
Theory and Practice of Logic Programming
http://journals.cambridge.org/TLP

Additional services for Theory and Practice of Logic Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

All about Proofs, Proofs for All, Bruno Woltzenlogel Paleo
and David Delahaye, Eds., College Publications, Series
Mathematical Logic and Foundations, vol. 55., 2015.
Paperback, ISBN 978-1-84890-166-7, vii + 240 pages.

Victor W. Marek

Theory and Practice of Logic Programming / FirstView Article / August 2015, pp 1 - 6
DOI: 10.1017/S1471068415000125, Published online: 10 August 2015

Link to this article: http://journals.cambridge.org/abstract_S1471068415000125

How to cite this article:
Victor W. Marek Theory and Practice of Logic Programming, Available on CJO 2015 doi:10.1017/
S1471068415000125

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/TLP, IP address: 98.19.5.204 on 18 Aug 2015



TLP: page 1 of 6 C© Cambridge University Press 2015

doi:10.1017/S1471068415000125

1

Book review

All about Proofs, Proofs for All, Bruno Woltzenlogel Paleo and David Delahaye,

Eds., College Publications, Series Mathematical Logic and Foundations, vol. 55.,

2015. Paperback, ISBN 978-1-84890-166-7, vii + 240 pages.

1 Introduction

This book is a collection of articles referring to the presentations delivered during

a one-day workshop consisting of 12 invited tutorials. That workshop was a part

of “Vienna Summer of Logic” in July 2014. The format itself (I did not attend the

event) indicates tutorials of a moderate length devoted to a multitude of deduction

tools.

The reviewed volume consists of twelve chapters, i.e. papers written by presenters

and reviewed by individuals from the corresponding community and other commu-

nities. College Publications, a publisher of all-things-logic1 produced the book fast;

the date on the preface is less than half-a-year after the event. This included the

review process! To some extent, this is not surprising. With the appropriate tools

and printing-on-demand process the scientific community can now liberate itself

from mercy of shark-publishers. College Publications shows the way.

The chapters in the collection correspond to tutorials presented during the

workshop. The tools (and more generally subspecialties of computational logic)

presented in the chapters range from provers associated with some areas of

propositional logic, through the provers for decidable fragments of predicate logic,

to first-order logic provers, and higher-order logic. Applications of proofs, more

generally of Proof Theory, are also discussed.

There are significant differences between the tools and, more generally, philoso-

phies of corresponding communities. The border lies between so-called satisfiability-

modulo-theories, i.e. decidable fragments of predicate logic (I am being deliberately

not precise here) and more complex areas of logic: full first-order logic, and higher-

order logics.

Generally, since antiquity, the humanity associated values with proofs. Certainly

the ancient Greeks understood that, and the proofs and proof techniques were

followed by philosophers and mathematicians of antiquity. Techniques that did

not perish during the dark ages were further developed by mathematicians and

philosophers starting with the mediaeval scholastics. Of course other great civi-

lizations, Arabs, Chinese, Indians, and Persians, contributed, in various degrees, in

preservation and developments of such techniques. Modern mathematics is founded

on the notion of a proof. Proofs are what distinguishes theorems from conjectures.

1 Full disclosure: this reviewer published with them.



2 Book review

Advent of computers resulted in situations where proofs are claimed, but not

necessarily provided. Let us look at something that relates to every computer

user, specifically one issue in computer security. Modern computers (for instance

the laptop on which you, the reader, are reading this review) have cryptographic

co-processors, digital circuits that compute the so-called AES encryption. This

functionality is crucial for secure communication with your healthcare provider,

or an e-commerce company such as eBay. The designers of circuits write (in a

suitable formal language) the description of such co-processor. Then, the producers

of the circuit optimize the design and send it to a foundry where the circuit will

be mass-produced. The optimization changes the design to some extent. Now, how

do we know (to be precise: how the vendor of the laptop knows) that the actual

implementation is functionally equivalent (i.e. produces the correct output on each

input) to the specification? Certainly, the society is vitally interested knowing that

the implemented circuit does what the specification describes — nothing more and

nothing less. In principle, this requires 2128 checks (one for each key). But maybe, just

maybe, we could prove that the specification and implementation (both converted

into a suitably chosen formal language) are equivalent?

The application I mentioned above seems to indicate that at least some (very

practically minded) communities may benefit from practical applications of proof

theory: specifically, computer engineers. Certainly other specialities (for instance

cryptographers) can use tools originating from proof theory; the last chapter of the

collection gives an overview of the use of computer-aided proofs in Cryptography.

2 Contents of the collection

Now, let us discuss specific chapters in the collection. The first one, by M. Heule

and A. Biere Proofs for Satisfiability Problems presents the role of proofs in SAT

(satisfiability). Since SAT is perhaps the most important tool for solving finite-

domain constraint satisfaction problems the question of getting proofs of results

in this area are paramount. To simplify slightly, it is really about getting proofs

of inconsistency when the (clausal) theory is unsatisfiable. The paper describes the

recent progress in this area. While it is clear that many classical problems in extremal

combinatorics can still not be handled by SAT solvers, the progress is very fast and

we can expect that within a reasonable period of time many such problems will be

solved.

Often SAT is used as a tool for finding solutions using decidable fragments of

predicate logic. Again, not finding a solution means that the theory in such fragment

is unsatisfiable. The issue, then, is to find the unsatisfiability proof (again this is

really a general case to which provability is reduced). This area of solving constraint

satisfaction is called Satisfiability modulo Theories (SMT). The second chapter of the

volume, “Proofs in Satisfiability Modulo Theories”, by C. Barrett, L. de Moura and

P. Fontaine discusses both the story of SMT, and technology for solving constraint

satisfaction problems with SMT as well as proof extraction (when such problems

are unsolvable). Specific solvers are discussed.



Book review 3

The chapter “Proof Generation for Saturating First-Order Theorem Provers” by S.

Schulz and G. Sutcliffe, discusses proofs extracted from first-order theorem provers.

The paper provides a limited information about first-order theorem provers (see

remarks at the end of this review) and discusses proof formats for the proofs

extracted from the operation of provers. The language TPTP (for both problem

descriptions and solutions, i.e. proofs) associated with the work of both authors is

discussed. Numerous and meaningful examples of problems and proofs are given.

The next chapter, “Higher-Order Automated Theorem Provers”, by Ch. Benzmüller

introduces the reader to proofs in HOL, a proof system for higher-order logic. This

system allowing for higher-order formulas and quantifications over higher-order

objects handles significant extension of first-order logic. It is known that many

formalisms can be embedded into HOL. A number of specific systems such as

Leo-II, Isabelle, and several other proof systems based on higher-order logic are

discussed. Both automated and interactive theorem provers for higher-order logic

are presented.

The chapter “Interactive Theorem Proving from the perspective Isabelle/Isar” by

M. Wentzel returns to the higher-order logic theorem provers, discussing in detail

interactive theorem prover Isabelle and its “relatives”: Coq and HOL. An interested

reader will find a lot of details both about the syntactic conventions used in Isabelle

and related systems. The efforts to integrate tools of SMT family (for instance Z3)

are presented. There is an extensive discussion of the proof format, hence Isar, and

an actual formalized proof (of Tarski fixpoint theorem: the meet of all prefixpoints

of a monotone operator O in a complete lattice is the least fixpoint of O.)

The next chapter in the collection, “Introduction to the Calculus of Inductive

Constructions” by Ch. Paulin-Mohrig provides the overview of the formalism that is

the theoretical basis of Coq proof assistant. It is an informative account of the basic

properties of inductive constructions, providing wealth of information on syntax

and reasoning behind Coq.

“Deduction modulo theory” by G. Dowek, describes the following idea: when we

prespecify theory T and get the unary predicate �T on the set of formulas (of a

fixed signature σT ), this predicate itself can have nicer computational properties

than the provability predicate �. One can think about systems based on such idea as

a lifting of the SMT systems to the predicate calculus case. The specialized theory

T determines the equivalence relation ≡T (namely T � α ≡ β) and this relationship

can be used in rewrite rules. The paper gives a short description of the system

Dedukti, based on this idea.

One of the fundamental issues in the area of Automated Theorem Proving (ATP)

is lack of standards for proofs (and other related predicates). The point is that

formalization of the notion of proof is, in general, not something mathematicians

do. There may be various reasons, but the truth is that mathematicians have

been doing proofs for thousands of years and we accept proofs of, say, Euclid, as

perfectly correct. In fact, mathematicians have been, generally, unhappy with the

formalizations of the proofs, often considering work in this area as philosophy (used

in derogatory sense). But in ATP standards are needed. The chapter “Foundational



4 Book review

Proof Certificates” by D. Miller treats this area and provide an extensive discussion

of the efforts aiming at building the flexible framework for proof description.

The chapter “Deep Inference” by A. Guglielmi deals with the algebraic properties

of proofs in the tradition of linear logic.

Next, A. Leitsch in his “On proof-mining by cut-elimination” presents the technique

of utilizing resolution as means to analyze proofs that use cut elimination. An

interesting application — the analysis of Fürstenberg proof of existence of infinite

number of primes — is given. The ATP system ceres is discussed in the paper.

The paper by J.-R. Abral, “Definition of a Mathematical Language Together with

the Proof System in Event-B” presents the Rodin platform. This platform contains

a variety of provers, including various SMT systems and their own predicate logic

prover. The platform is used to test correctness of embedded industrial systems.

Specific industrial applications are mentioned.

Finally, the chapter “Computer-aided cryptography: some tools and applications”

by G. Barthe, F. Depressoir, B. Grégoire, B. Schmidt, and P.-Y. Strub, describes a

system called CertiCrypt that uses Coq proof-assistant to provide probabilistic proofs

of security properties. This is a novel application of formal methods, but the proofs

so derived are not the objects that a proof theorist normally accepts as a proof;

the way I see it is a technique to assign probabilities to security of cryptographic

constructions. Examples given in the paper include analysis of encryption schemes

and analyzing properties of schemes based on the difficulty of computing discrete

logarithm.

3 Discussion

Now, that we looked at the contents of the book, we need to ask ourselves questions

related to the utility of this book. Generally, over the millennia, mathematicians and

philosophers used the fact that a formula has a proof, as a criterion of validity.

In fact, the existence of a proof was (and still is) a major criterion of acceptance

of mathematical formulas as correct. But the availability of computers changed

the situation to an extent. Let us now discuss one example of such a spectacular

result. M. Kouril and J.L. Paul (The van der Waerden Number W (2, 6) is 1132.

Experimental Mathematics 11:53–61, 2008) found that whenever the integer segment

[1..1132] is split into two blocks, at least one of these blocks contains an arithmetic

progression of length 6. This is an amazing fact (previously Kouril and Franco

found that the number 1131 does not have the same property). Paul Erdős would

certainly be thrilled! But is an average mathematician going to believe it? After

all, what happened was that a custom SAT solver, implemented using a couple of

FPGA (reconfigurable circuits) searched the space of all partitions of [1..1132] into

two blocks and did not find a partition without arithmetic progression of length 6

in at least one block. Thus it is claimed that (the representation of) the problem is

unsatisfiable. The computation took ca. 9 months of continuous operation. We can

safely trust that the representation of the problem is correct. Even if we extract a

collection of clauses that are a consequence of the representation of the problem and

check (using a computer, as the collection of these clauses is too big to be handled



Book review 5

“by hand”) that it is unsatisfiable a (very small) possibility of an error persists!

Still we can be reasonably convinced that the representation is, in fact, unsatisfiable

and that the desired result holds. Several examples of this kind (including the

famous McKay and Radziszowski result on number R(4, 5)) are known. So, we

need proofs: mathematicians, but the rest of the society as well. This was, certainly

understood for some 60 years now, and significant progress of ATP ensued. But there

is an important difference between the way mathematicians function and the ATP.

Quite often, mathematicians omit steps that are (in their opinion) obvious. Trusting

their intuitions, many mathematicians made mistakes, including some famous ones

(nomina sunt odiosa ...) For that reason proof assistants (such as Coq and MIZAR)

attempt to “fill details”. A spectacular and important application of this technology

was the work of Gonthier of Microsoft Research (Gonthier 2005) with the claim

that using one of the versions of Coq he was able to verify the proof of Four-

color theorem2 published by Robertson et al. (1997). Completion of yet another

important verification effort (this time of Hales proof of Kepler Conjecture) called

flyspec, has been announced in (Flyspeck 2014). We point, however, that the proofs

have been completed/checked using computer programs, and so the (small) doubts

of correctness of checking (see our discussion in Section 1) must persist.

4 Coda

Now, the question is if the reviewed book reflect that 60 years progress. Specifically,

if for whatever reason you, the reader, need to gain an additional certainty of some

property, are you going to turn to one of the systems described in this collection?

In other words, is this panorama of ATP complete? My answer to this question

is that it is not. While we get a significant amount of information on extraction

of proofs from operation of SAT solvers and SMT solvers, the situation in case

of systems dealing of formulas admitting quantifiers (thus variables) is significantly

different from one (implicitly) presented in this collection. While lip-service is paid

to systems not presented in this collection (some short references, here-and-there),

the industrially-strong systems such as ACL2 and its predecessor NQTHM, out of

University of Texas, Austin and PVS out of SRI are not discussed. This is truly

amazing, as the first of these was a subject of the ACM Software Award (Boyer,

Kaufmann and Moore 2005) and both of these systems have a long history of

significant industrial applications, significant communities of users and developers.

As concerns proof assistants (certainly Coq is discussed in the collection in several

places) there is no discussion of the MIZAR proof assistant, a system with a

significant following in a variety of places.

Word-processing by the authors, stylefiles, etc. makes production of such col-

lections relatively easy (this reviewer had his share of such ventures); the editors

need to put things together and make sure that word-processing and other formal

properties of the document look right. However, a paper that contains 33 citations

2 Gonthier acknowledges work of B. Werner.



6 Book review

of papers authored or coauthored by the (single) author of the chapter in question

— I am not making it up — is a bit of an anomaly and its presence indicates that

the editors did not do a good job.

Victor W. Marek

University of Kentucky

(email: marek@cs.uky.edu)

References

Flyspeck. 2014. The Flyspeck Project, T. Hales, project director. Accessed 10 July 2015.

URL: http://code.google.com/p/flyspeck/wiki/AnnouncingCompletion.

Gonthier, G. 2005. A computer-checked proof of the four-colour theorem. Accessed 10 July

2015. URL: http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf.

Robertson, N., Sanders, D., Seymour, P. and Thomas, R. 1997. The four-colour theorem.

Journal Combinatorial Theory Series B 70, 2–44.


