A General Logic-Based Authorization Model

W.R. Cook,
Department of Computer Science, University of Texas,
Austin, TX 78074, email: wcook@cs.utexas.edu

V.W. Marek
Department of Computer Science, University of Kentucky,
Lexington, KY 40506, email: marek@cs.uky.edu *

June 21, 2011

Abstract

The system-security literature contains numerous papers on autho-
rization which are written according to the following scheme. The
authors select a specific situation commonly occurring in a business
setting and then describe a formalization of a specific policy that al-
lows for solving the problem of the access to information (in varying
granularity: collections of objects, tables, records or even specific fields
in records). We discuss several such policies and show how a first-order
logic and its extension by means of the fixpoint operation can be used
to formalize all these policies.

Keywords
Security policies, access control, first-order logic, first-order logic with
fixpoints

1 Introduction

The question of what, actually, constitutes the notion of access policy has
been a subject of considerations for computer science and, in particular com-
puter security researchers for over 30 years. The literature of the subject
is voluminous and many notable papers have been published or circulated
[BL73, BN89, GW76, SFK00, OGMO08| among the others. Nevertheless a

*Partially supported by JPL contract 1401954

more principled analysis of the literature of the subject indicates that many
papers follows the following scheme: the researchers look at a specific busi-
ness situation, with its generally accepted constraints, and then formalize a
solution tailored to that situation.

In the meanwhile, however, a significant change occurred. While orig-
inally the part of the system responsible for the security of the Database
Management System (DBMS) was thought as a separate entity, the modern
DBMS stores, besides the user-owned data, include the data regarding the
users and their properties, as well as the data about the users being present
at the system, relationship of the users to the data and other additional in-
formation. A consequence of this is that the security properties of the DBMS
are themselves expressible in the query language of the database. This posi-
tion have been taken in [Co03, CG04] and [CG04] and the current paper is
a continuation of this work. Specifically, we discuss the security properties
of a database as predicates expressible in first-order predicate calculus cor-
responding to the database treated as a finite relational structure (as this
notion is treated in logic) or its extension by transitive closure operation.
We take a slightly idealized point of view by not limiting the syntactic form
of the definition (while it is likely the definition would be in a simpler frag-
ment of logic) beyond the obvious requirement that the predicate relates the
users and resources. We find that two languages (first-order logic and the
extension of first-order logic by means of the fixpoint operation) are natural
candidates for the logic-based language for formulation of security policies.

The contents of this paper are as follows. In Section 2 we discuss a
number of well-known access policies. We also briefly discuss two systems of
logic and their semantics. In Section 3 we show how the policies of Section
2 are formalizable in systems of logic. We also show one additional custom-
made policy (but certainly corresponding to reality) as formalizable in the
proposed framework. In Section 4 we discuss the issue of semantics of access
control policies. Finally Section 5 discusses consequences of our approach
and also issues related to time.

2 Background

In this section we describe a number of well-known policies that are, actually
employed in existing systems. We also refer the reader to [CC04] for the so-
call Common Criteria standard for security assurance.

2.1 Mandatory access control

Mandatory access control (MAC) also known as Bell-La Padula model [BL73]
is used to prevent information leaking. MAC is a policy based on the idea
that database (whose nature is immaterial) has the set of simple access lev-
els, usually four values: U,C,S, and T'S (but easily generalizable to more
levels, or even partially ordered set of levels) that are ordered as follows:

U<C<S<TS.

Each user, and each document is marked with such level. The (simplified)
access policy for such system is described by two requirements:

1. (no “write-down”) The user with a level L can not write to documents
of documents of strictly lower level.

2. (no “read-up”) The user with a level L can not write to documents of
documents of strictly higher level.

Additional tasks such as append, learn_scheme etc. may be added to this
mode of access control.

2.2 MAC with Boolean compartments

A modification of MAC is one where the users and documents are marked
with compartments. Compartments are use for the following business-logic
situation. A document is marked by a set of its topics. Likewise, a user is
marked by the vector of topics she can learn about. Formally, we have a
set of topics (compartments) T. Each user u is labeled with a set T,, C T
Likewise, each document has an associated a set T; C 1. The user u can
access the document d if, in addition to the MAC requirements, Ty C T,,.
An example of such situation could be the set of compartments:

(TargetSharePrice, SizeOfInvestments). When the user victor having the
security level confidential has an empty associated set of compartments
and unclassified document doc! has the associated set (TargetSharePrice),
the user wvictor will not get the access to the document docl inspite the
fact that wvictor’s security level is higher than that of doci. But the user
william with the security level confidential and the set of compartments
(TargetSharePrice, SizeOfInvestments) will be able to access the document
docl. We observe that a natural implementation of compartments is with
two tables with the following schemes: (user_name, compartment) and
(resource_name, compartment). Then, the requirement is that whenever the

resource has compartment, then the user must have same compartment (for
all compartments).

More complex policies where one assigns access levels to compartments
are, of course, possible. We note, though, that the implementation still
involved tables stored in the database.

2.3 Discretionary Access Control (DAC)

Discretionary access control [GWT76] approach, used within relational DBMS,
is an access control mechanism allowing for a variety of interpretations.
Here, we discuss a simplified version of DAC with the granularity of objects
set to tables. We will discuss a graph-theoretic representation of DAC. The
multigraph G associated with a table o has always an initial node from a
special node called system. When a table o is created by user (owner) u a
number of edges from system to u are created. Those edges, are of the form

(system,u,0,p, g)

Here p is one of the permissions (write, read, update etc.). The special value

g is used in granting process. A user v may create an edge to some other
/

user v

(v,v',0,p,9)

This means that the user v grants to the user v’ a permission p on the table
o. If g is 1, granting option is given by v to v'. The value p (where p is a
permission, as discussed above) induces a subgraph G,), of G,. To see if a
user v’ has a permission p on table o we check if there is a path @ in graph
Go,p with the following properties:

1. The beginning of the path @ is the node system
2. All the edges on the path @Q are of the form (v,v’, 0,p, g)

3. All the g values on the edges (with the possible exception of the last
one) are equal to 1

Let us see what the conditions (1)-(3) mean. In fact one of the following
two situations must happen:

1. Either the node v’ belongs to the transitive closure H of the singleton
set {system} under the relation

{{v,v") : (v,0',0,p,1)}

2. Or, v belongs to the image of the set H defined above under the
relation

{{v,0) (v,2/,0,p,0)}

It should be clear that to express the DAC in a logical language we will
need an extension of first-order logic where we can define an operator of
transitive closure of a relation. However if we impose a constraint that the
chain of permissions is of length at most k for some prespecified k then such
limited form of DAC is first-order definable.

2.4 Roles, and DAC with roles

A (simple) role [SFKO00] is a collection of users. Such collections correspond
to specific elements of business logic. For instance, in financial organizations
one talks about role of tellers (or even more specifically, tellers in a specific
branch), while in the university setting one deals with graduate faculty,
faculty senate, or parking committee. In the context of DAC, roles are treated
in a manner analogous to the users, with the role getting specific privileges.
We not in passing that a user may be a member of several roles and that
this may lead subtle problems with the semantics, esp. when the privileges
of various roles are contradictory (for instance with respect to temporal
aspects of privileges.) More complex systems of roles are hierarchies of
roles. An example of such situation is in banking industry where the staff
role consists of associate, loan_officer, teller and wvice_president. One can
formally represent hierarchies of roles in formal systems such as mereology
[Lel6] or inheritance hierarchies [To86]. The presence of hierarchies of roles,
where the dependence graph is a directed acyclic graph labeled with role
names and the child_of relationship is represented by the part_of relation
requires, like in the case of simple DAC, transitive closure.

2.5 Logics

We will be using two systems of logic in our description of security policies.
One of these is standard first-order logic which will be denoted below by
FOL. The second one, the fixpoint logic [Li04] denoted below by FOL(F P),
is less known but allows for fixpoint (transitive closure) operation.

2.5.1 First-order logic

By first-order logic (FOL) over signature o we mean a predicate logic with
a predicate symbol for each relational symbol R of 0. We assume that there

are no function symbols (operations such as + or - can be treated as built-
in). A relational database can be treated as an interpretation of suitably
chosen signature (with a relational symbol for each table). Given such first-
order logic and a structure A, we denote by A = ¢[v] the fact that variable
assignment v satisfies formula ¢ in structure A. Generally, FOL is studied
in courses of logic. Here we refer to [Sh01] for standard description of FOL.

2.5.2 First-order logic with fixpoint operation, FOL(FP)

We will also consider an extension of FOL that admits the transitive closure
(i.e. fixpoints of reachability relations) as “first-class citizens”. Given a
signature o, FOL(FP), is a logic with an additional modal operator FP.
Given a formula ¢(X,Y") with two free variables X and Y (additional free
variables are possible), FPxy(¢(X,Y)) is also a formula. Its meaning is
the following: for every choice of remaining parameters, say z, the formula
FPxyp(X,Y,?) is satisfied by pairs (a, b) belonging to the transitive closure
of the binary relation R, defined by {(a,b) : ¢[a,b,Z]}. We will drop the
subscript X, Y (and not mention parameters z) when these are determined
by the context. This logic is a fragment of the logic LF'P discussed in [Li04],
Ch. 10, and in fact its fragment trcl discussed in Section 10.6 of [Li04]. The
intuition is that we have the relation R,(X,Y’), and then the extent of the
relation F'Po(X,y) is the collection of all tuples derived by the following
DATALOG program:

(X,Y) < R(X,Y)
(X,Y) « (X, 2),fp(Z,Y)

(Here Ris Ry x)y-)

Formally, (and without direct reference to DATALOG), we interpret
FP(¢p) as the transitive closure of R,. It should be clear that the inductive
definition of satisfaction for formulas of the first-order logic FOL, can be
extended to formulas of FOL(FP). All one needs to do is to add the condi-
tion that the variable assignment @ satisfies F'P(¢p) if the pair (d(X),a(Y)
belongs to the transitive closure of R, (the parameters in R, are passed
from @). Moreover, let us observe that since we deal with finite relational
structures (after all the database are finite relational structures) the stan-
dard algorithms for computation of transitive closure ([CLR90]) apply in
our situation. It should also be observed that it is known that due to the
compactness of the logic FOL, FOL(FP) does not reduce to FOL [AUT79].
Thus, in principle, FOL(FP) properly extends FOL.

3 Logic-Based Authorization

Let S be a schema that describes a set of legal database instances. We
identify S with the set of all instances of S. Let D € S be a database.
The nature of the schema S and databases D is, for a moment immaterial;
we can think about D as a depository of documents, a relational database,
or yet another collection of objects, where S constrains the structure of
D. Example schemas include many-sorted algebra [KK71] or triple-stores
[RDF04]. We assume that any particular database D is finite, but the set
of all possible databases S may be infinite.

Let O be a set of operations that can be performed upon the database.
Assume that the operations can refer to elements of the database and also
include additional values v. Example operations are read(d), write(d,v),
delete(d), or insert(v). Thus d refers here to some object (document, tuple)
present in D, and v refers to an object that is placed in D or written into
a specific object d of D. In what follows we will also sometimes consider
permissions a set of permissions which are the string part of an operation
with only one database argument. For example, the permission read is
associated with read(d) operations.

let U be a table in D representing users. Again, the natures of the users
is left open for now.

A policy is a formula ¢(U, O, S) (i.e. one involving predicate symbol U
describing users, the predicate symbol O describing objects, and possibly
other predicate symbols that describe other tables in D. As any formula,
for specific user u, object o and other relations (tables) interpreting symbols
occurring in ¢ P returns the Boolean value 1 or 0 depending whether the
formula ¢ is satisfied or not satisfied in D.

A policy is understood as specifying, for a given database D € S, whether
a user in u € U can perform operation o € O on d € D. The above is a very
general notion of an authorization policy.

It is also useful in practice to include time as an additional argument
in the policy. For instance we may want to be able to declare the policy
permitting tellers to access client’s accounts but only on Mondays through
Fridays, and between 9a.m. and 3p.m. Other information, such as geoloca-
tions, rank in the organization, and other attributes may be assumed to be
part of D and could be used in a specification of a policy.

One key point is that policies are usually infinite, meaning that they
cannot be expressed as a finite table or access control matrix. This is because
the set of databases, the set of operations, and the set of times are all
potentially infinite. We want to describe policies that apply to all possible

databases and operations, not just describe policies for a specific database.
Any approach based on finite enumeration of cases, will be fundamentally
less expressive than the general form of policy describe above.

On the other hand, it is important to be able to compute particular
instances of the policy efficiently. In particular, given a specific database D,
user u, operation o it must be possible to compute the value assigned by the
policy on (u,o0,d) (given the finite database D). In this case all the inputs
are specific finite values.

We want to represent uniform policies compactly and efficiently using
some form of first-order predicate logic or its extensions. In such way we
will also get a clean semantics, inherited from the corresponding logic-based
language.

We will now show how the four policies discussed in Section 2 can be
formalized in appropriately chosen logic.

3.1 Expressing MAC in FOL

We will first consider the case of MAC without compartments. The opera-
tions will be of two types only: read(d) and write(d). In this model the data
being written is not relevant to the authorization decision, so it is suppressed
here. The level access of users are represented as a binary relation Dyger_perm
in the database. Here a pair (u,() belongs to the relation Dygser_perm if user
u has the level access [. Users u range over users; the levels range over the
set {U,C, S, TS}. We assume that for each user u there is exactly one pair
(u,l) in the relation Dyser_perm- Likewise, the database contains a binary
relation D goe_perm- In this relation, a pair (d,l) in Dgoe_perm €xpresses the
fact that the document d has an access level [. In Section 2.1 we defined
two basic policies. Now we express them as formulas that need to be true
in the database. Let us first look at “no write-down” condition. We define
a policy predicate MAC\,(u, write(d), D) as follows:

MAC ,(u,write(d), D) if and only if
th 12 : (Duser_perm(ua ll) A Ddoc_perm(da l2) A (ll < 12 \ ll == l2)

The policy predicate MAC,, expresses the “no write-up” policy. We
will require that for a user v to modify the document d using operation
write(d) on database D under MAC, the predicate MAC,, must be true in
the database (treated as a first-order structure) on the tuple (u, write(d), D).
The relation < was defined above in Section 2.1 and is stored in a table.

The second requirement (“no read-up”) can be expressed by a similar
predicate MAC,(V, D) as follows.

MAC,(u,read(d), D) if and only if
31,12 2 (Duser_perm (w; 1) A Dgoc_perm (d, l2) A (I <1y VI = 13)
Now the overall mandatory access control policy is
MAC(u,0,D) = MAC,(u,0,D)V MAC,(u,o0,D)

We observe that since there is precisely one entry in the relation (table)
user_perm for each user u (and similarly exactly on entry in the relation
doc_perm for each document d, the right-hand-sides of definitions of relations
MAC, and MAC,, can be changed to universal formulas. For instance, an
equivalent form of the definition of MAC, is:

MAC,(u,write(d), D) if and only if
VZ17 12 : (Duser_perm(ua ll) A Ddoc_perm(da l2) A (l2 < ll \ ll == l2)

3.2 Expressing MAC with compartments in FOL

We can also use FOL to define MAC with compartmentalized knowledge.
The number of compartments does not matter, but our access predicates
will have an additional placeholder for each compartment. In our example
in Section 2.2, we had two compartments: TargetSharePrice, and SizeOfIn-
vestments. The database is extended with two predicates D.yser_comp and
D doc_comp of type (u,c) where c is a compartment. Unlike the level predi-
cates, the compartment predicates can define multiple compartments for a
user or document. The idea is that if the document d and the user have
any compartments in common then the user can access the document. We
show the modified definition of CMAC,, leaving to the reader the suitable
modification of CMAC,,,.

CMAC,(u,read(d), D) if and only if MAC,(u,read(d), D)
N Ve (Ddoc_comp (u, C) = Duser-comp(d, C))

Note that the definition of MAC with compartments is a natural exten-
sion of the original definition of MAC. We also observe that a subtler poli-
cies that control the assignment of users and document to compartments
are also possible. In this case the set of operations would be extended to
include operations add(u,c), remove(u,c), add(d,c), remove(d,c). To specify
a useful policy controlling compartments, a form of role or category manager
is needed. This kind of extension is described in the next section.

3.3 Expressing RBAC in FOL

Role-based security (RBAC) is a NIST standard. A role acts as the nexus
between users and permissions and provides a level of abstraction so that
consistent permissions can be assigned to groups of users. There is a hi-
erarchy of RBAC models with different levels of complexity. In the simple
version given below, the focus is on users, roles, and permissions. We have a
set of permissions P (which could be implemented by a unary table with the
same name), the set of users U, the set of roles R, and the set of objects O.
The permissions on objects are given to roles, not to users. That is, we have
a table PR so that PR C P x O x R, and a table specifying the membership
of users in roles UR (i.e. UR C U x R.) With these tables (thus predicate
symbols describing them) we define:

RBAC(u, p,0) if and only if 3r : UR(u,r) A PR(p,0,7)

The RBAC policy allows an operation p to be performed if the user w is
authorized for a role r that is authorized to perform the operation. Thus the
specific users are isolated from the explicit permissions by means of roles.
A more complex role-based policy (based on a hierarchy of roles) will be
discussed in Section 3.5

3.4 Formalizing DAC in FOL(FP)

To formalize DAC, we define three operations read(d), write(d), delete(d)
with associated permissions read, write, delete. The objects in the database
could be tables, rows, or individual cells of the database, depending on the
intended granularity of permissions. The logic that will be used to formalize
the access policy is FOL(F'P), since, as described in Section 2.3, we need to
refer to transitive closure.

The data used in discretionary access control is stored in 5-ary relation
D 4 consisting of tuples (records) (u1,us,d, q, g) where Uy, us are users, d is a
database object, ¢ is the name of the permission (see above), and g belongs
to Bool (intuitively is that the permission to do ¢q on ¢ is given by u; to us
without, or with grant option depending whether g is 0 or 1.) Thus we have
a b-ary predicate letter DAC(u1,us9,d,q,g). given a database object d and
the type of access ¢, we define a number of auxiliary binary predicates.

First, we define the predicate weak-grant by

weak-grant(uy, us, d, q) if and only if g : DAC (uqy,us,d, q,g)

10

and another predicate full-grant by
full-grant(uy, ug, d, q) if and only if DAC(u1,us,t,q,1)

The predicate weak-grant tells us which users are connected by permission ¢
on object d (with, or without grant option). The predicate full-grant limits
weak-grant to pairs of users that are connected by permission ¢ with grant
option.

Next we let fp-grant(uy,us,d,q) to be FP(full-grant(ui,us,d,q)), where
the fixpoint is computed with respect to the variables u; and ug (since our
logic is FOL(FP) it is a formula of our logic). We now form the predicate
grant(uy,ug, d,q) as follows:

grant(uy,ug, q) if and only if (fp-grant(uy,us,d,q)
V Jus : (fp-grant(ui,us, d, q) A weak-grant(us,us,d, q)).

Intuitively grant(ui,us,d,q) means that there is a path from wu; to ug
where on that path all transitions correspond to grants of permission of ¢
with further grant option, possibly with the exception of the last one (this
is the meaning of the second term of disjunction on the right-hand side).

Once we defined the accessibility predicate grant, we can define the
ternary predicate DAC defining the set of users that have the access to
the object d with the permission g as follows:

DAC(u,q,d) if and only if grant(system,u,d, q).

Here system is the user described in Section 2.3. One can easily prove
by induction on the length of the path that the predicate DAC correctly
describes the DAC policy.

The set of operations and permissions can be extended to allow users to
grant or revoke permissions, e.g. grant(read,d) with permission grant. The
right to grant permissions is also controlled by access control policies. We
observe that stronger predicate describing the set of users that have not only
the access with permission ¢ but also can grant such permission to others,
can also be defined by:

SDAC (u,,q,d) if and only if full-grant(system,u,d,q).

11

3.5 Formalizing hierarchical RBAC in FOL(FP)

We will now show how the FOL(FP) can be used to formalize role-based
access control with a hierarchy of roles. While it is possible to formalize both
delegation and hierarchy of roles within a single formalism, in this section
we formalize the discretionary access control with the hierarchy of roles only,
leaving the merging of two mechanisms (delegation and role-hierarchy) to
the reader.

The natural ordering of roles (the reverse inclusion relationship) that
defines the relationship “part_of” can be naturally represented by the table
of its Hasse diagram (i.e. “immediate_part_of”). Such table is much smaller
than the full diagram of the reverse inclusion relation, and the full diagram
can be reconstructed from such relation by means of transitive closure op-
eration. We now proceed similarly to our construction of Section 3.3. Let
UR, PR be tables defined in that Section. Additionally, we implement a
binary table HDR that contains the information about the Hasse diagram
of the “part_of” relation. As before we identify the table names with the
corresponding predicate symbols of the language. We then can define

HRBAC(u,p, o) if and only if
Iry,7re : UR(u,r1) AN FP(HDR)(r1,7m2) A PR(p, 0,7).

3.6 Formalizing MAC with roles

The logic FOL(FP) can also be used to represent the discretionary access
control with roles. We discussed in Section 2.4 the concept of roles within
the relational model of databases. As observed in Section 2.4 there are
slight differences depending whether the roles form a flat set, or they form
a proper hierarchy. When roles are flat, an axiom expressing the fact that
once a role carries some privileges each user of that role caries the same
privileges. This property is an integrity constraint; and it can be expressed
as a logical formula. The formula in(V, R) is a binary predicate with the
meaning of in(u,r) as follows: “the user u has a role r”

Yo, rt,p, g : (access(r,t,p,g) Nin(v,r) = (access(v,t,p, g)).

Here the predicate access is the access predicate defined in Section 3.4.
The presence of hierarchical roles requires adding similar axioms but not
only for users and roles but also for roles being part of other roles.

12

3.7 Other security models and specific policies

Other security models (for instance Biba model, also known as Reverse
Bell- La Padula model, a model for authoritative information access) can be
represented in FOL by predicates definable very similarly to those defined
in Section 3.1. Likewise, the Brewer-Nash policy (Chinese Wall) [BN89] can
easily be expressed as a logic-based access predicate. We will not discuss
these models here, referring the reader to [CFMS94, Go06].

We want, however, to illustrate the power of logic-based policies with
another example of a policy easily expressible in such formalism. Moreover,
we will look at a different granularity of a policy, this time accessing records
and not tables. Our goal now is to formalize the access predicate for the
following policy for access of personal records: The personal record of an
employee can be viewed by:

(a) Employee her/himself

(b) The manager of the department where the employee works

(¢) Personnel of HR department (unless the employee whose record is viewed
is employed in HR department itself, in which case only first two clauses
apply)

To formalize this policy we will make assumptions about tables stored in
the database. Specifically, we assume that the employee table has within its
scheme the attributes: id (employee id), position (to denote the position of
the employee in the department), and did - the department name. Likewise,
we assume that the scheme of emp_record contains the attributes did and id
to denote the department and employee id, resp.

Since we use the language of logic, we will use the attribute name as a
function symbol, writing, for instance, id(v) instead of v.id. The variable r
ranges (in this example) over personal

Here is the logic-based representation of the policy described above:

access(v,r) if and only if [id(v) = id(r)]V
[did(v) = did(r) A position(v) = mgr|V
[(did(v) = HR) A (did(r) # HR)]

4 Semantics of policies

The use of logic as means to define access predicates (thus policies for access)
as done in Sections 2 and 3 provides an additional benefit of a providing
semantics to access policies. Specifically, both first-order logic FOL and its

13

—

extension FOL(FP) have semantics, that is for any formula ¢(X) and a
database D there is a unique relation R, consisting of the tuples (variable
assignments Z such that D = ¢[Z]. This is the meaning that we assign to
the logic-based policy. We also observe that such approach gives a sufficient
condition for persistence of policies. Every formula is built from predicate
symbols that describe database relations (tables). When these tables are
not updated the logical value of [Z] does not change either (as is easily
shown by induction on the complexity of the formula). Therefore, if these
tables are not updated; the access predicate does not change as the result
of the update.

We observe that when (as discussed in Section 1 the login information
is a part of the database (as in all modern database systems), the very
fact of login becomes an update and the access predicate may change. The
consequences of this fact are discussed in [OGMOS].

5 Conclusions and Further Work

While we discussed definition of access policies using some logics (first-order
logic, and its extension by means of fixpoint operation) these are not the
only logics that can be used to define policies. Besides of logics such as
monadic second-order logic (that is FOL but with variables for subsets of the
universe and quantifiers for such variables) an important class of logics that
potentially could be used for access control are temporal logics, especially
with operators for duration of actions. For instance we may want to log out
an inactive user (i.e. update the table of logged-in users) after a specific
time of inactive behavior. This requires introduction of temporal constants
with a varying interpretation such as today, now, time_anchor (last time the
user was active) etc. With sufficient care (and limiting only to addition, so
Presburger arithmetic algorithm could be used) such extension of first-order
logic is certainly possible.

References

[AUT9] Aho, A.V. and Ullman, J.D. Universality of data relational
languages. 6" ACM Symposium on Principles of Programming
Languages, pages 110-119, 1979.

[BL73] Bell, D.E. and La Padula, L.J. Secure Computer Systems, Math-
ematical Foundations. Mitre Corporation, 1973.

14

[BNS9]
[CC04]
[CFMS94]
[Co03]
[CGO4]
[CLR90]
[Go06]
[GWT6]
[KK71]

[Lel6]

[KQ*10]
[Li04]

[OGMOS]

[SFKOO]

Brewer, D.F.C, and Nash, M.J. The Chinese Wall security pol-
icy. Proceedings of IEEE Security and Privacy, 1989.

Common Criteria for Information Technology Security Evalua-
tion, CCIMB-2004-01-002, 2004.

Castano, S., Fugini, M.G., Martella, G. and Samarati, P.
Database Security, Addison Wesley, 1995.

Cook, W. Policy-Based Authorization, Unpublished Manu-
script, 2003.

Cook, W.R., and Gannholm, M.R. Rule-based database security
system and method. U.S. Patent 6,820,082, 2004.

Cormen, T.H., Leiserson, C.E., and Rivest, R.L. Introduction to
Algorithms, MIT Press/Mc Graw Hill, 1990.

Gollmann, D. Computer Security, Wiley, 2006.

Griffith, P. and Wade, B. An authorization mechanism for re-
lational database systems. ACM Transactions on Database Sys-
tems 1:242-255, 1976.

Kreisel, G. and Krivine, J.L. Elements of Mathematical Logic,
North Holland, 1971.

Lesniewski, S. Foundations of the General Theory of Sets I (in
Polish). (Eng. trans. by D. I. Barnett: Foundations of the Gen-
eral Theory of Sets. I, in S. Lesniewski, Collected Works, Vol.
1, pages 129-173 Kluwer, 1992), 1916.

Kitchin, D., Quark, A., Cook, W., and Misra, J. The ORC
Programming Language. Unpublished manuscript, 2010.

Libkin, L. Elements of Finite Model Theory, Springer-Verlag,
2004.

Olson, L.E., Gunter, C.A., and Madhusudan, P. A Formal
Framework for Reflective Database Access Control Policies. Pro-

ceedings of CCS’08, 2008.

Sandhur, R., Ferraido, D.F., and Kuhn, D.R. NIST Model for
Role-Based Access Control, Towards a Unified Standard, ACM
Workshop on Rule-Based Access Control, pages 46—63, 2000.

15

[RDF04] Resource Description Framework, http://www.w3.org/RDF/,

2004.

[ShO1] Shoenfield, J.R. Mathematical Logic, A.K. Peters/ASL (reprint),
2001.

[To86] Touretzky, D.S., The Mathematics of Inheritance Systems, Pit-

man/Morgan Kaufmann, 1986.

Use your QR-barcode reader to get to the e-repository of my papers.

Of a0

16

