On the continuity of Gelfond-Lifschitz operator and
other applications of proof-theory in ASP

V. W. Marek! and J.B. Remmel?

! Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046, USA
2 Department of Mathematics
University of California
La Jolla, CA 92093

Abstract. Using a characterization of stable models of logic programs P as sat-
isfying valuations of a suitably chosen propositional theory, called the set of re-
duced defining equations r® p, we show that the finitary character of that theory
r®p is equivalent to a certain continuity property of the Gelfond-Lifschitz oper-
ator GLp associated with the program P. The introduction of the formula r®p
leads to a double-backtracking algorithm for computation of stable models by re-
duction to satisfiability of suitably chosen propositional theories. This algorithm
does not use the reduction via loop-formulas as proposed in [LZ02] or its exten-
sion proposed in [FLLO6]. Finally, we discuss possible extensions of techniques
proposed in this paper to the context of cardinality constraints.

1 Introduction

The use of proof theory in logic based formalisms for constraint solving is pervasive.
For example, in Satisfiability (SAT), proof theoretic methods are used to find lower
bounds on complexity of various SAT algorithms. However, proof-theoretic methods
have not played as prominent role in Answer Set Programming (ASP) formalisms.
This is not to say that there were no attempts to apply proof-theoretic methods in
ASP. To give a few examples, Marek and Truszczynski in [MT93] used the proof-
theoretic methods to characterize Reiter’s extensions in Default Logic (and thus stable
semantics of logic programs). Bonatti [Bo04] and separately Milnikel [Mi05] devised
non-monotonic proof systems to study skeptical consequences of programs and default
theories. Lifschitz [Li96] used proof-theoretic methods to approximate well-founded
semantics of logic programs. Bondarenko et.al. [BTK93] studied an approach to stable
semantics using methods with a clear proof-theoretic flavor. Marek, Nerode, and Rem-
mel in a series of papers, [MNR90a,MNR90b,MNR91,MNR92, MNR94a,MNR94b],
developed proof theoretic methods to study what they termed non-monotonic rule sys-
tems which have as special cases almost all ASP formalisms that have been seriously

studied in the literature. Recently the area of proof systems for ASP (and more gener-
ally, nonmonotonic logics) received a lot of attention [GS07,JO07]. It is clear that the
community feels that an additional attention to these area is necessary. Nevertheless,
there is no clear classification of proof systems for nonmonotonic reasoning analogous
to those in classical logic and SAT, in particular.

In this paper, we define a notion of P-proof schemes, which is a kind of a proof system
that was previously used by Marek, Nerode, and Remmel to study complexity issues
for stable semantics of logic programs [MNR94a]. This proof system abstracts of M-
proofs of [MT93] and produces Hilbert-style proofs. The nonmonotonic character of
our P-proofs is provided by the presence of guards, called the support of the proof
scheme, to insure context-dependence. A different but equivalent, presentation of proof
schemes, using a guarded resolution is also possible.

We shall show that we can use P-proof schemes to find a characterization of stable
models via reduced defining equations. While in general these defining equations may
be infinite, we study the case of programs for which all these equations are finite. This
resulting class of programs, called FSP-programs, turns out to be characterized by a
form of continuity of the Gelfond-Lifschitz operator.

Contributions of the paper

The contributions of this paper consist, primarily, of investigations that elucidate the
proof-theoretical character of the stable semantics for logic programs, an area with 20
years history [GL88]. The two principal results of this paper are the following.

1. We show that the Gelfond-Lifschitz operator GLp is, in fact, a proof-theoretical
construct (Proposition 7).

2. Given (1), we show that the upper-half continuity of that operator is equivalent to
finiteness of (propositional) formulas in a certain class associated with the program
P (Proposition 10).

These two results hold for arbitrary programs. A third contribution of this paper which
is in a somewhat different direction from our, first two results, is to show that in case
of the finite programs P, we can use our proof theory techniques to construct a class
of theories C'p, which we call the set of candidate theories associated with P, with the
following properties: (i) the theories in C'p are of size linear in P, (ii) the propositional
models of any 7' € Cp are stable models of P, and (iii) for every stable model M of P,
there is ' € C'p such that M is a model of 7. Thus we can find stable models of P by
using SAT solvers to find models of 7' € C'p. This result shows how the exponential size
of completion of P with loop formulas [LZ02] can be traded for exponential number of
linear-size propositional theories.

The outline of this paper is as follows. In section 2, we provide the necessary back-
ground on logic programs and stable models to present our results. In section 3, we
introduce P-proof schemes and the reduced defining equations for a logic program P
as well as certain associated equivalence theorems. In section 4, we discuss the con-
tinuity properties of operators. In section 5, we introduce an algorithm (and establish
its correctness) for stable model computation that follows from the techniques outlined

in earlier sections. In Section 6 we extend our techniques to the context of programs
with cardinality constraints. Finally in Section 7, we have provide some conclusions
and directions for future work.

2 Preliminaries

Let At be a countably infinite set of atoms. We will study programs consisting of clauses
built of the atoms from At. A program clause C'is a string of the form

P—dq1,---yqm, T1,...,Tp (l)

The integers m or n or both can be 0. The atom p will be called the head of C' and
denoted head(C). We let PosBody(C) denote the set {q1,. .., qm} and NegBody(C)
denote the set {ry,...,r,}. For any set of atoms X, we let =X denote the conjunction
of negations of atoms from X. Thus, we can write clause (1) as

head(C') «— Posbody(C), ~negBody(C).

Let us stress that the set NegBody(C') is a set of atoms, not a set of negated atoms as
is sometimes used in the literature. A normal propositional program is a set P of such
clauses. For any M C At, we say that M is model of C' if whenever q1,...,¢, € M
and {ry,...,rp,} N M = 0, then p € M. We say that M is a model of a program
P if M is a model of each clause C' € P. Horn clauses are clauses with no negated
literals, i.e. clauses of the form (1) where n = 0. We will denote by Horn(P) the part
of the program P consisting of its Horn clauses. Horn programs are logic programs P
consisting entirely of Horn clauses. Thus for a Horn program P, P = Horn(P).

Each Horn program P has a least model in the Herbrand base and the least model of
P is the least fixed point of a continuous operator 7' representing 1-step Horn clause
logic deduction ([L89]). That is, for any set I C At, we let Tp(I) equal the set of all
p € At such that there is a clause C = p «— q1,...,¢n in P and ¢1,...,q, € I.
Then Tp has a least fixed point F'p which is obtained by iterating Tp starting at the
empty set for w steps, i.e., Fp = |, c,, T5(0) where for any I C At, TR(I) = I and
TEHY(I) = Tp(TR(I)). Then Fp is the least model of P.

The semantics of interest for us is the stable semantics of normal programs, although
we will discuss some extensions in Section 5. The stable models of a program P are
defined as fixed points of the operator T'p pr. This operator is defined on the set of all
subsets of At, P(At). If P is a program and M C At is a subset of the Herbrand base,
define operator Tp 5 : P(At) — P(At) as follows:

Tpar(I) = {p: there exist aclause C =p «— q1,..., ¢m, T1,..., Ty
in P suchthatq, €1,...,¢gn € I,r1 ¢ M,...,1, ¢ M}

The following is immediate, see [Ap90] for unexplained notions.

Proposition 1. For every program P and every set M of atoms the operator T'p ps is
monotone and continuous.

Thus the operator T'p, 57 like all monotonic continuous operators, possesses a least fixed
point F'p 7.

Given program P and M C At, we define the Gelfond-Lifschitz reduct of P, Py,
as follows. For every clause C' = p «— q1,...,qm, T1,..., 1y of P, execute the
following operations.

(1) If some atom r;, 1 < ¢ < n, belongs to M, then eliminate C' altogether.

(2) In the remaining clauses that have not been eliminated by operation (1), eliminate
all the negated atoms.

The resulting program Py is a Horn propositional program. The program P, possesses
a least Herbrand model. If that least model of P,; coincides with M, then M is called
a stable model for P. This gives rise to an operator GLp which associates to each
M C At, the least fixed point of T'p ;. We will discuss the operator GLp and its
proof-theoretic connections in section 4.2.

3 Proof schemes and reduced defining equations

In this section we recall the notion of a proof scheme as defined in [MNR90a,MT93]
and introduce a related notion of defining equations.

Given a propositional logic program P, a proof scheme is defined by induction on its
length. Specifically, a proof scheme w.r.t. P (in short P-proof scheme) is a sequence
S = {(C1,p1),--.,{Cn,pn),U) subject to the following conditions:

(I when n = 1, ({(Cq,p1),U) is a P-proof scheme if C; € P, py = head(C1),
PosBody(Cy) = 0, and U = NegBody(C1) and

(1) when ((C1,p1),...,{Cpn,pn),U) is a P-proof scheme,

C = p «+ PosBody(C),~NegBody(C) is a clause in the program P, and PosBody(C) C
{p1,...,pn} then

<<Cl7p1>7 sy <Cnapn>7 <C,p>, Uu NegBOdy(C)>

is a P-proof scheme.

When S = ((Cy,p1),...,{(Cn,pn),U) is a P-proof scheme, then we call (i) the integer
n — the length of S, (ii) the set U — the support of S, and (iii) the atom p,, — the
conclusion of S. We denote U by supp(.S9).

Example 1. Let P be a program consisting of four clauses: C1, = p «—, Cy = q «—
p,—r, C3 =1 «— —¢q,and Cy = s « —t. Then we have the following examples of
P-proof schemes:

() {((C1,p), D) is a P-proof scheme of length 1 with conclusion p and empty support.

(b) ((Cy,p),(Ca,q),{r}) is a P-proof scheme of length 2 with conclusion ¢ and sup-
port {r}.

(©) {{(C1,p),{(C3,7),{q}) is a P-proof scheme of length 2 with conclusion r and sup-
port {q}.

@ ((C1,p),(Cq,q),(Cs,7r),{q,r}) is a P-proof scheme of length 3 with conclusion
r and support {g,7}.

Proof scheme in (c) is an example of a proof scheme with unnecessary items (the first
term). Proof scheme (d) is an example of a proof scheme which is not internally con-
sistent in that r is in the support of its proof scheme and is also its conclusion. a

A P-proof scheme carries within itself its own applicability condition. In effect, a P-
proof scheme is a conditional proof of its conclusion. It becomes applicable when all
the constraints collected in the support are satisfied. Formally, for any set of atoms M,
we say that a P-proof scheme S is M-applicable if M N supp(S) = (). We also say
that M admits S if S is M -applicable.

The fundamental connection between proof schemes and stable models [MNR90a,MT93]
is given by the following proposition.

Proposition 2. For every normal propositional program P and every set M of atoms,
M is a stable model of P if and only if the following conditions hold.

(i) For every p € M, there is a P-proof scheme S with conclusion p such that M
admits S.

(ii) For every p ¢ M, there is no P-proof scheme S with conclusion p such that M
admits S.

Proposition 2 says that the presence and absence of the atom p in a stable model depends
only on the supports of proof schemes. This fact naturally leads to a characterization
of stable models in terms of propositional satisfiability. Given p € At, the defining
equation for p w.r.t. P is the following propositional formula:

p<:>(—'U1\/—|U2\/...) 2)

where (U1, Us, .. .) is the list of all supports of P-proof schemes with conclusion p.
Here for any finite set S = {s1, ..., s, } of atoms, =S = =1 A+ -+ A—s,. If p is not the
conclusion of any proof scheme, then we set the defining equation of p tobe p < L.
Also, in the case where all the supports of proof schemes of p are empty, we set the
defining equation of p to be p < T. Up to a total ordering of the finite sets of atoms such
a formula is unique. For example, suppose we fix a total order on At, p; < po < ---.
Then given two sets of atoms, U = {u; < - < uptand V = {v; < --- < v,}, we
say that U < V, if either (i) u,, < vy, (ii) U, = v, and m < n, or (iii) u, = vy,
n =m,and (uq,...,u,) is lexicographically less than (v1, ..., v,). We say that (2) is
the defining equation for p relative to P if U; < Uy < ---. We will denote the defining
equation for p with respect to P by qu .
For example, if P is a Horn program, then for every atom p, either the support of all its
proof schemes are empty or p is not the conclusion of any proof scheme. The first of
these alternatives occurs when p belongs to the least model of P, im(P). The second
alternative occurs when p ¢ Im(P). The defining equations are p < T (that is p) when
p € Im(P) and p & L (thatis —p) when p ¢ Im(P). When P is a stratified program
the defining equations are more complex, but the resulting theory is logically equivalent
to

{p:pe PerfptU{-p:p¢ Perfp}
where Perf p is the unique stable model of P.
Let @p be the set {qu : p € At}. We then have the following consequence of Propo-
sition 2.

Proposition 3. Let P be a normal propositional program. Then stable models of P are
precisely the propositional models of the theory D p.

When P is purely negative, i.e. all clauses C of P have PosBody(C') = (), the stable and
supported models of P coincide [DK89] and the defining equations reduce to Clark’s
completion [C178] of P.

Let us observe that in general the propositional formulas on the right-hand-side of the
defining equations may be infinite.

Example 2. Let P be an infinite program consisting of clauses p « —p;, for all 7 € n.
In this case, the defining equation for p in P is infinite. That is, it is
pe (p1V-opaVopsV..)
O

The following observation is quite useful. If Uy, Us are two finite sets of propositional
atoms then

U1 - U2 if and only if —\U2 |: —\Ul
Here |= is the propositional consequence relation. The effect of this observation is that
not all the supports of proof schemes are important, only the inclusion-minimal ones.

Example 3. Let P be an infinite program consisting of clauses p < —py,..., —p;, for
all 7 € N. The defining equation for p in P is

P& [p1V (mp1 Ap2) V (mp1 Ap2 A—p3) VoL

which is infinite. But our observation above implies that this formula is equivalent to
the formula
P
O

Motivated by the Example 3, we define the reduced defining equation for p relative to
P to be the formula

p<:>(—|U1\/—|U2\/...) 3)
where U; range over inclusion-minimal supports of P-proof schemes for the atom p and
Uy < Uz < ---. Again, if p is not the conclusion of any proof scheme, then we set the

defining equation of p to be p < _L. In the case, where there is a proof scheme of p
with empty support, then we set the defining equation of p to be p < T. We denote this
formula as rEqII: , and define r® p to be the theory consisting of rqu for all p € At.
We then have the following strengthening of Proposition 3.

Proposition 4. Let P be a normal propositional program. Then stable models of P are
precisely the propositional models of the theory r®p.

In our Example 3, the theory @ p involved formulas with infinite disjunctions, but the
theory r®p contains only usual finite propositions.

Given a normal propositional program P, we say that P is a finite support program
(FSP-program) if all the reduced defining equations for atoms with respect to P are
finite propositional formulas. Equivalently, a program P is an FSP-program if for every
atom p, there are only finitely many inclusion-minimal supports of P-proof schemes
for p.

4 Continuity properties of operators and proof schemes

In this section we investigate continuity properties of operators and we will see that one
of those properties characterizes the class of FSP programs.

4.1 Continuity properties of monotone and antimonotone operators

Let us recall that P(At) denotes the set of all subsets of A¢. We say that any function
O : P(At) — P(At) is an operator on the set At of propositional atoms. An operator
O is monotone if for all sets X, Y C At, X C Y implies O(X) C O(Y'). Likewise an
operator O is antimonotone if for all sets X, Y C At, X C Y implies O(Y) C O(X).
For a sequence (X,)nen Of sets of atoms, we say that (X,),cn is monotonically
increasing if for all 4,j € N, i < j implies X; C X, and we say that (X,,)pen is
monotonically decreasing if for all 4, j € N, ¢ < j implies X; C X;.

There are four distinct classes of operators that we shall consider in this paper. First,
we shall consider two types of monotone operators, upper-half continuous monotone
operators and lower-half continuous monotone operators. That is, we say that a mono-
tone operator O is upper-half continuous if for every monotonically increasing se-
quence (X)nen, O(Uneny Xn) = Upen O(Xy). We say that a monotone operator
O is lower-half continuous if for every monotonically decreasing sequence (X,)nen,
O(Npen Xn) = Nypen O(Xy). In the Logic Programming literature the first of these
properties is called continuity. The classic result due to van Emden and Kowalski is the
following.

Proposition 5. For every Horn program P, the operator Tp is upper-half continuous.

In general, the operator Tp for Horn programs is not lower-half continuous. For ex-
ample, let P be the program consisting of the clauses p < p; for ¢ € N. Then the
operator Tp is not lower-half continuous. That is, if X; = {p;, pi+1,. ..}, then clearly
p € Tp(X;) for all i. However, (), X; = 0 and p & Tp(0).
Lower-half continuous monotone operators have appeared in the Logic Programming
literature [Do94]. Even more generally, for a monotone operator O, let us define its dual
operator O? as follows:

O%(X) = At \ O(At\ X).
Then an operator O is upper-half continuous if and only if O? is lower-half continuous
[JT51]. Therefore, for any Horn program P, the operator T'¢ is lower-half continuous.
For antimonotone operators, we have two additional notions of continuity. We say that
an antimonotone operator O is upper-half continuous if for every monotonically in-
creasing sequence (X,)nen, O(U,eny Xn) = Npeny O(Xy). Similarly, we say an
antimonotone operator O is lower-half continuous if for every monotonically decreas-
ing sequence (X,,)nen, O(N,en Xn) = Upen O(Xn).

4.2 Gelfond-Lifschitz operator GLp and proof-schemes

For the completeness sake, let us recall that the Gelfond-Lifschitz operator for a pro-
gram P, which we denote G Lp, assigns to a set of atoms M the least fixpoint of the
operator Tp s or, equivalently, the least model Ny, of the program P which is the
Gelfond-Lifschitz reduct of P via M [GL88]. The following fact is crucial.

Proposition 6 ([GL88]). The operator GL is antimonotone.

Here is a useful proof-theoretic characterization of the operator GLp.

Proposition 7. Let P be a normal propositional program and M be a set of atoms.
Then

GLp(M) = {p: there exists a P-proof scheme S such that M admits S,

and p is the conclusion of S'}

4.3 Continuity properties of the operator GLp

In this subsection, we state our results on the continuity properties of the operator GLp.
First, it is easy to prove that for every program P, the operator GLp is lower-half
continuous. Moreover, we can prove that if f is a lower-half continuous antimonotone
operator, then f = GLp for a suitably chosen program P. Finally, we can prove that
the operator GLp is upper-half continuous if and only if P is an F'SP-program. That is,
GLp is upper-half continuous if for all atoms p the reduced defining equation for any p
(w.r.t. P) is finite. Thus we have the following results.

Proposition 8. For every normal program P, the operator GLp is lower-half continu-
ous.

The lower-half continuity of antimonotone operators is closely related to programs, as
shown in the following result.

Proposition 9. Let At be a denumerable set of atoms. Let [be an antimonotone and

lower-half continuous operator on P(At). Then there exists a normal logic program P
such that f = GLp.

We are now ready to state one of the main result of this paper.

Proposition 10. Let P be a normal propositional program. The following are equiva-
lent:

(a) P is an FSP-program.
(b) The operator GLp is upper-half continuous, i.e.

GLp(|J Xu) =) GLp(X,)

neN neN

Sfor every monotonically increasing sequence (X,)nen-

5 Computing stable models via satisfiability, but without loop
formulas or defining equations

Proposition 3 characterized the stable models of a propositional program in terms of the
collection of all propositional valuations of the underlying set of atoms. In this section,
we give an alternative characterization in terms of the models of P, only. The proof of
this characterization uses Proposition 3, but relates stable models of finite propositional
programs P to models of theories of size O(|P|). This is in contrast to Proposition 3
since the set of defining equations is, in general, of size exponential in | P|.

A subequation for an atom p is either a formula —p or a formula

p<s oS

where S is a support of a proof scheme for p. Here if S = (), then by convention
we interpret p < —S to be simply the atom p. The idea is that a subequation either
asserts absence of the atom p in the putative stable model or provides the reason for
the presence of p in the putative stable model. A candidate theory for program P is
the union of P and a set of subequations, one for each p € At. Cp is the class of all
candidate theories for the program P.

The key to our algorithm is the following result.

Proposition 11. 1. Let T € Cp. If T is consistent, then every propositional model of
T is a stable model for P.
2. For every stable model M of P, there is a theory T' € Cp such that M is a model
forT.

Proposition 11, similarly to [LZ02] characterizes stable models of logic programs via
propositional satisfiability, except that theories are smaller.

Next we give an example of our approach to reducing the computation of stable models
to satisfiability of propositional theories. It will be clear from this example that our
approach avoids having to compute the completion of the program and thus significantly
reduces the size of the input theories.

Example 4. Let P be a propositional program as follows:

p<—1,7q
p(—ﬁ’r‘
q(——\S

t «—

Let us observe that the atom p has two supports of minimal proof schemes: {¢} and
{r}. The atom ¢ has just one support: {s}, the atom ¢ has a single support - the empty
set. The atoms r and s have no support at all.

Thus there are three subequations for p:

p<=q
P&
-p

Now, ¢ has just two subequations: ¢ < —s, and —q, t has also two subequations, ¢ and
—it, but this second one leads to contradiction whenever chosen. Finally each of 7 and s
have just one defining equation, —r, and —s, respectively.

First let us choose for p, the subequation —p, and for ¢, the subequation ¢ < —s.
The remaining subequations are forced to ¢, —r, and —s. The resulting theory has nine
clauses, when we write our program in propositional form:

S ={-p,-r,—s,t,g& —stU{-tVpVgq,rVpsVaqt}.

It is quite obvious that this theory is inconsistent. However, if we choose for p, the
subequation p < —r and for g, the subequation ¢ < —s, then the resulting theory
written out in propositional form is

S={pe -wr,r-stqgs-stU{tVpVqgrVp,sVagt}
In this case, {p, ¢, ¢} is a model of S and hence, {p, q,t} is a stable model of P. O

Let us observe that our discussion above implies an algorithm for computing stable
models. In this algorithm, we fix an order of propositional variables (atoms) and we

1. systematically generate proof-schemes for atoms,
2. then generate subequations (one per each atom), and
3. then submit the resulting theories to a SAT solver.

The algorithm described above can be implemented as a two-tier backtracking search,
with the on-line computation of supports of proof schemes using resolution to collect
the negative information derived from clauses, and the usual backtracking scheme of
DPLL. This second backtracking can be implemented using any DPLL-based SAT-
solver. Proposition 11 implies that the algorithm we outlined is both sound and com-
plete. Indeed, if the SAT solver returns a model M of a theory T, then M is a stable
model of P by Proposition 11(1). Otherwise we generate another candidate theory and
loop through this process until one satisfying assignment is found. Proposition 11(2)
guarantees the completeness of our algorithm.

Our algorithm is not using loop formulas like the algorithms of Lin and Zhao [LZ02] or
Giunchiglia, Lierare and Maratea [GLMO6], but systematically searches for supports of
proof schemes, thus providing supports for atoms in the putative model. It also differs
from the modified loop formulas approach of Ferraris, Lee and Lifschitz [FLLO6] in
that we do not consider loops of the call-graph of P at all. Instead, we compute system-
atically proof schemes and their supports for atoms. While the time-complexity of our
algorithm is significant, the space complexity is O(| P|). This is the effect of not looking
at loop formulas at all ([LR06]). The issue of the feasibility of practical implementation
of the above algorithm is not clear at the time of writing of this paper.

6 Extensions to C'C-programs

In [SNS02] Niemeld and coauthors defined a significant extension of logic program-
ming with stable semantics which allows for programming with cardinality constraints,

and, more generally, with weight constraints. This extension has been further studied
in [MRO4,MNTO08]. To keep things simple, we will limit our discussion to cardinality
constraints only, although it is possible to extend our arguments to any class of con-
vex constraints [LTO05]. Cardinality constraints are expressions of the form [X u, where
l,u € N,l < wuand X is a finite set of atoms. The semantics of an atom [X u is that
a set of atoms M satisfies [Xu if and only if | < |M N X| < w. When ! = 0, we do
not write it, and, likewise, when « > | X |, we omit it, too. Thus an atom p has the same
meaning as 1{p} while —p has the same meaning as {p}0.

The stable semantics for C'C-programs is defined via fixpoints of an analogue of the
Gelfond-Lifschitz operator G L p; see the details in [SNS02] and [MR04]. The operator
in question is neither monotone nor antimonotone. But when we limit our attention to
the programs P where clauses have the property that the head consists of a single atom
(i.e. are of the form 1{p}), then one can define an operator CCGLp which is antimono-
tone and whose fixpoints are stable models of P. This is done as follows.

Given a clause C'
P~ l1X1u17 o 7lmeum?

we transform it into the clause
p<_lle,...,lme,Xl'U/l,...,Xmum (4)

[MNTO8]. We say that a clause C' of the form (4) is a CC-Horn clause if it is of the
form
pe—hX1,. .l Xm. (5)

A CC-Horn program is a C'C-program all of whose clauses are of the form (5). If P
is a CC-Horn program, we can define the analogue of the one step provability operator
T'p by defining that for a set of atom M,

Tp(M) = {p: (3C =p — 1X1, ..., lnXm)(¥i € {1,...m}(X;AM]| > 1;)} (©6)

It is easy to see that T'» is monotone operator and the least fixed point of T’p is given by

Up(Te) = |J TEO). @

n>0

We can define the analogue of the Gelfond-Lifschitz reduct of a CC-program, which we
call the NSS-reduct of P, as follows. Let P denote the set of all transformed clauses
derived from P. Given a set of atoms M, we eliminate from P those clauses where
some upper-constraint (X;u;) is not satisfied by M, i.e. [MNX;| > w;. In the remaining
clauses, the constraints of the form X;u; are eliminated altogether. This leaves us with a
CC-Horn program Py;. We then define CCGLp(M) to be the least fixed point of Tp,,
and say that M is a C'C'-stable model if M is a model of P and M = CCGLp(M). The
equivalence of this construction and the original construction in [SNS02] for normal
C'C-programs is shown in [MNTO8].

Next we define the analogues of P-proof schemes for normal C'C-programs, i.e. pro-
grams which consists entirely of clauses of the form (4). This is done by induction as
follows. When

C=p— Xjuy,..., Xpug

is a normal C'C'-clause without the cardinality-constraints of the form /; X; then

(C,p), {X1u, ..., Xpur})
is a P-CC-proof scheme with support { X uy, ..., Xpug}. Likewise, when

S={C1,p1),---,{Cn,pn),U)
is a P-CC-proof scheme,
p—01X1, X, Xau1, ., Xintm,
isaclausein P, and | X1 N {p1,...,pn}l = U, o | Xin N {P1, -, Pn}| = L, then

<<Cl,p1>, ERE <Cn7pn>7 <C7p>, vu {Xlulv cee 7Xmum}>

is a P-CC-proof scheme with support U U {Xqu1, ... XU, }. The notion of admit-
tance of a P- C'C'-proof scheme is similar to the notion of admittance of P-proof scheme
for normal programs P. That is, if S = ((C1,p1),...,{Cpn,pn), (C,p),U) is a CC-
proof scheme with support U = {Xjuy,...X,uy}, then S is admitted by M if for
every X;u; € U, M E X;uy, ie. M NX;| < u,.

Similarly, we can associate a propositional formula ¢ so that M admits S if and only
if M |= ¢y as follows:

w=N NV W ®)

=1 WX, |W|=|Xi|—u;

Then we can define a partial ordering on the set of possible supports of proof scheme
by defining U; < Us <= ¢y, = ¢u,. For example if U; = ({1,2,3}2,{4,5,6}2)
and Us = ({1,2,3,4,5,6},4), then

b, = (-1V =2V 3) A (=4 V=5V —6)
dv, =\ (HiA—).
1<i<j<6

Then clearly ¢y, = ¢y, so that Us < U;. We then define a normal propositional
CC-program to be a FPS CC-program if for each p € At, there are finitely many
=<-minimal supports of P-CC-proof schemes with conclusion p.
We can also define analogue of the defining equation C Cqu of p relative to a normal
CC-program P as

pe (bv, Vou, V) ©)
where (Uy, Us, .. .) is a list of supports of all P-CC-proofs schemes with conclusion p.
Again up to a total ordering of possible finite supports, this formula is unique. Let $p
be the set {C’C’qu : p € At}. Similarly, we define the reduced defining equation for
p relative to P to be the formula

< (mpu, V -y, V...) (10)

where U; range over <-minimal supports of P-CC-proof schemes for the atom p.
Then we have the following analogues of Propositions 2 and 3.

Proposition 12. For every normal propositional CC-program P and every set M of
atoms, M is a CC-stable model of P if and only if the following two conditions hold:

(i) for every p € M, there is a P-CC-proof scheme S with conclusion p such that M
admits S and

(ii) foreveryp ¢ M, there is no P-CC-proof scheme S with conclusion p such that M
admits S.

Proposition 13. Let P be a normal propositional CC-program. Then CC'-stable mod-
els of P are precisely the propositional models of the theory @ p.

We also can prove the analogues of Propositions 6 and 7.
Proposition 14. For any CC-program P, the operator CCGLp is antimonotone.

Proposition 15. Let P be a normal propositional CC-program and M be a set of
atoms. Then

CCGLp(M) = {p: there exists a P-proof scheme S such that M admits S,

and p is the conclusion of S}
We can also prove that analogue of Proposition 8.

Proposition 16. For every normal CC-program P, the operator CCGLp is lower-half
continuous.

However, we can only prove the analogue of the first half of Proposition 10.

Proposition 17. Let P be a normal propositional CC-program. Then if P is an FSP-
program, the operator CCGLp is upper-half continuous, i.e.

CCGLp(|) Xn) = (] CCGLp(X,)

neN neN
for every monotonically increasing sequence (X)) nen-.

We note that, alternatively, one can easily give a direct reduction of our C'C-programs
to normal logic programs using the methods of [FLO5] and the distributivity result for
disjunctions in the bodies of clauses of [LTT99]. Such reductions, of course, lead to an
exponential blow up in the size of the representation.

7 Conclusions

In this paper, we have explored the applications of P-proof schemes. We have shown
that the Gelfond-Lifschitz operator G L p is upper-half continuous if and only if for each
atom p, there are only finitely many minimal supports of P-proof schemes for p. We
also show how we can use P-proofs schemes to associate a natural defining equation
for each atom of p and how we can use proof schemes to generate candidate theories

whose propositional models correspond to stable models. This leads to an algorithm for
finding stable models where we submit candidate theories to SAT solvers.

We note that the investigations of proof systems in a related area, SAT, have played a
key role in establishing lower bounds on the complexity of algorithms for finding the
models. We wonder if there are analogous results in ASP. In particular, are there proof
systems for ASP that can be used to develop a deeper understanding of the complexity
issues related to finding stable models? The P-proof schemes described in this paper
represent one possible candidate of such a proof system for ASP.

Acknowledgments

This research of the first author was supported by the National Science Foundation
under Grant IIS-0325063. This research of the second author was supported by the
National Science Foundation under Grant DMS 0654060.

References

[Ap90] Apt, K.. Logic programming, In: J. van Leeuven, ed, Handbook of Theoretical
Computer Science, pages 493-574, MIT Press, 1990.

[Bo04] Bonatti, P.A. Reasoning with infinite stable models. Artificial Intelligence 156:75—
111, 2004.

[BTK93] Bondarenko, A., Toni, F. and Kowalski, R.A., An Assumption-Based Framework for
Non-Monotonic Reasoning. Proceedings of LPNMR-93, MIT Press, pages 171-189,
1993.

[CI78] Clark, K. Negation as failure. In Logic and data bases, H. Gallaire and J. Minker,
Eds. Plenum Press, pages 293-322, 1978.

[DP92] Davey, B.A., and Priestley, H.A., Introduction to Lattices and Order, Cambridge
University Press, 1992.

[DK89] Dung, P.M. and Kanchanasut, K., On the generalized predicate completion of non-
Horn programs, Logic programming. Proceedings of the North American Confer-

ence, 1989.
[D094] Doets, K., From Logic to Logic Programming, MIT Press, 1994.
[FLOS5] Ferraris, P., and Lifschitz, V., Weight constraints as nested expressions, Theory and

Practice of Logic Programming, 5:45-74, 2005.

[FLLO6] Ferraris, P, Lee, J. and Lifschitz, V. A generalization of Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47:79-101, 2006.

[GS07] Gebser, M. and Schaub, T., Generic Tableaux for Answer Set Programming, Pro-
ceedings of International Conference on Logic Programming, 2007 pages 119-133,
2007.

[GLS88] Gelfond, M. and Lifschitz, V. The stable model semantics for logic programming.
In Proceedings. of the International Joint Conference and Symposium on Logic Pro-
gramming, pages 10701080, 1988.

[GLMO6] Giunchiglia, E., Lierler, Y., and Maratea, M. Answer Set Programming Based on
Propositional Satisfiability, Journal of Automated Reasoning 36:345-377, 2006.

[JOO07] Jarvisalo, M. and Oikarinen, E., Extended ASP Tableaux and Rule Redundancy in
Normal Logic Programs, Proceedings of International Conference on Logic Pro-
gramming, 2007 pages 134—-148, 2007.

[JT51]

[LTOS]

[Li96]
[LRO6]
[LTT99]
[LZ02]

[L89]
[MNR90a]

[MNROOb]

[MNR91]

[MNR92]
[MNR94a]

[MNR94b]

[MNR94]

[MNTOS]

[MRO4]

[MT93]

[Mi05]

[SNS02]

Jonsson, B. and Tarski, A. Boolean Algebras with Operators. American Journal of
Mathematics 73:891-939, 1951.

Liu, L. and Truszczynski, M., Properties of programs with monotone and convex
constraints, Proceedings of the 20th National Conference on Artificial Intelligence,
pages 701-706, 2005.

Lifschitz, V., Foundations of logic programming, in Principles of Knowledge Rep-
resentation, CSLI Publications, pages 69-127, 1996.

V. Lifschitz and A. Razborov. Why are there so many loop formulas. Annals of
Mathematics and Artificial Intelligence 7:261-268, 2006.

V. Lifschitz, L. R. Tang and H. Turner. Nested expressions in logic programs, Annals
of Mathematics and Artificial Intelligence, 25:369-389, 1999.

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT
solvers. Proceedings of AAAI 2002, pages 112-117. 2002

J. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1989.

Marek, W., Nerode, A., and Remmel, J.B., Nonmonotonic Rule Systems 1. Annals
of Mathematics and Artificial Intelligence, 1:241-273, 1990.

Marek, W., Nerode, A., and Remmel, J.B., Nonmonotonic Rule Systems II. Annals
of Mathematics and Artificial Intelligence, 5:229-264, 1992.

Marek, W., Nerode, A., and Remmel, J.B., A Context for Belief Revision: Normal
Logic Programs (Extended Abstract) Proceedings, Workshop on Defeasible Rea-
soning and Constraint Solving, International Logic Programming Symposium, San
Diego, CA., 1991.

Marek, W., Nerode, A., and Remmel, J.B., How Complicated is the Set of Stable
Models of a Logic Program? Annals of Pure and Applied Logic, 56:119-136, 1992.
Marek, W., Nerode, A., and Remmel, J.B., The stable models of predicate logic
programs. Journal of Logic Programming 21:129-154, 1994.

Marek, W., Nerode, A., and Remmel, J.B., Context for belief revision: Forward
chaining-normal nonmonotonic rule systems, Annals of Pure and Applied Logic
67:269-324, 1994.

Marek, W., Nerode, A., and Remmel, J.B., The stable models of predicate logic
programs. Journal of Logic Programming 21:129-154, 1994.

Marek, V.W., Niemeld, 1. and Truszczynski, M. Logic programs with monotone
abstract constraint atoms, Theory and Practice of Logic Programming 8:167-199,
2008.

Marek, V.W. and Remmel, J.B. 2004. Set Constraints in Logic Programming. In
Logic Programming and Nonmonotonic Reasoning, Proceedings of the 7th Interna-
tional Conference (LPNMR-04). LNAI 2923, pages 154167, Springer-Verlag, 2004.
Marek, W. and Truszczyniski, M. Nonmonotonic Logic, Springer-Verlag, Berlin,
1993.

Milnikel, R.S., Sequent Calculi for Skeptical Reasoning in Predicate Default Logic
and Other Nonmonotonic Systems, Annals of Mathematics and Artificial Intelli-
gence 44:1-34, 2005.

Simons, P., Niemel4, 1., and Soininen, T. 2002. Extending and implementing the
stable model semantics. Artificial Intelligence 138:181-234, 2002.

