, and each
ϕi is in I or is an axiom, or is the conclusion of a rule r ∈ N such that all the
premises of r are included in {ϕ1, . . . , ϕi−1} and all guards of r are in U \S (see
[28], also [39]).

An S-consequence of I is an element of U occurring in some S-deduction
from I. Let CS(I) be the set of all S-consequences of I in < U,N >.

Generally, CS(I) is not deductively closed in < U,N >. It is perfectly
possible that all premises of a rule are in CS(I), the guards of that rule are
outside CS(I), but a guard of that rule is in S, preventing the conclusion from
being put into CS(I).

8

Example 2.2 U = {α, β, γ}, N = { :
α
, α:β
γ
}, S = {β}. Then S1 = CS(∅) =

{α} is not deductively closed.

However, the following holds:

Proposition 2.1 If S ⊆ CS(I) then CS(I) is deductively closed.

We say that S ⊆ U is grounded in I if S ⊆ CS(I).
We say that S ⊆ U is an extension of I if CS(I) = S.
Finally, we say thatS ⊆ U is a weak extension of I if CS(I ∪R) = S,
where R = {ϕ: for some r ∈ N, r = α1,...,αn:β1,...,βm

ϕ
,

α1, . . . , αn ∈ S, β1, . . . , βm /∈ S} Thus S is a weak extension if S is generated
by I and the conclusions of rules that are applicable. The notion of weak ex-
tension is related to Clark’s completion and will be investigated below. The
notion of groundedness is related to the phenomenon called “reconstruction”.
S is grounded in I if all elements of S are S-deducible from I (remember that
S influences only the negative side of the rule). S is an extension of I if two
things happen. First of all, every element of S is deducible from I, that is, S
is grounded in I (this is analogue of adequacy). Second, the converse holds: all
the S-consequences of I belong to S (this is analogue of completeness). Thus
extensions are analogues for a nonmonotonic systems of the set of all conse-
quences for monotonic systems. Both properties (adequacy and completeness)
need to be satisfied.
The third concept, weak extension, is a closure property. In the process of con-
structing CS(I), S is used to generate only negatively as a restraint. But we can
relax our requirements and allow deductions that use S also on the positive side.
That is, S is not included, but is allowed to be used to generate objects from U
by also testing the positive side of a rule for membership in S. This concept is
closely related with the fixpoints of the operator TP in logic programming, and
Clark’s completion, see [?].

The notion of extension is related to that of minimal deductively closed set.

Lemma 2.2 If S is an extension of I, then:
(1) S is a minimal deductively closed superset of I.
(2) For every I ′ such that I ⊆ I ′ ⊆ S, CS(I ′) = S.

Proposition 2.3 The set of extensions of I forms an antichain. That is, if
S1, S2 are extensions of I and S1 ⊆ S2, then S1 = S2.

Proposition 2.4 An extension of I is a weak extension of I.

Given an S ⊆ U , a rule r is called S-applicable if all the guards of r are
outside of S and all the premises of r are in S. The collection N(S) consists of
all S-applicable rules.

9

With a nonmonotonic system S = < U,N > we associate the operator T =
TS :P(U)→ P(U) defined by formula TS(I) = {ϕ ∈ U :∃r∈Nr = α1,...,αn:β1,...,βm

ϕ
,

α1, . . . , αn ∈ I, β1, . . . , βm /∈ I} This operator is closely related to the operator
TP as considered in logic programming, see [?].

Proposition 2.5 Let < U,N > be a nonmonotonic rule system. Let T be its
associated operator, and let S ⊆ U . Then:
(1) T (S) ⊆ S if and only if S is deductively closed.
(2) T (S) = S if and only if S is a weak extension of ∅ in < U,N >.

Proposition 2.6 Let S ⊆ U . Then S is a weak extension of ∅ in < U,N > if
and only if the following conditions are met:
(i) S is closed under rules of N . That is, if there is a rule r ∈ N such that
r = α1,...,αn:β1,...,βm

ϕ
, and α1, . . . , αn ∈ S, β1, . . . , βm /∈ S} then ϕ belongs to S.

(ii) Whenever ϕ ∈ S then there is a rule r ∈ N such that r = α1,...,αn:β1,...,βm

ϕ
,

with α1, . . . , αn ∈ S, β1, . . . , βm /∈ S}.

Deductively closed sets here play the role that Herbrand models play in logic
programming, Weak extensions play a role similar to that of supported models
of programs, that is, models of Clark’s completion, in logic programming. (see
also Section 6).

A set S such that T (S) ⊆ S is called a prefixpoint of T . There is no guarantee
that T possesses a fixpoint.

Corollary 2.7 For every system < U,N >, for every S ⊆ U which is a prefix-
point of T , there is a minimal prefixpoint S′ of T , S′ ⊆ S.

With each rule r we associate a monotonic rule

r′ =
α1, . . . , αn

ϕ
(2)

obtained from r by dropping all guards. The rule r′ is called the projection of
rule r. The collection M(S) is the collection of all projections of all rules from
N(S). The projection < U,N >|S is the monotone system < U,M(S) >. Thus
< U,N >|S is obtained as follows: First, non-S applicable rules are eliminated.
Then, the guards are dropped altogether. We have the following characterization
theorem:

Theorem 2.8 A subset S ⊆ U is an extension of I, if and only if S is the
deductive closure of I in < U,N >|S.

Theorem 2.8 tells us how to test if a collection S ⊆ U is an extension of I
in < U,N >. In case U and N are finite this leads to an algorithm.

10

(1) Compute N(S).
(2) Project N(S) by dropping guards to get M(S).
(3) Compute the deductive closure T of I in < U,M(S) >, say T .
(4) Test whether T = S.

Proposition 2.9 If S is a extension of I, then S consists entirely of elements
of I and conclusions of certain rules in N .

3 Examples and Applications in Logic, Logic Pro-

gramming, and Commonsense Reasoning

3.1 Classical Implicational Propositional Logic

Here the set U is the collection of all well-formed formulas of propositional logic,
over some collection At of atoms with binary connective⇒ and constant ⊥. The
standard Lukasiewicz axiomatization is represented as a collection of rules of the
form:

ϕ⇒ (ψ ⇒ ϕ)

(ϕ⇒ (ψ ⇒ ϑ))⇒ ((ϕ⇒ ψ)⇒ ((ϕ⇒ ϑ))

((ϕ⇒⊥)⇒ (ψ ⇒⊥))⇒ (((ϕ⇒⊥)⇒ ψ)⇒ ϕ)

ϕ , ϕ⇒ ψ

ψ

The collection of derivable elements of U is the set of tautologies of propo-
sitional logic.

Propositional logic may be represented in other ways as well, for instance in
the language with the usual connectives ¬,∧,∨,⇒.

3.2 Default logic

Again let U be the collection of all formulas of propositional logic. A default
theory < D,W > is a pair where D a collection of default rules, that is, rules
of form

α:Mβ1, . . . ,Mβm
ω

, (3)

with W a collection of formulas of L.
Represent such a default theory as a rule system consisting of three lists:
(i) Elements of ω ∈W are represented as rules:

:

ω

11

(ii) Rules of form (3) are represented as

α:¬β1, . . . ,¬βm
ω

(That is, the guards of the rule representing a default rule r have an additional
negation in front).
(iii) Processing rules of logic. That is, all the monotonic rules of the system of
classical logic.

We then have the following proposition:

Proposition 3.1 A collection S ⊆ U is an extension of a system consisting of
rules of type (i), (ii), and (iii) if and only if S is a default extension of < D,W >.

3.3 Propositional logic programming, general case

A general logic program is a list of general clauses, of the form:

p← q1, . . . , qn,¬r1, . . . ,¬rm

We refer to [10] for the definition of a stable model of such a program. That
concept is a generalization of the perfect models as introduced in [3].

Let U be the collection of atoms under consideration. Represent a general
clause as a rule:

q1, . . . , qn : r1, . . . rm
p

The translation tr(P) of a program P is the set of translations of its individual
clauses.

The following result was proved in [4] and [29]:

Proposition 3.2 A subset M ⊆ U is a stable model of P if and only if M is
an extension of tr(P).

Proposition 3.3 A subset M ⊆ U is a supported model of P if and only if M
is a weak extension of tr(P).

3.4 Logic programming with classical negation

We now discuss so-called “logic programming with classical negation” of [11] as
a chapter in the theory of nonmonotonic formal systems.
Recall the basic notions introduced in [11]. The collection of objects appearing
in heads or bodies of clauses is the set of all literals, that is, atoms or negated

12

atoms. In particular, a negated atom may appear in the head of a clause. Con-
sider first Horn clauses in which literals appear in an arbitrary place. To each
set P of such clauses assign its answer set, the least collection A of literals sat-
isfying the following two conditions:
(1) If a← b1, . . . , bm is in P and b1, . . . , bm ∈ A than a ∈ A.
(2) If for some atom p, p and ¬p are both in A, then A is the whole collection
Lit of all literals.

Introduce a collection Str of structural processing rules over the set U = Lit.
These are all monotone rules of the form:

p,¬p

a

for all atoms p and literals a.
Translate the clause: a← b1, . . . , bn as rule:

b1, . . . , bn
a

and let tr(P) be the collection of translations of clauses in P plus the structural
rules Str. Then we have

Proposition 3.4 A subset A ⊆ Lit is an answer set for P if and only if A is an
extension of tr(P). Since tr(P) is a set of monotonic rules, such an answer set
is the least fixpoint of the (monotonic) operator associated with the translation.

Gelfond and Lifschitz then introduce general rules. Since the negation used
in literals is not the “negation-as-failure” of general logic programming, Gelfond
and Lifschitz introduce another negation symbol “not” and a general logic clause
with classical negation in the form:

a← b1, . . . , bn, not(c1), . . . , not(cm)

Then the answer set for a set P of clauses of this form is introduced by merging
the operational procedure for the construction of stable models for a program
(as introduced in [10]) with the procedure above. They define the answer set
for a program with classical negation as follows:
Let M ⊆ Lit and P be a general program. Define P/M as a collection of clauses
lacking not and obtained as follows:
(1) If a clause C contains a substring not(a) and a ∈ M , then eliminate C
altogether.
(2) In remaining clauses eliminate all substrings of form not(a).
The resulting program P/M lacks the symbol not, so the answer set is well
defined. Let M ′ be the answer set for P/M . We call M an answer set for P
precisely when M ′ = M .

Gelfond and Lifschitz give a computational procedure for finding such an-
swer sets, and subsequently reduce computing them to computing default logic

13

extensions. We show that the construction of Gelfond and Lifschitz is faith-
fully represented within nonmonotonic rule systems. Define U to be Lit, and
translate the clause:

a← b1, . . . , bn, not(c1), . . . , not(cm)

as the rule:
b1, . . . , bn : c1, . . . , cm

a

The translation of the program P then consists of the translations of individual
clauses C of P , incremented by the structural rules Str. We get the following
result:

Proposition 3.5 Let P be a general logic program with classical negation and
NP be the translation described above. Then a collection M is an answer set
for P if and only if M is an extension for the rule system < U,NP >.

4 Solutions to Combinatorial and Algebraical

Problems as Extensions

4.1 The Marriage Problem

A society, S =< B,G,K > is a set B of boys, a set G of girls such that
B ∩ G = ∅, and a relation K ⊆ B × G, the intended meaning of < b, g >∈ K
being b knows g. A marriage for a society S is a map M :B → G. A marriage
M is proper if M is one-to-one and for all b ∈ B, M(b) = g implies K(b, g).
That is, in a proper marriage each boy marries a girl he knows. A marriage
M is symmetric if M maps B onto G. For a symmetric marriage, every girl is
married.

For finite societies Philip Hall ([15]) gave a necessary and sufficient condition
for the existence of a proper marriage, namely:
(*) For every finite set of boys B′ ⊆ B, the set of girls that the boys of B′

know altogether has cardinality greater or equal than that of B′.

Marshall Hall ([16]) showed that condition (*) is also a necessary and suffi-
cient condition for the existence of marriages in an infinite society S as long as
each boy knows only finitely many girls. Philip Hall’s theorem is a special case
of the more general problem of finding transversals (see [33]).

We claim that if S =< B,G,K > is a society satisfying (*) in which each
boy knows only finitely many girls, then there is a nonmonotonic rule system
Z =< U(S), N(S) > such that the collection of extensions of Z correspond
exactly to the set of proper marriages of S. To this end let us consider a
collection of strings U(S) = {Mbg: b ∈ B, g ∈ G, and K(b, g) holds}, where

14

M is a new symbol. Then for each boy b ∈ B if {g1, . . . , gn} is the set of girls b
knows, we add the following set of rules to N(S).

:Mbg1, . . . , M̂bgk, . . . ,Mbgn
Mbgk

(4)

where we adopt the convention that for any sequence s1, . . . , sn, s1, . . . , ŝk, . . . , sn
is the sequence that results from s1, . . . , sn by removing sk.
For any girl g and any two boys b1 6= b2, each of who knows g, add the following
rules to N(S):

Mbg1,Mbg2:

ϕ
(5)

for every ϕ ∈ U(S). Let N(S) consists of all the rules of the form (4) or (5).

Theorem 4.1 Let S =< B,G,K > be a society satisfying (*), for which
each boy knows only finitely many girls. Then E is an extension for Z =<
U(S), N(S) > if and only if ME = {< b, g >:Mbg ∈ E} is a proper marriage
for S.

By expanding our set of rules N(S), we can ensure that extensions corre-
spond to proper symmetric marriages. That is, suppose that S =< B,G,K >
is a society in which every boy knows only finitely many girls, and every girl
knows only finitely many boys, and there is a symmetric marriage for S. Let U
be defined as before. In addition to all rules of form (4) and (5), add a set of
rules for each g ∈ G.

If g ∈ G and {b1, . . . , bn} is the set of boys that g knows, then add the
following set of rules:

:Mb1g, . . . , M̂bkg, . . . ,Mbng

Mbkg
(6)

LetNSym(S) be the collection of rules of form (4), (5), and (6) and let USym(S) =
U . By a proof which is similar to that of Theorem 4.1, we can prove the follow-
ing:

Theorem 4.2 Let S =< B,G,K > be a society such that each boy knows only
finitely many girls and each girl knows only finitely many boys, and there is
a proper symmetric marriage for S. Then E is an extension for ZSym =<
USym(S), NSym(S) > if and only if ME = {< b, g >:Mbg ∈ E} is a proper
symmetric marriage for S.

4.2 Complementary Subspaces of Vector Spaces

Let V∞ be an countably infinite dimensional vector space over a finite field F ,
and let B = {b0, b1, . . .} be a basis for V∞. If S ⊆ V∞, we let (S)⋆ denote the

15

space generated by S. Let Vn = ({b0, . . . , bn})
⋆ for n ≥ 1. Given two subspaces

A and B of V∞, we write A+B for (A∪B)⋆ and A
⊕
B for A+B if A∩B = {0},

where 0 is zero vector of V∞.

Now, suppose that W is a subspace of V∞. We can define a nonmonotonic
rule system < U,N >=< UW (V∞), NW (V∞) > so that extensions of < U,N >
correspond to the complementary subspaces for W that arise from the most
natural construction of such spaces. That is, if one were going to construct a
subspace A such that A

⊕
W = V∞, a natural way to proceed would be to

construct a sequence of subspaces A0 ⊆ A1 ⊆ . . . in stages as follows:
Stage 0 Let A0 = {0}.
Stage s+1 Having defined a subspace As ⊆ Vs such that As

⊕
Ws = Vs where

Wn = W ∩ Vn for n ≥ 1, we proceed according to one of two cases.
Case 1 Ws is properly included in Ws+1.
In this case, it is easy to show that As

⊕
Ws+1 = Vs+1, so we let As+1 = As.

Case 2 Ws = Ws+1.
In this case it is easy to show that if xs+1 ∈ Vs+1 \ Vs, As+1 = (As ∪ {xs+1}

⋆,
then As+1 ⊆ Vs+1 and As+1

⊕
Ws+1 = Vs+1.

Then A =
⋃
sAs will be the desired complementary subspace of W . Note

that we can get many different such complementary subspaces depending on
choice of xs+1 at those stages in which Case 2 occurs at stage s+ 1.

Define our nonmonotonic rule system < U,N >=< UW (V∞), NW (V∞) > as
follows. We let U = V∞. Then we let N consists of the following five classes of
rules:

:

0
, (7)

x1, . . . , xk:∑k
i=1 λixi

, (8)

for all x1, . . . , xi ∈ V∞, and λ1, . . . , λk ∈ F

w:

y
, (9)

for all x ∈W \ {0} and v ∈ V∞.
:

x
, (10)

where x ∈ Vs0 and s0 is the largest s such that Ws = {0} and Ws+1 6= {0}.

a1, . . . , an: b1, . . . , bm
x

, (11)

where {a1, . . . , an} is a subspace and for some s > s0, A
⊕
Ws = Vs ; {0} 6=

Ws = Ws+1, x ∈ Vs+1 \ Vs, and {b1, . . . , bm} = Vs+1 − (A ∪ {x})⋆.

Theorem 4.3 Let V∞ be a countably infinite dimentional vector space over a
finite field F , let B = {b1, b2, . . .} be a basis for V∞ and let W be a subspace of
V∞. Then E is an extension of < U,N >=< UW (V∞), NW (V∞) > if and only
if E is a subspace such that E

⊕
W = V∞ and for all s ≤ 1, Es

⊕
Ws = Vs.

16

5 Extensions of Highly Recursive Rule Systems

In this section we define the notions of recursive and highly recursive nonmono-
tonic rule systems. We show that the problem of finding an extension in a highly
recursive nonmonotonic rule system is effectively equivalent to finding an infinite
path through a recursive binary tree. That is, we prove that given any highly re-
cursive nonmonotonic rule system S =< U,N >, there is a recursive binary tree
TS and an effective one-to-one degree-preserving correspondence between the set
of extensions of S and the set of infinite paths through TS . Conversely, we show
that given any recursive binary tree T , there is a highly recursive nonmonotonic
rule system ST =< UT , NT > such that there is an effective one-to-one degree
preserving correspondence between the set of infinite paths through T and the
set of extensions of ST . It follows from the result of [21] that any recursively
bounded Π0

1-class can be coded as the set of infinite paths through a recursive
binary tree.

We transfer all the results about degrees of elements of recursively bounded
Π0

1-classes to results about degrees of extensions in highly recursive nonmono-
tonic rule systems.

5.1 Paths through the Binary Trees and Extensions

To make the program outlined above precise, we first need some notation. Let
ω = {0, 1, 2, . . .} denote natural numbers and let <,>:ω×ω → ω be some fixed
one-to-one and onto recursive pairing function such that the projection functions
π1 and π2 defined by π1(< x, y >) = x and π2(< x, y >) = y are also recursive.
We extend our pairing function to code n-tuples for n > 2 by usual inductive
definition, that is < x1, . . . , xn >=< x1, < x2, . . . , xn >> for n ≥ 2. We let ω<ω

denote the set of all finite sequences from ω and 2<ω denote the set of all finite
sequences of 0’s and 1’s. Given α =< α1, . . . , αn > and β =< β1, . . . , βk >
in ω<ω, we write α ⊑ β if α is initial segment of β, that is if n ≤ k and
αi = βi for i ≤ n. For the rest of this paper, we identify a finite sequence
α =< α1, . . . , αn > with its code c(α) =< n,< α1, . . . , αn >> in ω. We let
O be the code of the empty sequence ∅. Thus, when we say a set S ⊆ ω<ω

is recursive, recursively enumerable, etc., we mean the set {c(α):α ∈ S} is
recursive, recursively enumerable, etc. A tree T is a nonempty subset of ω<ω

such that T is closed under initial segments. A function f :ω → ω is an infinite
path through T if for all n, < f(0), . . . , f(n) >∈ T . We let P(T) denote the
set of all infinite paths through T . A set A of functions is a Π0

1-class if there is
a recursive predicate R such that A = {f :ω → ω :∀n(R((f(0), . . . , f(n)))}. A
Π0

1-class A is recursively bounded if there is a recursive function g:ω → ω such
that ∀f∈A∀n(f(n) ≤ g(n)). It is not difficult to see that if A is a Π0

1-class, then
A = P(T) for some recursive tree T ⊆ ω<ω. We sat that a tree T ⊆ ω<ω is
highly recursive if T is a recursive, finitely branching tree such that there is a

17

recursive procedure which, given α =< α1, . . . , αn > produces a canonical index
of the set of immediate successors of α in T , that is produces a canonical index
of {β =< α1, . . . , αn, k >:β ∈ T}. Here we say the canonical indes, can(X), of
the finite set X = {x1 < . . . < xn} ⊆ ω is 2x1 + . . . + 2xn and canonical index
of ∅ is 0. We let Dk denote the finite set whose canonical index is k, that is
can(Dk) = k. It is then the case that if A is a recursively bounded Π0

1-class,
then A = P(T) for some highly recursive tree T ⊆ ω<ω, see [21]. We note that if
T is a tree contained in 2<ω, then P(T) is a collection of {0, 1}-valued functions
and by identifying each f ∈ P(T) with the set Af , Af = {x: f(x) = 1} of which
f is the characteristic function, we can think of P(T) as a Π0

1 class of sets.

Next we need to define the notions of recursive and highly recursive non-
monotonic rule systems S =< U,N >. For the rest of this section we shall
assume that U ⊆ ω and we shall identify a rule r = α1,...,αn:β1,...,βm

ϕ
in N with

its code c(r) =< k, l, ϕ > where Dk = {α1, . . . , αn} and Dl = {β1, . . . , βm}. In
this way, we think of N as a subset of ω. We say that S =< U,N > is recursive
if U and N are recursive subsets of ω. To define the notion of highly recursive
nonmonotonic rule system S =< U,N >, we must first introduce the concept of
proof scheme for ϕ in < U,N >. An (annotated) proof scheme for ϕ is a finite
sequence

p =<< ϕ0, r0, can(G0) >, . . . , (12)

< ϕm, rm, can(Gm) >>
such that ϕm = ϕ and
(1) If m = 0 then:
(a) ϕ0 is an axiom (that is there exists a rule r ∈ N, r = :

ϕ0

) and r0 = r, G0 = ∅
or
(b) ϕ is a conclusion of a rule r = :β1,...,βr

ϕ0

and r0 = r, G0 = {β1, . . . , βr},

(2) m > 0, << ϕi, ri, can(Gi >>
m−1
i=0 is a proof scheme of length m and ϕm

is a conclusion of r =
ϕi0

,...ϕis
:β1,...,βr

ϕm

i0, . . . , is < m, rm = r and Gm =

Gm−1 ∪ {β1, . . . , βr}
(3) {ϕ1, . . . , ϕm} ∩ um = ∅.
The formula ϕm is called the conclusion of p and denoted cln(p), the set Gm is
called support of p and denoted supp(p).

The idea behind this concept is this: we really care about schemata for
proofs, and one scheme of proof is good for a large collection of sets S, as long
as they satisfy natural constraints. A proof scheme brings all these constraints
together.

A proof scheme with the conclusion ϕ may include a number of rules irrele-
vant to the enterprise of deriving ϕ. There is a natural preordering ≺ on proof
schemes namely we say that p ≺ p1 if every rule appearing in p appears in p1

as well. The relation ≺ is not a partial ordering, and it is not a partial ordering
if we restrict ourselves to proof schemes with a fixed conclusion ϕ. Yet it is
a well-founded relation, namely, for every proof scheme p there exists a proof
scheme p1 such for every p2, if p2 ≺ p1 then p1 ≺ p2. Moreover we can, if

18

desired, request the conclusion of p1 to be the same as p.

Moreover, setting p ∼ p1 ≡ (p ≺ p1∧p1 ≺ p) we see that ∼ is an equivalence
relation and that its cosets are finite.

We say that the system < U,N > is locally finite if for every ϕ ∈ U there
are finitely many ≺-minimal proof schemes with conclusion ϕ. This concept
is motivated by the fact that for locally finite systems for every ϕ there is a
finite set of derivations Drϕ, such that all the derivations of ϕ are inessential
extensions of derivations in in Drϕ. Finally, we say that S is highly recursive
if S is recursive, locally finite, and the map ϕ 7→ can(Drϕ) is partial recursive,
that is there exists an effective procedure which, given any ϕ ∈ U , produces a
canonical index of the set of all ≺-minimal proof schemes with conclusion ϕ.
Also, we let E(S) denote the set of extensions of S.

Formally, when we say that there is an effective, one-to-one degree preserving
correspondence between the set of extensions E(S) of a highly recursive non-
monotonic rule system S =< U,N > and the set of infinite paths P(T) through
a highly recursive tree T , we mean that there are indices e1 and e2 of oracle
Turing machines such that
(i) ∀f∈P(T){e1}

gr(f) = Ef ∈ E(S),
(ii) ∀E∈E(S){e2}

E = fE ∈ P(T), and

(iii) ∀f∈P(T)∀E∈E(S)({e1}
gr(f) = E if and only if {e2}

E = f).

where {e}B denotes the function computed by the eth oracle machine with or-
acle B. Also, we write {e}B = A for a set A if {e}B is a characteristic function
of A, and for function f :ω → ω, gr(f) = {< x, f(x) >:x ∈ ω}. As concerns our
conditions (i)-(iii), the first ones say that the branches of the tree T uniformly
produce extensions (via an algorithm with the index e1), and that extensions
of S uniformly produce branches of the tree T (via an algorithm with the index
e2). The condition (iii) asserts that if {e1}

gr(f) = Ef then f is Turing equivalent
to Ef . In what follows, we shall not explicitely construct the indices e1 and e2
but it will be clear that such indices exist in each case.

Theorem 5.1 Given a highly recursive nonmonotonic rule system S =< U,N >,
there is a highly recursive tree T ⊆ 2<ω such that there is an effective one-to-one
degree preserving correspondence between E(S) and P(T).

We get several immediate consequences about the degrees of extensions in
highly recursive nonmonotonic rule systems from Theorem 5.1, based on results
of [21]. For any set A ⊆ ω, let A′ = {e: {e}A(e) is defined} denote the jump of
A and 0′ denote the jump of the empty set ∅. We write A ≤T B if A is Turing
reducible to B and A ≡T B if A ≤T B and B ≤T B. We say that A is low if
A′ ≡T 0′. Thus A is low if the jump of A is as small as possible with respect to
the Turing degrees.

Corollary 5.2 Let S = < U,N > be a highly recursive nonmonotonic rule
system such that E(S) 6= ∅. Then

19

(i) There exists an extension E of S such that E is low.
(ii) If S has only finitely many extensions, then every extension E of S is
recursive.

5.2 Highly Recursive Marriage Problems

We say that a society S =< B,G,K > in which every boy knows only finitely
many girls is highly recursive if B and G are recursive subsets of ω, K is a
recursive relation, and there is a recursive procedure which, given any b ∈ B,
produces a canonical index of the finite set of girls known by b. If, in addition,
each girl g ∈ G knows only finitely many boys in B and there is a recursive
procedure which, given any g ∈ G, produces a canonical index of the finite set of
boys known by by g, then we say that S is symmetrically highly recursive. Now,
it is easy to see that if S is a highly recursive society and we identify Mbg with
its code c(Mbg) =< b, g >, then < U(S), N(S) > is a recursive nonmonotonic
rule system. However, as it stands, < U(S), N(S) > is not highly recursive rule
system because the rules of the form (5) which allow for infinitely many minimal
derivations of ϕ.

However, if S is symmetrically highly recursive, then a slight modification
of rules (5) will produce a highly recursive nonmonotonic rule system with the
same extensions. That is, suppose S =< B,G,K > is a symmetrically highly
recursive society which has a proper marriage. Let U(S) = {Mbg: b ∈ B, g ∈
G, and < b, g >∈ K} as before. Now suppose b1 6= b2 are boys which know the
same girl. Then clearly one of boys b1 and b2 must know at least two girls, since
otherwise there can be no proper marriage for S. Since S is highly recursive,
B2 = {b ∈ B: b knows at least two girls } is a recursive set. Now consider rules
of the form

Mb1g,Mb2g:

Mb3g′
(13)

for all b1, b2 ∈ B, g ∈ G where b3 = max({b1, b2} ∩B2) and g′ 6= g.
Let U(S) = U(S) and N(S) consists of rules of the form (4) and (13). Then we
have the following

Theorem 5.3 Let S =< B,G,K > be a symmetrically highly recursive society
such that S possesses a proper marriage. Then
(i) < U(S), N(S) > is a highly recursive nonmonotonic rule system and
(ii) E is an extension of < U(S), N(S) > if ME = {< b, g >:Mbg ∈ E} is a
proper marriage of S.

The same modification can be applied to the symmetric marriage problem.
That is, suppose that S =< B,G,K > is a symmetrically highly recursive
society. Let Usym(S) = U(S), and Nsym(S) be all rules of form (4), (13), and
(5), Then we have the following.

20

Theorem 5.4 Let S =< B,G,K > be a symmetrically recursive society such
that S has a proper symmetric marriage. Then
(i) < Usym(S), Nsym(S) > is a highly recursive nonmonotonic rule system and

(ii) E is an extension of < Usym(S), Nsym(S) > if and only if the mapping
ME = {< b, g >:Mbg ∈ E} is a proper marriage of S.

5.3 Recursion-theoretic results for extensions

The results of Manaster and Rosenstein, and Remmel combined with Theorem
5.4 yield the following.

Theorem 5.5 Let C be any recursively bounded Π0
1-class. Then there is a highly

recursive nonmonotonic rule system < U,N > and an effective one-to-one degree
preserving correspondence between the elements of C and the set of all extensions
of < U,N >.

Theorem 5.5 now allows us to transfer many results about possible degrees
of elements of recursively bounded Π0

1-classes to results about degrees of exten-
sions of highly recursive nonmonotonic rule systems. Below we shall list a few
examples of such results.

Corollary 5.6 There is a highly recursive nonmonotonic rule system < U,N >
such that < U,N > has 2ℵ0 extensions but no recursive extensions.

Corollary 5.7 There is a highly recursive nonmonotonic rule system < U,N >
such that < U,N > has 2ℵ0 extensions and any two extensions E1 6= E2 of
< U,N > are Turing incomparable.

Corollary 5.8 If a is any Turing degree that 0 <T a ≤T 0′, then there is a
highly recursive nonmonotonic rule system < U,N > such that < U,N > has
2ℵ0 extensions but no recursive extensions and < U,N > has an extension of
degree a. (Here 0 is the degree of recursive sets.)

Corollary 5.9 If a is any Turing degree that 0 <T a ≤T 0′, then there is a
highly recursive nonmonotonic rule system < U,N > such that < U,N > has
ℵ0 extensions, < U,N > has an extension E of degree a and if E′ 6= E is an
extension of < U,N >, then E′ is recursive.

Corollary 5.10 There is a highly recursive nonmonotonic rule system < U,N >
such that < U,N > has 2ℵ0 extensions and if a is the degree of any extension
E of < U,N > and b is any recursively enumerable degree such that a <T b,
then b ≡T 0′.

21

Corollary 5.11 If a is any recursively enumerable Turing degree, then there is
a highlly recursive nonmonotonic rule system < U,N > such that < U,N > has
2ℵ0 extensions and the set of recursively enumerablr degrees b which contain an
extension of < U,N > is precisely the set of all recursively enumerable degrees
b ≥T a.

All of the above results follow from Theorem 5.5 plus the corresponding
results for recursively bounded Π0

1-classes due to Jockusch and Soare [21] [22]
except of Corollary 5.10 which follows from the corresponding result for recur-
sively bounded Π0

1-classes due to Jockusch and McLaughlin [20].

Now we give a construction of a rule system < U,N > whose extensions
directly code infinite paths through a binary tree T and provide us with a more
direct route to Theorem 5.5 which avoids using the results of [24] or [41].

Example 5.1 Paths through binary trees.

Let T be a recursive binary tree contained in 2<ω. Let U(T) = {Pi, Pi: i ∈ ω}.
Our idea is to have a set π such that | π ∩ {Pi, Pi} |= 1 for all i correspond to
a path fπ:ω → ω through the complete binary tree Bω = 2<ω where

x =

{
1 if Pi ∈ π
0 if Pi ∈ π

Pi ∈ π says that we branch right at level i, and Pi ∈ π says that we branch
left at the level i. Now, for any node σ =< σ(0), . . . , σ(n) >, let ~Pσ =
{σ(P0), . . . , σ(Pn)} where

σ(Pi) =

{
Pi if σ(i) = 1
Pi if σ(i) = 0

We say that σ =< σ(0), . . . , σ(n) > is a terminal node of T if both< σ(0), . . . , σ(n), 0 >/∈
T < σ(0), . . . , σ(n), 1 >/∈ T .
Then we consider the following set of rules.

:Pi

P i

:P i
Pi

(14)

(a)
σ(P0), . . . , σ(Pn):

Pn
(15)

for all σ which are terminal nodes of T where σ(Pn) = Pn

(b) σ(P0),...,σ(Pn):

Pn

for all σ which are terminal nodes of T where σ(Pn) = Pn.
Let N(T) consists of all rules of the form (14) and (15). Then we have the
following (if we identify Pi with its code 2i and P i with its code 2i+ 1).

22

Theorem 5.12 Let T ⊆ 2<ω be a recursive tree.
(i) < U(T), N(T) > is a highly recursive nonmonotonic rule system and
(ii) E is an extension of < U(T), N(T) > if and only if the map fE :ω → ω
defined by

fE(i) =

{
1 if Pi ∈ E
0 if P i ∈ E

is an infinite path through T .

Given Theorems 5.1 and 5.5, it is natural to ask if there are analogous results
for locally finite nonmonotonic rule systems which are recursive, but not highly
recursive. The answer is “yes”. That is, we say that a tree T ⊆ ω<ω is highly
recursive in 0′ if T is recursive in 0′, T is finitely branching, and there is a
procedure which is recursive in 0′ and which given any node η ∈ T will produce
the canonical index of the set of immediate successors of η in T . Then the
analogues of Theorems 5.1 and 5.5 hold for recursive nonmonotonic rule systems
if we replace highly recursive trees by trees which are highly recursive in 0′.

Moreover, by relativization to the code of the collection of rules < U,N > we
are able to deal with the case of arbitrary locally finite nonmonotonic system S.
The distinction between the form of function that computes the canonical index
of the collection of prooof schemes for elements of U remains, if this function
is recursive in (the code of) < U,N >, then the tree T whose branches code
extensions of < U,N > is recursive in (the code of) < U,N >. Otherwise it is
recursive in its jump.

These results will be proved in a subsequent paper.

5.4 Some applications to Logical Systems

The results of Sections 5.1 and 5.3 can be interpreted, using Sections 3.2 and 3.3,
as (new) results about default logic and logic programming. The relationship
between stable semantics for logic programs and default logic and the results
of Section 3.3 show the relevance of proof schemes to the construction of stable
models for logic programs. As far as we know, programs with the local finite-
ness property have not been discussed previously in the literature, although this
covers most practical programs. The definition of proof scheme with a “forbid-
den” set of atoms (corresponding to the definition of support of a proof scheme
above) is perfectly natural and can be lifted from definition (12) in an obvious
fashion. The ordering ≺ has the same meaning as before. This way, we get a
natural concept of a locally finite (propositional) program. When the program
P involves variables, we interpret P as the collection of its Herbrand constant
substitutions. This gives rise to a definition of locally finite program. The rule
systems of Sections 5.1 and 5.3 can be rewritten following reverse translations
of Section 3.3 (notice that we deal there only with atoms!). That is, the rule
q1,...,qn:r1,...,rm

p
is translated to: p← q1, . . . ,¬qn, r1, . . . ,¬rm. Using Proposition

23

3.2 we get stable models from extensions. It is easy to see that the concept of
proof scheme is preserved, locally finite systems generate locally finite programs.
Then, in an analogous manner, we introduce the notion of a “highly recursive
program” as one that is recursive, locally finite, and for which a function as-
signing to p the code of its finite collection of its ≺-minimal proof schemes is
recursive. Let Stab(P) be the collection of stable models of the program P . We
then get

Theorem 5.13 Given a highly recursive program P there is a highly recursive
tree T ⊆ 2<ω and an effective one-to-one degree preserving correspondence be-
tween Stab(P) and P(T).

Exactly the same lifting may be done for default logic. We leave the details to
the reader.

So the results of Jockusch and Soare apply both to logic programming and to
default logic, and we get a series of results on recursion theory of stable models
of logic programs by lifting Corollary 5.2, Theorem 5.5, Corollaries 5.6, 5.7, 5.8,
5.9, 5.10, 5.11, and Theorem 5.12.

It is appropriate to compare the results of this section with those of [2]. They
construct, for a given natural number n ≥ 1, a stratified finite program P (in
particular its Herbrand expansion is a recursive propositional program) whose
perfect model is a complete Σ0

n set of natural numbers. Since the perfect model
is stable, and stratified programs possess the unique stable model (as pointed by
[10]), the collection Stab(P) is a one element class. Then this is a Π0

2-class, whose
only element is a Σ0

n set. Our results show that it is impossible to find a recursive
program possessing a unique stable model which is Π1

1-complete; as the unique
element of an arithmetical singleton class in 2ω must be hyperarithmetical.

6 Semantics

Let < U,N > be a deductive system and assume that |U | = ω. Without loss of
generality we may identify the set U with the set ω of natural numbers, and N ,
which consists of finite objects, with a subset of ω.

Let us recall that we wish to characterize three classes: minimal sets closed
under N , weak extensions, and extensions of < U,N >. We shall provide
a semantic characterization of these concepts. These characterization use the
infinitary logic.

The logic LS is defined as the closure of a collection of atoms of form “ϕ ∈ S”
(ϕ ranging over U) under negation, arbitrary denumerable conjunctions and
arbitrary denumerable disjunctions.

Given T ⊆ U , and ϕ a formula of LS , define the satisfaction relation T |= ϕ

24

by induction in the most natural fashion:
(1) T |= α ∈ S if and only if α ∈ T .
(2) T |= ¬ψ if and only if not(T |= ψ).
(3) T |=

∧∧
i∈J ψi if and only if for all i ∈ J , T |= ψi.

(4) T |=
∨∨
i∈J ψi if and only if there exists i ∈ J , such that T |= ψi.

The connectives ⇒ and ⇔ are abbreviations.
Associate with each rule:

r =
α1, . . . αn:β1, . . . , βm

ϕ
(16)

a finitary formula of LS ,

t(r) = [α1 ∈ S ∧ . . . ∧ αn ∧ ¬(β1 ∈ S) ∧ . . . (17)

∧¬(βm ∈ S)]⇒ ϕ ∈ S.
The object ϕ is denoted by c(r).

Proposition 6.1 A subset T of U is deductively closed if and only if for all
r ∈ N , T |= t(r).

Generalizing Clark’s completion from logic programming, we define “Clark’s
completion” of a deductive system < U,N >. This is a theory in LS , possibly
infinitary. To define it, assume that r is a rule of form (16). Set

A(r) = α1 ∈ S ∧ . . . ∧ αn ∈ S ∧ ¬(β1 ∈ S)∧ (18)

. . . ∧ ¬(βm ∈ S).
Thus t(r) = Ar ⇒ (c(r) ∈ S). Now, given α ∈ U , let Fα be

α ∈ S ⇔
∨∨
{Ar: r ∈ N ∧ c(r) = α ∈ S} (19)

Fα says that α belongs to T exactly if it is supported by a formula of the form
Ar for some r ∈ N .

The formulas Fr can be used to characterize weak extensions.

Theorem 6.2 A collection T ⊆ U is a weak extension of < U,N > if and only
if for all α ∈ U , T |= Fα.

Now, identifing U with the set of natural numbers ω, the collection of all
subsets of U is identified with 2ω, this is the Cantor space. Then:

Proposition 6.3 For every formula Φ ∈ LS, {T :T |= Φ} is a Borel subclass
of 2ω in the Cantor topology.

Corollary 6.4 (a) Let < U,N > be a deductive system, U = ω. The collection
W of weak extensions of < U,N > is a Borel subclass of 2ω.
(b) Consequently, |W | is finite, or |W | = ω or |W | = 2ℵ0 .

25

When < U,N > is recursive, then the formula
∨∨
{Ar:ψ = c(r)} is representable

as a recursively enumerable set of natural numbers. it follows that:

Proposition 6.5 If < U,N > is recursive, then the collection of weak exten-
sions of < U,N > is a Π0

2 subclass of 2ω.

The collection of all extensions of a deductive system has a model-theoretical
characterization. Using the idea behind proof schemes we can introduce an
infinitary description of provability. Fix < U,N >.

Proposition 6.6 For every ψ ∈ U there exists a formula prψ ∈ LS such that
for every T ⊆ U , T |= prψ if and only if ψ possesses a T -derivation. (prψ
depends on N)

Corollary 6.7 Let < U,N > be a deductive system. Then T ⊆ U is an exten-
sion of < U,N > if and only if:
(1) For all ψ ∈ T , T |= prψ, and
(2) For all ψ /∈ T , T |= ¬prψ.

Corollary 6.8 (a) Let < U,N > be a deductive system, U = ω. The collection

E of extensions of < U,N > is Π0,N
2 subclass of 2ω.

(b) Consequently, |E| is finite, or |E| = ω or |E| = 2ℵ0 .

6.1 Applications in Default Logic and Logic Programming

Proposition 6.9 Let < D,W > be a default theory. < U,N > be its trans-
lation as a nonmonotonic rule system, and let S be a subset of U satisfying
translation of < D,W >. Then:
(1) S is a weak default extension of < D,W > if and only if for all ϕ ∈ L,
S |= Fϕ.
(2) S is a default extension of < D,W >if and only if:
(i) for all ϑ ∈ S, S |= prϑ.
(ii) for all ϑ /∈ S, S |= ¬prϑ.

Compare this result with the earlier results of Etherington ([9]) who char-
acterized default extensions by means of “most preferred models”. Here we use
a different device. A careful inspection of our method indicates the following:
First, imbed the language L into a new language LS . This language LS pos-
sesses a new atom for every formula of L. Thus, LS is a much richer language.
Second, formulas of L are translated as atoms of LS . The relationship between
various formulas of L is enforced in LS by means of translations of rules. Default
rules of L are translated to certain finitary clauses of LS . Checking satisfaction

26

for these clauses refers only to simpler formulas of LS . Some of these are not
images of formulas of L. The semantic characterization of extensions and weak
extensions refers to formulas of LS which are not images of formulas of L. In
addition, these formulas used in characterization are infinitary. This indicates
an infinitary character of the concept of extension and weak extension.

One needs to notice that when the theory < D,W > is finite, our description
of it, via the translation to nonmonotonic rule systems is finitary. Also, the
characterization formulas prψ are finitary. The reason for this is that, in addition
to rules in D, we also have all the rules of logic. The schemes of proof of
logic result in infinitely many rules which are, however, monotonic. There are
infinitely many proof schemes, but the collection of formulas of form k(p) is
finite anyway! This fact results in the finitary algorithm described in [25].

Our translation of propositional logic programs as rule systems provides us
with an infinitary characterization of stable models of logic programs. The
reason this is important is that the definition of stable model of logic program,
as introduced in [10], is purely operational. Let P be a logic program, Π its
propositional version, that is the collection of all the Herbrand substitutions of
P . Let H be the Herbrand base of P and let M ⊆ H. Gelfond and Lifschitz
give an algorithm for testing whether M is stable structure for P and prove
that a stable structure is, actually, a minimal model of P . It should be clear
from this description that this definition is purely operational. Here, using the
infinitary language LS we give a purely logical, although infinitary, description
of stability.

Proposition 6.10 Let P be a logic program, Π its propositional version, H,
Herbrand base of P , and finally < H,T > the translation of Π described in
Section 3.3. Then M ⊆ H is a stable model of P if and only if for every
ϑ ∈ M , ϑ is M -derivable in < H,T >. and for every ϑ /∈ M , ϑ is not M -
derivable in < H,T >.
Thus M ⊆ H is a stable model of P if and only if
(i) for every ϑ ∈M , M |= prϑ.
(ii) for every ϑ /∈M , M |= ¬prϑ.

7 Conclusion

In a sequel we deal with rule systems containing variables in the rules. We
shall deal with predicate logics. We shall prove results related to the properties
of recursive systems that are not necessarily highly recursive. We also explore
connections with Lω1,ω.

We acknowledge helpful conversations and discussions with Krzysztof Apt,
Howard Blair, Michael Gelfond, John Schlipf, V.S. Subrahmanian, and Miroslaw
Truszczyński.

27

References

[1] K.R. Apt. Introduction to Logic Programming. TR-87-35, University of
Texas, 1988.

[2] K.R. Apt, H.A. Blair. Classification of Perfect Models of Stratified Pro-
grams. To appear in Fundamenta Informaticae.

[3] K.R. Apt, H.A. Blair, A. Walker. Towards a theory of declarative knowl-
edge. In: J. Minker ed. Foundations of Deductive Databases and Logic
Programming, pp. 89-142, Morgan Kaufmann, Los Altos, CA.

[4] N. Bidoit, C. Froixdevaux. General logical databases and programs, de-
fault logic semantics, and stratification. J. Information and Comput., to
appear.

[5] H.A. Blair, A.L. Brown, V.S. Subrahmanian. Monotone Logic Program-
ming. Technical Report CS-TR-2375, University of Maryland.

[6] J. de Kleer. An Assumption-based TMS. Artificial Intelligence 28:127 –
162, 1986.

[7] R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals
of Mathematics 51 (1950) pp. 161-165.

[8] J. Doyle. A Truth Maintenance System. Artificial Intelligence Journal
12:231–272, 1979.

[9] D.W. Etherington. Formalizing Nonmonotonic Reasoning Systems. Arti-
ficial Intelligence Journal 31:41–85, 1987.

[10] M. Gelfond, V. Lifschitz. Stable Semantics for Logic Programs. In: Pro-
ceedings of 5th International Symposium Conference on Logic Program-
ming, Seattle, 1988.

[11] M. Gelfond, V. Lifschitz. Logic Programming with Classical Negation.
Unpublished Manuscript.

[12] M. Gelfond, H. Przymusińska. On the Relationship between Circumscrip-
tion and Autoepistemic Logic. In: Proceedings of the ISMIS Conference,
1986.

[13] M. Gelfond, H. Przymusińska. Inheritance Reasoning in Autoepistemic
Logic, Manuscript, 1989.

[14] D. Gries. The Science of Programming. Springer-Verlag 1981.

[15] P. Hall On representatives of subsets. Journal of London Mathematical
Society 10 (1935) pp. 26-30.

28

[16] M. Hall. Distinct representatives of subsets. Bulletin of American Math-
ematical Society 54 (1948), pp. 922-926.

[17] J.Y. Halpern, Y.O. Moses, Knowledge and Common Knowledge in a
Distributed Environment, 3rd ACM Conference on the Principles of Dis-
tributed Computing, pp. 50-61.

[18] J. Hintikka Knowledge and Belief. Cornell University Press.

[19] W-Q. Huang, A. Nerode. Applications of Pure Recursion Theory to Re-
cursive Analysis. Acta Sinica 28.

[20] C.G. Jockusch, T.G. McLaughlin. Countable retracing functions and Π0
2

predicates. Pacific Journal of Mathematics 30 (1972) pp. 69-93.

[21] C.G. Jockusch, R.I. Soare. Π0
1 classes and degrees of theories. Transactions

of American Mathematical Society 173 (1972) pp. 33-56.

[22] C.G. Jockusch, R.I. Soare. Degrees of members of Π0
1 classes. Pacific

Journal of Mathematics 40 (1972) pp. 605-616.

[23] K. Konolige. On the Relation between Default and Autoepistemic Logic.
Artificial Intelligence 35:343–382, 1988.

[24] A. Manaster, J. Rosenstein. Effective matchmaking. Proceedings of the
London Mathematical Society 25 (1972) pp. 615-654.

[25] W. Marek, A. Nerode. Decision procedure for default logic Mathematical
Sciences Institute Reports, Cornell University.

[26] W. Marek, V.S. Subrahmanian. The Relationship Between Logic Program
Semantics and Non-Monotonic Reasoning. In: Proceedings of the Fifth
International Conference on Logic Programming, M.I.T. Press.

[27] W. Marek and M. Truszczyński. Autoepistemic Logic, to appear.

[28] W. Marek and M. Truszczyński. Relating Autoepistemic and Default Log-
ics. In: Principles of Knowledge Representation and Reasoning, Morgan
Kaufman, San Mateo, 1989. (Full version available as Technical Report
144-89, Computer Science, University of Kentucky, Lexington, KY 40506-
0027, 1989.)

[29] W. Marek and M. Truszczyński. Stable models for logic programs and
default logic. In: Proceedings of North American Conference on Logic
Programming, MIT Press, 1989. (Full version available as Technical Re-
port, Computer Science Department, University of Kentucky, Lexington,
KY 40506-0027, 1989.)

[30] J. McCarthy. Circumscription — a form of non-monotonic reasoning.
Artificial Intelligence Journal, 13:27–39, 1980.

29

[31] G. Metakides, A. Nerode. Effective Content of Field Theory. Annals of
Mathematical Logic, 17:289–320.

[32] M. Minsky. A framework for representing knowledge. In: The Pychology
of Computer Vision, pp.211-272. McGrow Hill.

[33] L. Mirsky. Transversal Theory. Academic Press, New York.

[34] R.C. Moore. Semantical Considerations on Non-Monotonic Logic. Artifi-
cial Intelligence, 25:75–94, 1985.

[35] A. Nerode, J.B. Remmel. A Survey of r.e. Substructures. Proc. Symp.
Math. 42, Amer. Math. Soc.

[36] A. Nerode, J.B. Remmel. Complexity-theoretic Algebra I: Vector Spaces
over Finite Fields. In: Structures in Complexity. pp. 218-241.

[37] A. Nerode, J.B. Remmel. Complexity-theoretic Algebra II: Boolean Al-
gebras. Annals of Pure and Applied Logic 44:71–99.

[38] A. Nerode, J.B. Remmel. Complexity-theoretic Algebra III: Bases of Vec-
tor Spaces. In: Feasible Mathematics, Springer Verlag.

[39] M. Reinfrank, O. Dressler. On the Relation between Truth Maintenance
and Non-Monotonic Logics. In: Proceedings of International Joint Con-
ference on Artificial Iintelligence, 1989.

[40] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–
132, 1980.

[41] J.B. Remmel. Graph colorings and recursively bounded Π0
1 classes. Annals

of Pure and Applied Logic 32 (1986) pp. 185-194.

[42] J.B. Remmel. Recursive Boolean Algebras. In: Handbook of Boolean
Algebras

[43] A. Tarski. Logic, Semantics, Metamathematics Oxford, 1956.

30

