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Abstract. Approximate reasoning is used in a variety of reasoning tasks in Logic-
based Artificial Intelligence. In this abstract we compare a numberobfi®ason-

ing schemes and show how they relate and differ from the approaciwdéls
Rough Sets.

1 Introduction

Humans reason more often than not with incomplete inforwnafl he effect is that the
conclusions must often be revised, and treated as apprixifeequently we face the
following situation: some features of objects of interast frmly established (based
on observations and on domain properties), some other an@rkio be false. But
there remains a “grey area” of features of objects of intetfest are not determined
by the current knowledge. In this note we discuss sever@mek that have been pro-
posed in the literature for handling approximate reasomihgn available knowledge
may be incomplete. They include rough sets [Paw82], appration for propositional
satisfiability [KS96], approximation semantics for logimgrams including brave and
skeptical answer-set semantics, Kripke-Kleene semaatidswell-founded semantics
[Kun87,Fit85], the semantics of repairs in databases [ABCkhowledge compilation
of propositional theories [KS96], and least- and largeatr pf fixpoints for the opera-
tor associated with a Horn program [LI87]. For some of thesewill be able to show
that they fit into the rough set paradigm.

2 Approximations and three-valued reasoning schemes

We discuss here a variety of approximating schemes. Théyaa#t a common feature
—they use a three-valued approach to sets of objects.
2.1 Approximations and the ordering <,

Given a set (universdy, an approximation ovel/ is any pair of subsets @f, X;, X,
such thatX; C X,. An approximation/X;, X») provides bounds on every s&tsuch



that X; € X C Xs. The Kleene (oknowledgg ordering of approximations [KI67] is
defined as follows:

(X1, X2) Zpn (Y1,Y2) if X1 C Yy andY; C Xs.

Let Ay be the set of all approximations . The structure( Ay, <k, ) IS a chain-
complete poset. Unlegs{| < 1, this poset is not a lattice. It is a complete lower-
semilattice, and the least upper bound exists for any paippfoximations that have an
upper bound. The maximal elements(ef; <,) are of the form(X, X) for X C U.
They are calle@gxact approximations

2.2 Rough sets

Rough sets are special class of approximations.(l&e a finite set of objects (uni-
verse). Every equivalence relatioim U determines its concept of rough set as follows.
For everyX C O, Pawlak’s approximatiorfor therough setassociated withX) is de-
fined as an approximatiofi, X') where: X is the union of all cosets of contained in
X, andX is the union of all cosets ofthat have a nonempty intersection with The
pair (X, X) is an approximation irD. It is characterized [MT99] as the,,-largest
approximatior L, U) so that:

1. (L,U) approximatesX
2. The setd andU are unions of cosets of

As each equivalence relation n determines its own class of rough sets, the question
arises how these classes are related. The collection ofagnce relations on a set
O (not necessarily finite) determines a complete, but notridigive lattice, with the
refinement ordering-. Specifically,r; C r, if every coset of- is the union of cosets

of ro. Letr; C ro be two equivalence relations . One can show that for every subset
X of O the Pawlak rough sets determinedsyandr,, say (X, X); and (X, X),
respectively, are related as follows:

(X1, X1) =pn (X5, X2).

In other words, the ordering in the lattice of equivalence relations éhinduces the
ordering=y,, in the corresponding Pawlak approximations.

2.3 Propositional satisfiability

We consider a fixed set of propositional variahles A valuation ofA¢ is any mapping
of At into {0,1}. We can identify valuations with the subsets4f as follows. We
identify a valuatiorw with the setM C At so thatv = x, thatis,M = {p : v(p) =
1}. We writev,, for the valuatiorv that corresponds td/.

Now, letT" be a consistent set of formulas of the propositional languag. Then
T determines an approximatiqiX, X») in set At as follows: X; = {p : T F p},
andX, = {p : T I/ -p}. ThenX; C M C X, for every M such thatv,; £ T.
Let us denote this “canonical” approximation of modelsZoby (T, T). Then, we



have the following property of theorie§ C T that are consistent and closed under
consequence: B B
<IlaT1> jkn <12,T2>.

In other words, the canonical approximation of the thebrys <., bigger than that of
T:. The maximal approximations (i.e. Pawlak’s rough setsimdhse) are the complete
consistent theories.

2.4 Knowledge compilation

Many tasks in knowledge representation and reasoning egditbe problem of decid-
ing, given a propositional CNF theoffy and a propositional clause whetherT" |= ¢.
This task is coNP-complete. As a way to address this conipuotdtdifficulty [KS96]
proposed an approach in whi€his compiled off-line, possibly in exponential time, into
some other representation, under which the query answenifd be efficient. While
there is an initial expense of the compilation, if the quengwering task is frequent
that cost will eventually be recuperated.

An approximation to a theory is a pair of theorie$7”, 7") such that

T ETET

If (77, T") is an approximation t@', thenT = ¢ if 7" = ¢, andT £ ¢ if TV £ ¢. In
other words,
{o:T" ot C{e: T} C{o: T' o}

Desirable approximations are “tight”, that isp: 7" = ¢} \ {p: T = ¢} is
small, and support efficient reasoning. Concerning thedatint, if U is a Horn theory
andp is a clause, thel/ = ¢ can be decided in polynomial time. Therefore, we
defineapproximationgo be pairs(7’,7"), whereT’ andT” are Horn theories such
thatT” |= T".

A key problem is: given a CNF theof#, find the most precise Horn approximation
to T'. This problem has been studied in [KS96]. It turns out thatehs a unique (up to
logical equivalence) Horn least upper bound. Howevergtigeno greatest Horn upper
bound. The set of Horn lower approximations has, howevexjmel elements.

2.5 Approximating semantics for logic programs

Logic Programming studies semanticsagic programsi.e. sets oprogram clauses
In the simplest case those are expressions of the form g1, ..., Gm, T1,..., Tn.
The meaning of such clause is, informally, this: {if, . . . , ¢,,, have been derived, and
none ofry, ..., r, has, or ever will be, then deriyé (various different meanings are
also associated with program clauses). It is currently comynassumed that the cor-
rect semantics of a logic program (i.e. set of program claaseabove) is provided by
means of fixpoints of the Gelfond-Lifschitz operatGr.p. Those fixpoints are called
stable model®f P [GL88], and more recently alsanswer set$or P. The operator
GLp is antimonotone, thus existence of fixpoints@f.p is not guaranteed. However
the operatoiGL? is monotone, and thus possesses a least and largest fixpoints



A number of approximation schemes for stable semantics g€ Iprograms has
been proposed. The earliest proposal is the so-called &i#fif{igene approximation
([Kun87,Fit85]). In this approach, one definetheee-valuedran-Emden-Kowalski op-
erator7p. That operator is monotone in the orderifg,,, and thus possesses a least
=kx fixpoint. That fixpoint (which can be treated as an approxiomtapproximates all
stable models of the logic prograf A stronger approximation scheme has been pro-
posed in [VRS91], and is calledveell-founded modedf the program. Essentially, that
model is defined by means of the least and largest fixpoirtb}. Like the Kripke-
Kleene fixpoint, the well-founded approximations providesapproximation to all sta-
ble models of the program. Yet another approximation schetrieh turns out to be
stricter than the well-founded semantics is titmate approximatiorf [DMTO04].

Of course, one can assign to a logic progréirthe <, -largest approximation
for the family of all stable models aP. Let us denote by K p the Kripke-Kleene
approximation,WF p the well-founded approximatiobjp, the ultimate approximation
and Ap the most precise approximation of all stable model#oflhen, assuming®
possesses a stable model, we have

KKp =gn WFp 2pn Up =in Ap

and examples can be given where all the relationships éce Jine complexity of com-
puting each of these approximations is also different, inegal. Nevertheless, these
constructions assign, on analogy to rough sets, approxingto programs. Thus, in
case of Logic Programming approximations there exist asiflaation of approxima-
tions to the family of all stable models of the program.

We note the the Kripke-Kleene approximatiiii » approximates not only all sta-
ble models ofP but also all supported models &f. In the case wher is a Horn
program the fixpoin& K p is given by the paif.5;, S, ), wheresS; is the least and, is
the greatest supported model®f{which are guaranteed to exist).

2.6 Approximating possible-world structures

The language of modal logic with the semantics of autoepistexpansions and exten-
sions [DMTO03] provides a way to describe approximationsassible-world structures.
Let us consider a theory in a language of propositional modal logic. The the@ry
is meant to describe a possible world structure providirgattcount of what is known
and what is not known given.

SinceT may be incomplete, there may be several possible-worldtsires one
could associate witfi’ (autoepistemic logic provides a specific characterizatfsuch
structures; other nonmonotonic modal logics could be usel[MT93]). To reason
about the epistemic content @f one has two choices: to compute all possible-world
structures fofl" according to the semantics of the autoepistemic logic, armde an
approximation to the epistemic contentiotommon to all these structures. The former
is computationally complex, being 82 -task. Hence, the latter is often the method of
choice.

At least three different approximations can be associati¢ll W, Kripke-Kleene
approximation, the well-founded approximation and thamdte approximation, listed



here according to the precision, with which they approxenadssible-world struc-
tures of T [DMT03,DMTO04]. It is worth noting that the computational roplexity of
each of these approximations is lower that the complexityoofiputing even a (single)
possible-world structure farf.

2.7 Minimal models reasoning and repairs in databases

Approximations play an important role in the theory and pcacof databases. In this
paper, we regard a database as a finite structure of somealgagwf first-order logic
that does not contain function symbols. Typically, legabthases are subjectitgegrity
constraints properties that at any time the database is supposed to lmageneral,
integrity constraints can be represented as arbitrarydtasof L.

Databases are frequently modified over their lifetime. Wpslareate the possibility
of entering erroneous data, especially that in most casedbases are modified by
different users at different locations. Consequently,oesl happen that databases do
not satisfy the integrity constraints. Once such a sitmaticcurs, the database needs to
berepaired[ABCO03].

Let D be a database and It be a set of integrity constraints. A pakit =
(R, R™)is arepair of D with respecttd C if (DUR™)\ R~ E IC (the repair condi-
tion), and for everfQ*, Q") suchthaQ™ C RT, Q- C R—,and(DUQM)\ Q™
IC, we haveQ™ = RT andQ~ = R~ (the minimality condition). We write?(D)
for the databaséD U R™) \ R~ resulting fromD by applying a repai?. We write
Rep(D, IC) to denote all repairs ab with respect to/C. The minimality condition
implies thatif(R*, R™) is a repair, thel* N D = pandR~ C D.

Repairing a databask that violates its integrity constrainf&” consists of com-
puting a repail® € Rep(D, IC) and applying it taD, that is computing?(D). There
are two problems, though. First, computing repairs is caatpnally complex (even
in some simple settings deciding whether repairs existdscomplete). Second, it of-
ten is the case that multiple repairs exist, which resultsénneed for some principled
selection strategy.

These problems can be circumvented to some degree by maglifyé semantics
of the database. Namely, a datab&swith integrity constraintd C could be viewed as
anapproximationto an actual databade’, not available explicitly but obtainable from
D by means of a repair with respect f6'. The approximation td)’ represented by
(D, IC) is the pair of set$D;, D,,), where

Dy =({R(D): R € Rep(D,IC)} and D, = | J{R(D): R € Rep(D, IC)}.

In other words, expressiori®, 1C) define approximations, and query answering algo-
rithms have to be adjusted to provide best possible answearsdries toD’ based on
the knowledge ofD; andD,, only.

3 Further work, and conclusions

We discussed a number of approximation schemes as theyrapgegic, logic pro-
gramming, artificial intelligence, and databases. Dogbtlaere are other approaches



to approximate reasoning that can be cast as approximatiodsin particular rough
sets. One wonders if there is a classification of approxonatthat allows to capture a
common structure laying behind these, formally differapiproaches. In other words,
are there general classification principles for approxiomat? Are there categories of
approximations that allow to classify approximations gagébely?

Another fundamental issue is the use of languages thatidesapproximations.
Pawlak [Paw91] noticed that, in its most abstract form, fosgts are associated with
equivalence relations; each equivalence relation indits@svn rough set notion. Such
abstract approach leads to Universal Algebra consideratizat have roots in [JT51]
and have been actively pursued by Ortowska and collabarfi@01,0S01,S198]. One
can find even more abstract versions within the Category rihBat usually, the appli-
cations of rough sets and other approximation schemes tehoose its own language.
For instance, more often than not (and this was the origirdivation of Pawlak) the
underlying equivalence relation is given to the applicaiifor instance as the equiva-
lence induced by an information system [MP76]). Then, aeditarature of rough sets
is full of such considerations, one searches for the coageivalence relations that
are generated by various attribute reduction techniguemake the point, these equiv-
alence relations are not arbitrary, but determined by tteécehof the language used
for data description. This linguistic aspect of rough set$ approximations in general,
needs more attention of rough set community.
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