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Abstract. Approximate reasoning is used in a variety of reasoning tasks in Logic-
based Artificial Intelligence. In this abstract we compare a number of such reason-
ing schemes and show how they relate and differ from the approach of Pawlak’s
Rough Sets.

1 Introduction

Humans reason more often than not with incomplete information. The effect is that the
conclusions must often be revised, and treated as approximate. Frequently we face the
following situation: some features of objects of interest are firmly established (based
on observations and on domain properties), some other are known to be false. But
there remains a “grey area” of features of objects of interest that are not determined
by the current knowledge. In this note we discuss several schemes that have been pro-
posed in the literature for handling approximate reasoningwhen available knowledge
may be incomplete. They include rough sets [Paw82], approximation for propositional
satisfiability [KS96], approximation semantics for logic programs including brave and
skeptical answer-set semantics, Kripke-Kleene semanticsand well-founded semantics
[Kun87,Fit85], the semantics of repairs in databases [ABC03], knowledge compilation
of propositional theories [KS96], and least- and largest- pair of fixpoints for the opera-
tor associated with a Horn program [Ll87]. For some of these,we will be able to show
that they fit into the rough set paradigm.

2 Approximations and three-valued reasoning schemes

We discuss here a variety of approximating schemes. They allhave a common feature
– they use a three-valued approach to sets of objects.

2.1 Approximations and the ordering�kn

Given a set (universe)U , an approximation overU is any pair of subsets ofU , X1, X2

such thatX1 ⊆ X2. An approximation〈X1,X2〉 provides bounds on every setX such



thatX1 ⊆ X ⊆ X2. The Kleene (orknowledge) ordering of approximations [Kl67] is
defined as follows:

〈X1,X2〉 �kn 〈Y1, Y2〉 if X1 ⊆ Y1 andY2 ⊆ X2.

Let AU be the set of all approximations inU . The structure〈AU ,�kn〉 is a chain-
complete poset. Unless|X| ≤ 1, this poset is not a lattice. It is a complete lower-
semilattice, and the least upper bound exists for any pair ofapproximations that have an
upper bound. The maximal elements of〈AU �kn〉 are of the form〈X,X〉 for X ⊆ U .
They are calledexact approximations.

2.2 Rough sets

Rough sets are special class of approximations. LetO be a finite set of objects (uni-
verse). Every equivalence relationr in U determines its concept of rough set as follows.
For everyX ⊆ O, Pawlak’s approximation(or therough setassociated withX) is de-
fined as an approximation〈X,X〉 where:X is the union of all cosets ofr contained in
X, andX is the union of all cosets ofr that have a nonempty intersection withX. The
pair 〈X,X〉 is an approximation inO. It is characterized [MT99] as the�kn-largest
approximation〈L,U〉 so that:

1. 〈L,U〉 approximatesX
2. The setsL andU are unions of cosets ofr.

As each equivalence relation inO determines its own class of rough sets, the question
arises how these classes are related. The collection of equivalence relations on a set
O (not necessarily finite) determines a complete, but non-distributive lattice, with the
refinement ordering⊑. Specifically,r1 ⊑ r2 if every coset ofr1 is the union of cosets
of r2. Letr1 ⊑ r2 be two equivalence relations inO. One can show that for every subset
X of O the Pawlak rough sets determined byr1 andr2, say〈X1,X〉1 and〈X1,X〉1,
respectively, are related as follows:

〈X1,X1〉 �kn 〈X2,X2〉.

In other words, the ordering⊑ in the lattice of equivalence relations onO induces the
ordering�kn in the corresponding Pawlak approximations.

2.3 Propositional satisfiability

We consider a fixed set of propositional variablesAt . A valuation ofAt is any mapping
of At into {0, 1}. We can identify valuations with the subsets ofAt as follows. We
identify a valuationv with the setM ⊆ At so thatv = χM , that is,M = {p : v(p) =
1}. We writevM for the valuationv that corresponds toM .

Now, letT be a consistent set of formulas of the propositional languageLAt . Then
T determines an approximation〈X1,X2〉 in setAt as follows:X1 = {p : T ⊢ p},
andX2 = {p : T 6⊢ ¬p}. ThenX1 ⊆ M ⊆ X2 for everyM such thatvM � T .
Let us denote this “canonical” approximation of models ofT by 〈T , T 〉. Then, we



have the following property of theoriesT1 ⊆ T2 that are consistent and closed under
consequence:

〈T 1, T 1〉 �kn 〈T 2, T 2〉.

In other words, the canonical approximation of the theoryT2 is�kn bigger than that of
T1. The maximal approximations (i.e. Pawlak’s rough sets in this case) are the complete
consistent theories.

2.4 Knowledge compilation

Many tasks in knowledge representation and reasoning reduce to the problem of decid-
ing, given a propositional CNF theoryT and a propositional clauseϕ, whetherT |= ϕ.
This task is coNP-complete. As a way to address this computational difficulty [KS96]
proposed an approach in whichT is compiled off-line, possibly in exponential time, into
some other representation, under which the query answeringwould be efficient. While
there is an initial expense of the compilation, if the query answering task is frequent
that cost will eventually be recuperated.

An approximation to a theoryT is a pair of theories(T ′, T ′) such that

T ′ |= T |= T ′′.

If (T ′, T ′′) is an approximation toT , thenT |= ϕ if T ′′ |= ϕ, andT 6|= ϕ if T ′ 6|= ϕ. In
other words,

{ϕ : T ′′ |= ϕ} ⊆ {ϕ : T |= ϕ} ⊆ {ϕ : T ′ |= ϕ}.

Desirable approximations are “tight”, that is,{ϕ : T ′ |= ϕ} \ {ϕ : T ′′ |= ϕ} is
small, and support efficient reasoning. Concerning the latter point, ifU is a Horn theory
and ϕ is a clause, thenU |= ϕ can be decided in polynomial time. Therefore, we
defineapproximationsto be pairs(T ′, T ′′), whereT ′ andT ′′ are Horn theories such
thatT ′ |= T ′′.

A key problem is: given a CNF theoryT , find the most precise Horn approximation
to T . This problem has been studied in [KS96]. It turns out that there is a unique (up to
logical equivalence) Horn least upper bound. However, there is no greatest Horn upper
bound. The set of Horn lower approximations has, however, maximal elements.

2.5 Approximating semantics for logic programs

Logic Programming studies semantics oflogic programs, i.e. sets ofprogram clauses.
In the simplest case those are expressions of the formp ← q1, . . . , qm,¬r1, . . . ,¬rn.
The meaning of such clause is, informally, this: “ifq1, . . . , qm have been derived, and
none ofr1, . . . , rn has, or ever will be, then derivep” (various different meanings are
also associated with program clauses). It is currently commonly assumed that the cor-
rect semantics of a logic program (i.e. set of program clauses as above) is provided by
means of fixpoints of the Gelfond-Lifschitz operatorGLP . Those fixpoints are called
stable modelsof P [GL88], and more recently alsoanswer setsfor P . The operator
GLP is antimonotone, thus existence of fixpoints ofGLP is not guaranteed. However
the operatorGL

2
P is monotone, and thus possesses a least and largest fixpoints.



A number of approximation schemes for stable semantics of logic programs has
been proposed. The earliest proposal is the so-called Kripke-Kleene approximation
([Kun87,Fit85]). In this approach, one defines athree-valuedvan-Emden-Kowalski op-
eratorTP . That operator is monotone in the ordering�kn, and thus possesses a least
�kn fixpoint. That fixpoint (which can be treated as an approximation) approximates all
stable models of the logic programP . A stronger approximation scheme has been pro-
posed in [VRS91], and is called awell-founded modelof the program. Essentially, that
model is defined by means of the least and largest fixpoint ofGL

2
P . Like the Kripke-

Kleene fixpoint, the well-founded approximations providesan approximation to all sta-
ble models of the program. Yet another approximation schemewhich turns out to be
stricter than the well-founded semantics is theultimate approximationof [DMT04].

Of course, one can assign to a logic programP the�kn-largest approximation
for the family of all stable models ofP . Let us denote byKKP the Kripke-Kleene
approximation,WFP the well-founded approximation,UP , the ultimate approximation
andAP the most precise approximation of all stable models ofP . Then, assumingP
possesses a stable model, we have

KKP �kn WFP �kn UP �kn AP

and examples can be given where all the relationships are strict. The complexity of com-
puting each of these approximations is also different, in general. Nevertheless, these
constructions assign, on analogy to rough sets, approximations to programs. Thus, in
case of Logic Programming approximations there exist a classification of approxima-
tions to the family of all stable models of the program.

We note the the Kripke-Kleene approximationKKP approximates not only all sta-
ble models ofP but also all supported models ofP . In the case whenP is a Horn
program the fixpointKKP is given by the pair(Sl, Su), whereSl is the least andSu is
the greatest supported model ofP (which are guaranteed to exist).

2.6 Approximating possible-world structures

The language of modal logic with the semantics of autoepistemic expansions and exten-
sions [DMT03] provides a way to describe approximations to possible-world structures.
Let us consider a theoryT in a language of propositional modal logic. The theoryT

is meant to describe a possible world structure providing the account of what is known
and what is not known givenT .

SinceT may be incomplete, there may be several possible-world structures one
could associate withT (autoepistemic logic provides a specific characterizationof such
structures; other nonmonotonic modal logics could be used,too [MT93]). To reason
about the epistemic content ofT one has two choices: to compute all possible-world
structures forT according to the semantics of the autoepistemic logic, or compute an
approximation to the epistemic content ofT common to all these structures. The former
is computationally complex, being aΣ2

P
-task. Hence, the latter is often the method of

choice.
At least three different approximations can be associated with T , Kripke-Kleene

approximation, the well-founded approximation and the ultimate approximation, listed



here according to the precision, with which they approximate possible-world struc-
tures ofT [DMT03,DMT04]. It is worth noting that the computational complexity of
each of these approximations is lower that the complexity ofcomputing even a (single)
possible-world structure forT .

2.7 Minimal models reasoning and repairs in databases

Approximations play an important role in the theory and practice of databases. In this
paper, we regard a database as a finite structure of some languageL of first-order logic
that does not contain function symbols. Typically, legal databases are subject tointegrity
constraints, properties that at any time the database is supposed to have. In general,
integrity constraints can be represented as arbitrary formulas ofL.

Databases are frequently modified over their lifetime. Updates create the possibility
of entering erroneous data, especially that in most cases databases are modified by
different users at different locations. Consequently, it does happen that databases do
not satisfy the integrity constraints. Once such a situation occurs, the database needs to
berepaired[ABC03].

Let D be a database and letIC be a set of integrity constraints. A pairR =
(R+, R−) is arepair of D with respect toIC if (D∪R+)\R− |= IC (the repair condi-
tion), and for every(Q+, Q−) such thatQ+ ⊆ R+, Q− ⊆ R−, and(D∪Q+) \Q− |=
IC, we haveQ+ = R+ andQ− = R− (the minimality condition). We writeR(D)
for the database(D ∪ R+) \ R− resulting fromD by applying a repairR. We write
Rep(D, IC) to denote all repairs ofD with respect toIC. The minimality condition
implies that if(R+, R−) is a repair, thenR+ ∩D = ∅ andR− ⊆ D.

Repairing a databaseD that violates its integrity constraintsIC consists of com-
puting a repairR ∈ Rep(D, IC) and applying it toD, that is computingR(D). There
are two problems, though. First, computing repairs is computationally complex (even
in some simple settings deciding whether repairs exist isΣ2

P
-complete). Second, it of-

ten is the case that multiple repairs exist, which results inthe need for some principled
selection strategy.

These problems can be circumvented to some degree by modifying the semantics
of the database. Namely, a databaseD with integrity constraintsIC could be viewed as
anapproximationto an actual databaseD′, not available explicitly but obtainable from
D by means of a repair with respect toIC. The approximation toD′ represented by
(D, IC) is the pair of sets(Dl,Du), where

Dl =
⋂
{R(D) : R ∈ Rep(D, IC)} and Dl =

⋃
{R(D) : R ∈ Rep(D, IC)}.

In other words, expressions(D, IC) define approximations, and query answering algo-
rithms have to be adjusted to provide best possible answers to queries toD′ based on
the knowledge ofDl andDu only.

3 Further work, and conclusions

We discussed a number of approximation schemes as they appear in logic, logic pro-
gramming, artificial intelligence, and databases. Doubtless there are other approaches



to approximate reasoning that can be cast as approximations, and in particular rough
sets. One wonders if there is a classification of approximations that allows to capture a
common structure laying behind these, formally different,approaches. In other words,
are there general classification principles for approximations? Are there categories of
approximations that allow to classify approximations qualitatively?

Another fundamental issue is the use of languages that describe approximations.
Pawlak [Paw91] noticed that, in its most abstract form, rough sets are associated with
equivalence relations; each equivalence relation inducesits own rough set notion. Such
abstract approach leads to Universal Algebra considerations that have roots in [JT51]
and have been actively pursued by Orłowska and collaborators [DO01,OS01,SI98]. One
can find even more abstract versions within the Category Theory. But usually, the appli-
cations of rough sets and other approximation schemes cannot choose its own language.
For instance, more often than not (and this was the original motivation of Pawlak) the
underlying equivalence relation is given to the application (for instance as the equiva-
lence induced by an information system [MP76]). Then, and the literature of rough sets
is full of such considerations, one searches for the coarserequivalence relations that
are generated by various attribute reduction techniques. To make the point, these equiv-
alence relations are not arbitrary, but determined by the choice of the language used
for data description. This linguistic aspect of rough sets and approximations in general,
needs more attention of rough set community.
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