Quo Vadis Answer Set Programming?

Past, Present, and Future

V.W. Marek

Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046, USA

Abstract. We discuss the development, current state and the future of Answer
Set Programming, making predictions that are not necessarily accurate.

1 How did it happen, or prehistory

In early 1984, less than a year after I joined CSD, University of Kentucky, my for-
mer student, late Witold Lipski suggested that I look at nonmonotonic logic. It will be
next big thing, he wrote and suggested reading papers by Raymond Reiter. I went a
step further and went to the first Nonmonotonic Logic Workshop in Mohonk, NYY. That
workshop was, in fact, co-organized by Reiter. Fate had it - the organizers made me
share the room with Vladimir Lifschitz who immediately straightened up my wrong
ideas on nonmonotonic logic. I knew that change of semantics from all models to a
subclass may result in a nonmonotonic consequence operation; this phenomenon was
observed by professional logicians earlier. But what I did not know was that the idea
was to formalize (fragments of) commonsense reasoning.

That same year another fortunate event of my scientific life occurred — Mirek Trusz-
czynski joined our department. Two years later we understood what autoepistemic logic
was really about and what the algorithms for manipulation of modal formulas in au-
toepistemic context were. In 1987 Michael Gelfond visited us in Lexington and talked
about the use of autoepistemic logic to provide semantics for negation in logic pro-
gramming [Gel87]; the goal that at that time appeared elusive. Then, in 1988 we got
the seminal paper of Gelfond and Lifschitz [GL88]. I presented it at our Logic and Al
seminar. Very quickly we understood that the technique was closely related to that of
Reiter (via appropriate fixpoint construct). Putting it all together, Mirek and I realized
that the complexity of basic problems related to stable semantics can be established. It
all came together quickly.

We looked at the implementation of stable semantics almost immediately, although
we did not know what this can do for us. Eric and Elisabeth Freeman were our students
at the time and they implemented a very simple stable semantics solver (no bells and
whistles). While I cannot find the written report of that work (but there was one), my
recollection is that it could handle programs with 30 variables at most. Mirek and I then

moved to a more ambitious project called DeReS (Default Reasoning System). Today
forgotten, it was an implementation of Reiter’s logic and thus stable semantics as well.
Two Ph.D. students, Pawel Cholewinski and Artur Mikitiuk worked with Mirek and me
on that project. By 1993, the area was mature enough so Mirek and I could publish a
monograph of the results so far [MT93].

It was Ilkka Niemeld who, like Mirek and I, came to stable semantics through au-
toepistemic logic. He made a breakthrough in the implementation of stable semantics
with his smodels. What was very important in that research and implementation was the
first grounder, Iparse, built in collaboration with Patrik Simons. Another important sys-
tem, d1v was started in Vienna and continued in Vienna and Calabria. This one was a
solver for the disjunctive logic programming; a powerful extension of stable semantics.

In 1991, Anil Nerode, V.S. Subrahmanian and I started the conference series called
Logic Programming and Nonmonotonic Reasoning, alternating every other year with
Nonmonotonic Logic Workshop. This action created a community which exists today.

In 1998 Mirek and I, and independently Ilkka realized that stable model semantics
can be used efficiently and user-friendly for solving NP-search problems. By pure coin-
cidence that same year Krzysztof Apt wanted to have a workshop for 25 years of logic
programming (and an accompanying volume) and we, in Lexington, had a venue: the
beautiful Pleasant Hill, a place where a (now extinct) religious group of Shakers built
its paradise on earth. Mirek and I presented the idea there. A catchy name was needed
and was provided by Vladimir.

2 What do we have now

When we met at Stanford in 2001 for the first ASP workshop, the name was there and
the issue was how better and faster ASP solvers could be built. Bart Selman was asked
for an invited presentation and he talked about the progress with SAT solvers, a tech-
nology which in the past number of years made a tremendous leap forward based on
several theoretical advances, better data structures and more careful implementations.
The class of problems solved by SLP solvers and SAT solvers is exactly the same. But
SAT solvers were significantly faster (not uniformly, but on average). Not only systems
such as sato and grasp but truly lightning-speed systems like chaff were showing the
way forward. Both smodels and d1v used improvements that were suggested by the
SAT community, but not everything that the SAT community used was directly appli-
cable. A new idea was needed and the next big thing in ASP was the appearance of
ASSAT, the system built by Fangzhen Lin and Yuting Zhao. Its novel idea was based
on a careful studies of reasons why some supported models are not stable. In the hind-
sight, one could see that it was all about the cycles in the call graph (and since Apt,
Blair and Walker, and then later work by Stefania Costantini and Alessandro Provetti
we knew that there was a connection). But the issue was that while the completion of
the program can easily be reduced to a propositional theory without significant increase
in the size of the resulting theory, adding the clauses “killing” the cycles increases the
size of the corresponding theory exponentially. Fortunately, it turned out that this can
be done piecemeal, maybe killing some cycles (this was called by Lin and Zhao adding

loop formulas) was enough. There are, unfortunately exponentially many loop formulas
(as explained in [LRO6]), but not all of them have to be there to find stable model.

I am sure that there are various ways ASSAT and other systems based on the idea of
loop formulas can be viewed. For me ASSAT and cmodels are examples of the approach
that has been successful in many other areas, namely so-called Satisfiability modulo the-
ories (SMT) where a back-end SAT engine is used as a generator and enumerator for
candidate assignment. In this approach (very successful in a variety of applications
in electronic design automation [NOTO04], but also in other areas, for instance Lintao
Zhang and Ilya Mironov SAT attack on hash function collisions), a propositional theory
generating some assignments is used to assist the programmer in systematic search for
solution. The domain specific engine (in this case checker that tests if the assignment
indeed a stable model) is used as a front-end. Thus, SAT is used as a back-end enu-
merator, and (possibly optimized) checker is used as the front-end, neatly tying ASP to
SAT.

May be it is just a sign of times, but a new thing in this period was the appearance
of ASP competition and a benchmarking environment Asparagus. It looks like it is no
longer possible to talk about solving without actually solving it.

The pioneering work of Niemeld resulted in extending ASP to the context where
constructs such as cardinality constraints and weight constraints can be used within the
programs. This extended significantly the conciseness of knowledge representation with
ASP and should result in better usability of the ASP in practice. We need new types of
constraints that can be added to stable semantics to facilitate the tasks of programmers.

3 Where to from here

There is, as of now, very little commercial development of ASP. The system closest
to the use as a non-academic, “for-profit” software is, clearly, d1v (of course I may
not be aware of all that is available). There are several reasons for this situation. In my
mind, the most important issue is the lack of easy explanation of stable semantics to a
“programmer from the street”. While the Computer Engineering students can (and even
often are) taught about SAT, I suspect that it would be quite difficult to explain to a gen-
eral audience the semantics of logic programs. I tried this in the past, and failed (below
Ph.D. students’ level, of course). There are many equivalent descriptions of stable se-
mantics (viz. recent text by Lifschitz [Li08]), but we should somehow make it explain-
able on undergraduate, or beginning graduate level. It is even more difficult to explain
disjunctive logic programming (or am I just inept?). This, in my mind, is the most im-
portant stumbling block for applicability of ASP in electronic design automation, the
area driving progress in SAT. This is an important issue: once the initial investment in
understanding stable semantics is made, the advantages of stable semantics are obvious.
To give one example (due to Mirek) implementing Cannibals and Missionaries puzzle in
ASP is easy; doing it directly with SAT is unpleasant. That is knowledge representation
with ASP is much easier, and we should take advantage of this phenomenon.

The question of software engineering for ASP still needs answers and tools. There
were meetings and papers, but we still are far away from production-level environments,

or even understanding what are those problems that software engineering is supposed
to handle in this area.

Another problem is the working with databases. The d1v system is a nice excep-
tion; for a number of years now they paid attention to the issues of getting data from and
to databases. It is not difficult, and in principle ASP systems can even simulate SQL,
but, of course this should not be done, database systems do this better.

Yet another issue is the availability of data types. I do not mean only the basic issues
such as availability of string manipulation (important with database applications) but it
is possible to define type systems over user defined types (as done within extensional
database). As long as reasonable limitations are imposed (for instance length of avail-
able lists is specified) this can be done. To the best of my knowledge such constructs
were not studied in the ASP context. But may be I am a pessimist here. Adding XML
constructs (as suggested by Thomas Eiter in his work on Semantic Web) may do the
same thing.

In recent years there was a lot of work on various forms of equivalence of programs.
This clearly has a software engineering flavor (like does my subroutine always do the
same thing as your subroutine). In my mind, however strong equivalence is something
else. Namely, it attempts to find a correct logic for stable logic semantics (and more gen-
erally, disjunctive logic programming). The connections of logics such as intuitionistic
logic and programs were observed early. The most amazing thing of strong equivalence
is the use of the maximal intermediate logic HT (Godel-Smetanich logic)[LPVOI]. It is
surprising that this logic appears in the context of software engineering of ASP. Whether
it really will take us somewhere beyond theoretical progress — remains to be seen.

As we progress with the theory of ASP we need a better bounds on both the number
of answer sets and on the bounds on time needed to find first solution [LT06].

The work of Niemelé on constraints [NSS99] were followed by many (myself and
Jeff Remmel included). But we still do not have a definitive account of the treatment of
constraints in ASP. It is, in fact quite important, as (in my view) successful implemen-
tation of those constraints resulted in the increased interest in some of these constraints
in SAT (of course 0-1 Integer Programming is another candidate for the source of this
influence).

Generally, since the very beginning (and this is the legacy of Logic Programming),
the importance of Knowledge Representation with ASP was of primary interest to all
of us. This is different from the attitude of the sister community, SAT, where these is-
sues were not so prominent (although, of course SAT planning is, primarily an issue
in knowledge representation). Several extensive articles and even a book [GL02,Ba03]
were devoted to this issue in ASP. This all needs to be seen in the major context men-
tioned at the beginning; the problems with explaining of ASP to the wider community
of potential users, especially in electronic design automation. It is not enough to use
ASP (say for model checking, [TT07]), the issue is to convince others to use it. For that
reason, for instance d1v offers a front-end which uses the solver as a back-end engine.

Time for conclusions. As is clear from my presentation, I believe that a simpler,
clearer, less technical descriptions of ASP must be found. Being by nature an optimist,
I believe that they will be found. The elegance of knowledge representation with ASP
will then open the possibility of a wider use of ASP. I also believe that one way or

another we are bound to get closer with SAT community. Signs of this phenomenon are
already seen. So, I do not know how the celebrations of the 40th anniversary of stable
semantics of logic programs will look like. But I am sure there will be a lot to celebrate.

References

[Ba03]
[Gel87]

[GL8S]

[GLO02]

[Li08]
[LPVO1]

[LRO6]
[LZ04]
[LT06]
[MT93]

[MT99]

[Nie99]
[NSS99]
[NOTO04]

[TTO7]

Baral, C., Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press, 2003.

Gelfond, M. On stratified autoepistemic theories. Proceedings of AAAI 1987, pages
207-211, 1987.

Gelfond, M. and Lifschitz, V. The stable model semantics for logic programming.
In Proceedings. of the International Joint Conference and Symposium on Logic Pro-
gramming. MIT Press, 1070-1080, 1988.

Gelfond, M. and Leone, N. Logic Programming and Knowledge Representation — A-
Prolog perspective. Artificial Intelligence 138:3-38, 2002.

Lifschitz, V., Twelve Definitions of a Stable model. This volume.

Lifschitz, V., Pearce, D., and Valverde, A. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2:526-541, 2001.

Lifschitz, V., and Razborov, A., Why are there so many loop formulas? ACM Trans-
actions on Computational Logic 7:261-268, 2006.

Lin, F. and Zhao, Y. ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence Journal 157:115-137, 2004.

Lonc, Z. and Truszczynski, M., Computing minimal models, stable models and answer
sets. Theory and Practice of Logic Programming 6:395-449, 2006.

Marek, V.W., and Truszczynski, M.: Nonmonotonic Logic; Context-Dependent Rea-
soning. Springer, Berlin, 1993.

Marek, V. and Truszczyriski, M., Stable Models and an Alternative Logic Program-
ming Paradigm. The Logic Programming Paradigm, pp. 375-398. Series Atrtificial
Intelligence, Springer-Verlag, 1999.

Niemeld, I. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25:241-273, 1999
Niemeld, 1., Simons, P., and Soininen, T., Stable Model Semantics of Weight Con-
straint Rules. Proceedings of LPNMR 1999, pages 317-331, 1999.

Nieuwenhuis, R., Oliveras, A., and Tinelli, C., Abstract DPLL and Abstract DPLL
Modulo Theories. Proceedings of LPAR 2004, pages 36-50, 2004.

Tang, C. and Ternovska, E. Model Checking Abstract State Machines with Answer
Set Programming. Fundamenta Informaticae 77:105-141, 2007.

