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Abstract
Autarkies arise in studies of satisfiability of CNF theories. In this paper we extend the notion

of an autarky to arbitrary propositional theories. We note that in this general setting autarkies are
related to the 3-valued logic. Most of our results are concerned with algorithmic properties of
autarkies. We prove that the problem of the existence of autarkies is NP-complete and that, as in
the case of SAT, if an autarky exists then it can be computed bymeans of polynomially many calls
to an oracle for the decision version of the problem. We also prove that, while intractable in general,
the problem of the existence of autarkies is in P if we restrict the class of autarkies of interest to
those that are consistent with a fixed complete and consistent set of literals, or if we restrict the
class of theories to 2CNF, Horn, and affine theories. In particular we present normal form results
for autarkies of theories of special types.

KEYWORDS: Autarky, algorithms, complexity

1. Introduction

Autarkies arise in studies of propositional satisfiability. They were introduced in [7] in order to
establish sufficient conditions for pruning the search for a satisfying interpretation of a CNF theory.

Let T be a collection of propositional clauses (a CNF theory). A nonempty and consistent setv
of literals is anautarkyfor T if every clauseC ∈ T that contains a dual of a literal fromv contains
also a literal fromv. Pure literals are simplest examples of autarkies. Namely, if a literall is pure
in a CNF theoryT , that is,T contains no occurrence of the dual literal tol, then the set{l} is an
autarky forT .

Let us denote byT−
v the set of all clauses inT that contain neither a literal fromv nor the dual

of a literal inv. The following simple result gives a fundamental property of autarkies that makes
them useful in satisfiability research.

Theorem 1.1. Let T be a CNF theory. Ifv is an autarky forT thenT is satisfiable if and only if
T−

v is satisfiable.

Theorem 1.1 implies that ifv is an autarky for a CNF theoryT then testing whetherT is
satisfiable can be reduced to testing whetherT−

v is satisfiable. This latter task is easier asT−
v has at

least|v| fewer atoms thanT . We note that ifv consists of a pure literal, the simplification described
by Theorem 1.1 is known as thepure-literalpruning rule.

Using Theorem 1.1, researchers designed algorithms testing satisfiability of3CNF theories with
the worst-case running times exponentially better than the trivial bound ofO(2n), wheren is the
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number of atoms in the input theory1. The first such algorithm, with the worst-case running time
of O(1.619n), was presented in [7]. The line of research it started culminated with an algorithm
running in timeO(1.497n), described in [9, 4].

A most direct use of autarkies to decide satisfiability of a theory consists of repeatedly comput-
ing an autarky and using its literals to reduce the theory. The problem with this pruning mechanism
is that computing autarkies is hard. The corresponding decision problem was reported to be NP-
complete in [5]. To circumvent that problem [5] introduced the notion of alinear autarky, defined
in terms of a certain linear programming problem. Linear autarkies can be computed in polynomial
time. Using linear autarkies in place of general ones makes the reduction method described above
polynomial. Moreover, [5] shows that the class of theories for which the method actually decides
satisfiability contains, in particular, some well-known classes of theories forwhich the satisfiability
problem is polynomial: 2CNF theories and Horn theories.

In this paper we study general autarkies. We first show that the concept of an autarky can be ex-
tended to the case of theories consisting of arbitrary propositional formulas. That generalization em-
phasizes and exploits a connection to 3-valued logic, already present in the original setting of CNF
theories but obscured by the syntactic simplicity of clauses. We then focus on algorithmic proper-
ties of autarkies and show that the problem to decide the existence of autarkies is NP-complete, a
fact reported without proof in [5]. We also show explicitly the property ofself-reducibility — the
existence of a reduction from a search problem for autarkies to its decision version. We investigate
the problem of existence of autarkies consistent with a given complete and consistent set of literals.
We show that for every such setv of literals, the problem to decide whether a finite theory possesses
an autarky consistent withv is in P. In particular, the problems of existence of positive and negative
autarkies are polynomial. Next, we prove that for several classes of theories, for which the satisfi-
ability problem is in the class P, the existence of autarkies can also be decidedin polynomial time.
In addition, we obtain results concerning the structure of the set of autarkies of theories in these
classes. Finally, in the conclusions we offer some more comments on the role ofthe 3-valued logic
for the concept of an autarky.

The fact that computing autarkies is hard limited their role in the design of satisfiability solvers
(and as we noted, prompted research of special autarkies that can be computed efficiently). The
situation may be different, however, when we consider the problem of deciding the truth of a quan-
tified boolean formula (QBF). This problem is PSPACE-complete in general and even those pruning
techniques that require exponential time may be beneficial, as demonstrated in[8]. Autarkies may
provide such pruning techniques, as we have the following general version of Lemma 2.4 from [1],
concerned with simplifications by pure literals whose atoms are existentially quantified.

Lemma 1.2. LetQ1x1 . . . QnxnE be a QBF, whereE is a formula in CNF. Ifv is an autarky for
E such that every atom that appears inv is existentially quantified, thenQ1x1 . . . QnxnE is true if
and only ifQ1x1 . . . QnxnE

−
v is true.

The theoryE−
v contains no atoms that appear inv and the corresponding quantifiers can be

dropped from the prefix. Thus, the QBFQ1x1 . . . QnxnE
−
v constitutes a simplification of the origi-

nal one. If the cost of finding autarkies can be offset by gains in the search time resulting from better
pruning, autarkies will prove useful in the design of fast QBF solvers and deserve further study.

1. We provide worst-case estimates of the running times of satisfiability solvers up to a polynomial factor.
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2. Preliminaries

We consider the language of propositional logic determined by a set of atomsAt , two constants⊥
and⊤, and the boolean connectives¬, ∨, ∧, → and⊕ (the last one denoting theexclusive or).

A literal is an atom or the negation of an atom. In the first case, the literal is calledpositiveand
in the second case —negative. Given a literall there is anunderlying atom, |l|. Thus|¬p| = p. The
dualof literal l, denoted̄l, is¬p if l = p andp is an atom, andp if l = ¬p. A clauseis a disjunction
of literals. Thus, clauses do not contain constants⊥ and⊤. We identify the empty clause with the
constant⊥.

For a formulaϕ, we writeAt(ϕ) for the set of atoms that appear inϕ andLit(ϕ) for the set of
literals one can built of these atoms. We extend this notation to sets of literals and theories.

A 3-valued interpretationof a set of atomsAt is a functionv : At → {t, f,u}, wheret, f and
u represent truth valuestrue, falseandunknown. There is a one-to-one correspondence between
3-valued interpretations and consistent sets of literals. It maps a 3-valuedinterpretationv to the set
of literals

{p : v(p) = t} ∪ {¬p : v(p) = f}.

Therefore, we identify 3-valued interpretations and consistent sets of literals, and use the same
symbols (typicallyv andw) to denote them. Acompleteinterpretation is a 3-valued interpretation
that assigns only valuest and f. When we identify such interpretation with a set of literals, the
resulting setv is completeandconsistent, that is, for every literall eitherl or l̄ belongs tov.

We define the truth value of a formulaϕ in a 3-valued interpretationv, which we denote by
[v(ϕ)]3, in a standard way by using the 3-valued truth tables for the logical connectives in the
language [3, Section 64]. They are shown in Table 1. When[v(ϕ)]3 = t, we say thatv 3-satisfiesϕ.

p ¬p

f t
t f
u u

p q p ∧ q p ∨ q p→ q p⊕ q

f f f f t f
f u f u t u
f t f t t t
u f f u u u
u u u u u u
u t u t t u
t f f t f t
t u u t u u
t t t t t f

Figure 1. Truth tables for the 3-valued logic of Kleene.

Whenv is a complete interpretation (that is, whenv is a complete and consistent set of literals),
the truth value of every formulaϕ is the same underv, regardless of whether we viewv as a 3-valued
or a 2-valued interpretation. In such case, whenever[v(ϕ)]3 = t (which is precisely whenv(ϕ) = t
in the 2-valued logic), we say thatv satisfiesϕ.

There is a natural ordering�k (calledknowledge ordering) on the truth values{t, f,u} of three-
valued logic. In this orderingu � t, andu � f (while t andf are non comparable). This ordering of
truth values extends (via product ordering) to 3-valued interpretations.When we identify 3-valued
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interpretations with consistent sets of literals, the ordering�k becomes the inclusion ordering of
the family of consistent sets of literals.

In the paper we need a fundamental property of 3-valued interpretationsestablished by Kleene.

Proposition 2.1 (Kleene).Letϕ be a propositional formula, and letv, v′ be two 3-valued interpre-
tations such thatv �k v

′ (that is,v ⊆ v′). Then[v(ϕ)]3 � [v′(ϕ)]3.

We will now introduce autarkies of arbitrary propositional theories. We say thatv touchesϕ if
At(ϕ) ∩ At(v) 6= ∅.

Definition 2.2. LetT be a set of propositional formulas. A consistent setv of literals is anautarky
for T if everyϕ ∈ T that is touched byv is 3-satisfied byv.

Our general definition of autarkies, when limited to clauses, is equivalent tothe definition we
presented in the introduction. Indeed, a consistent setv of literals 3-satisfies a clauseC if and only if
C contains a literal fromv. In addition, we can extend to the general case the fundamental property
of autarkies, Theorem 1.1. Letv be a consistent set of literals andT a set of formulas. We define
T−

v to be the set of all formulas inT that are not touched byv (contain no atom fromAt(v)). This
notation is a direct extension of the notation we introduced for CNF theories inthe introduction. We
now have the following result.

Proposition 2.3. Let v be a consistent set of literals andT a set of formulas. Ifv is an autarky for
T , thenT is satisfiable if and only ifT−

v is satisfiable.

Next, we state some basic properties of autarkies that we refer to later. Theproofs are straight-
forward and we omit them.

Proposition 2.4. LetT be a propositional theory.

1. If v is a consistent and complete set of literals that satisfiesT thenv is an autarky forT

2. If v an autarky forT then for every set of formulasT ′ ⊆ T , v ∩ Lit(T ′) is an autarky forT ′.

Finally, we state and prove a result, which allows us to reduce a theory whensearching for its
autarkies. Letϕ be a formula of propositional logic and letA ⊆ At(ϕ). We denote byϕA the
formula obtained fromϕ by replacing all positive occurrences of atoms fromA with ⊥ and all
negative occurrences of atoms fromA with ⊤. The formulaϕA underestimatesϕ by making the
atoms fromA to contribute to the satisfaction ofϕ as little as possible. There is also a dual notion.
We defineϕA to be the formula obtained fromϕ by replacing all positive occurrences of atoms
fromA with ⊤, all negative occurrence of atoms fromA with ⊥ and, as before, by simplifying the
constants away. This formulaoverestimatesϕ.

We have the following general property of 3-valued logic.

Proposition 2.5. Letϕ be a propositional formula,v a consistent set of literals andA a set of atoms
such thatA ∩ At(v) = ∅. Then:

1. [v(ϕ)]3 = t if and only if[v(ϕA)]3 = t

2. [v(ϕ)]3 = f if and only if[v(ϕA)]3 = f
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Proof: First, we observe that positive occurrences of atoms in a formulaϕ are negative occurrences
in ¬ϕ, and similarly, negative occurrences of atoms inϕ are positive occurrences in¬ϕ. Then,
assuming thatψ = ¬ϕ, we have:

ψA = ¬ϕA and ψA = ¬ϕA. (1)

Now we proceed by simultaneous induction on the complexity of formulaϕ.
Base Case: The formulaϕ is an atom, sayp. There are two subcases.
(a)p /∈ A. In this case,pA = pA = p and both equivalences hold.
(b) p ∈ A. In this casep /∈ At(v) and so,[v(p)]3 = u. Moreover,pA = ⊥ andpA = ⊤. We
have[v(p)]3 6= t and [v(pA)] 6= t. Thus, the first equivalence holds. Similarly,[v(p)]3 6= f and
[v(pA)] 6= f . Hence the second equivalence holds, as well.
Inductive step: Let ψ be a formula of length at least 2. The cases when the main functor inψ
is ∧ and∨ are obvious. So letψ = ¬ϕ. We have that[v(ψ)]3 = t if and only if [v(ϕ)]3 = f.
By the inductive hypothesis, the second equivalence holds forϕ. Thus,[v(ϕ)]3 = f if and only if
[v(ϕA)]3 = f. Next, we have that[v(ϕA)]3 = f if and only if [v(¬ϕA)]3 = t. By (1), [v(¬ϕA)]3 = t
if and only if [v(ψA)]3 = t. Thus, the first equivalence holds forψ = ¬ϕ. The second equivalence
can be argued in a similar way.

Since the cases of→ and⊕ reduce to¬,∧, and∨, the inductive step is complete and the
assertion follows. 2

We extend the mappingϕ 7→ ϕA to theories. Given a propositional theoryT and a set of atoms
A ⊆ At(T ), we defineTA = {ϕA : ϕ ∈ T}. We have now the following reduction result.

Proposition 2.6. LetT be a set of formulas,A ⊆ At(T ) a set of atoms andv a set of literals such
thatAt(v) ∩A = ∅. Thenv is an autarky forT if and only ifv is an autarky forTA.

Proof: If v is an autarky forT thenv is nonempty and consistent. Let us assume thatv touches a
formulaψ ∈ TA. We haveψ = ϕA, for some formulaϕ ∈ T . SinceAt(ψ) ⊆ At(ϕ), v touchesϕ
and consequently, asv is an autarky forT , v 3-satisfiesϕ. By Proposition 2.5,v 3-satisfiesϕA = ψ.
Thus,v is an autarky forTA (asψ was chosen arbitrarily). The converse implication can be proved
similarly, once we observe that if a setv of literals such thatAt(v) ∩ A = ∅ touches a formula
ϕ ∈ T then it touches the formulaϕA ∈ TA. 2

In several places in the paper we will use a symmetry argument applied to theories obtained by
replacing some literals with others. Arenamingis a permutation of the set of literalsLit(At) such
that for every literall, π(l̄) = π(l).

If π is a renaming andv is aconsistentset of literals (a 3-valued interpretation),π(v) is also a
consistent set of literals (a 3-valued interpretation).

The so calledpermutation lemmais another useful property. Letπ be a renaming and letϕ be
a propositional formula. We will now define a formulaπ(ϕ) obtained by applyingπ to ϕ. To this
end, we viewϕ as a tree with atoms in the leaves and boolean operators in the internal nodes.We
defineπ(ϕ) to be the formula obtained by replacing in the tree ofϕ every subtree representing a
literal l with the subtree for the dual literal.

We note that this type of renaming of literals preserves clauses. That is, ifC is a clause andπ is
a renaming,π(C) is a clause, too.

We have the following property of renamings.
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Lemma 2.7 (Permutation Lemma). For every 3-valued interpretationv, for every renamingπ of
literals, and for every formulaϕ ofL,

[π(v)(π(ϕ)]3 = [v(ϕ)]3.

For every renamingπ, 3-valued interpretationv touches a formulaϕ if and only if π(v) touches
π(ϕ). Let us defineπ(T ) = {π(ϕ) : ϕ ∈ T}. As a direct consequence of Lemma 2.7, we obtain a
“symmetry” result for autarkies.

Proposition 2.8. Let v be a 3-valued interpretation andT a set of propositional formulas. Thenv
is an autarky forT if and only ifπ(v) is an autarky forπ(T ).

3. Decision and search problems for autarkies

The main objective of this section is to establish the complexity of the problem of theexistence
of autarkies. We will also consider asearchversion of the problem (to compute an autarky or
determine that none exists).

Definition 3.1. AUTARKY EXISTENCE: Given a propositional theoryT , decide whetherT has an
autarky.

First, we note the following obvious property that follows directly from the definition of an
autarky.

Proposition 3.2. LetT be a propositional theory andv a consistent set of literals,v ⊆ Lit(T ). The
question whetherv is an autarky forT can be decided in polynomial time in the size ofT .

Proposition 3.2 implies that the AUTARKY EXISTENCE problem is in the class NP. Our goal
now is to show that it is NP-complete.

Proposition 3.3. TheAUTARKY EXISTENCE problem is NP-complete.

Proof: By the comments above, we focus on the NP-hardness only. The proof is by the reduction
from a variant of the propositional satisfiability problem, in which we restrictinput theories to
those that do not contain the empty clause nor tautologies. Clearly this decisionproblem is also
NP-complete.

Let T be a CNF theory and letpi, 0 ≤ i ≤ n− 1, be all atoms that appear inT . We introducen
newatomsqi, 0 ≤ i ≤ n− 1, and define a CNF theoryA(T ) to consist of three groups of clauses:

1. all clauses inT

2. clausespi ∨ qi and¬pi ∨ ¬qi, where0 ≤ i ≤ n− 1

3. clauses¬pi ∨ pi+1 ∨ qi+1, pi ∨ pi+1 ∨ qi+1, ¬qi ∨ pi+1 ∨ qi+1, andqi ∨ pi+1 ∨ qi+1, where
0 ≤ i ≤ n− 1, and the addition of indices is modulon.

The theoryA(T ) can be constructed in linear time in the size ofT . We will show thatT is satisfiable
if and only ifA(T ) has an autarky.
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(⇒) SinceT is satisfiable, there is a setv ⊆ Lit(T ) such that for everyi, 0 ≤ i ≤ n − 1, exactly
one ofpi and¬pi belongs tov, andv satisfiesT (indeed, each complete interpretation satisfyingT
can be represented by such set of literals). We definev′ as follows:

v′ = v ∪ {¬qi : pi ∈ v, i = 0, 1, . . . , n− 1} ∪ {qi : ¬pi ∈ v, i = 0, 1, . . . , n− 1}.

We will show thatv′ is an autarky forA(T ). To this end, it is enough to show that every clause in
A(T ) contains a literal fromv′.

Sincev satisfiesT andT consists of non-tautological clauses, every clause inT contains a
literal fromv and so, also a literal fromv′. By the definition ofv′, every clause of type (2) contains
a literal fromv′, as well. Since all clauses of type (3) are subsumed by clauses of type (2), every
clause of type (3) also contains a literal fromv′.
(⇐) Let us assume thatv′ is an autarky forA(T ). By the definition,v′ is consistent and contains at
least one literal. Due to the symmetry of the clauses of types (2) and (3), without loss of generality
we can assume that it is one ofp0, q0,¬p0, or¬q0. Since the proof in each case is the same, let us
assume thatp0 ∈ v′. Since¬p0 ∨ ¬q0 is inA(T ) and is touched byv′, it follows that¬q0 ∈ v′. Let
us consider the clause

¬p0 ∨ p1 ∨ q1

from A(T ). It is touched byv′. Consequently, it is satisfied byv′, which in turn implies thatv′

containsp1 or q1. In the first case, sincev′ touches and so, satisfies the clause¬p1 ∨¬q1, ¬q1 ∈ v′.
In the second case, for the same reasons,¬p1 ∈ v′. Continuing this argument, we show thatv′ is a
complete set of literals overAt(A(T )).

Let v = v′ ∩ Lit(T ). Let us consider a clauseC ∈ T . It follows thatC ∈ A(T ). SinceT does
not contain the empty clause and sincev′ is a complete set of literals overAt(A(T )), v′ touchesC.
Consequently,v′ contains a literal fromC. Since every literal inC belongs toLit(T ), v contains a
literal fromC. Thus,v satisfiesC and soT , as well (asC is an arbitrary close fromT ). 2

We will now show that the AUTARKY SEARCH problem, where the goal is tocomputean autarky
or determine that none exists, can be solved directly by means of polynomially many calls to an
algorithm for the AUTARKY EXISTENCE problem. While every NP-complete search problem can
be solved by means of polynomially many calls to an oracle for its decision version, we show here
anexplicit reduction of AUTARKY SEARCH to AUTARKY EXISTENCE. Our reduction is based on
two lemmas of separate interest.

Lemma 3.4. LetT be a CNF theory andv a consistent set of literals.

1. If a ∈ At(T ), thenv is an autarky forT and a,¬a /∈ v if and only if v is an autarky for
T ∪ {a,¬a}

2. If for everya ∈ At(T ), T ∪ {a,¬a} has no autarkies then every autarky forT is a complete
set of literals overAt(T ).

Proof: Part (1) of the assertion follows directly from the definition of an autarky.
(2) Letv be an autarky forT . By (1) it follows that for everya ∈ At(T ), a ∈ v or ¬a ∈ v. Thus,v
is a complete set of literals. 2

Lemma 3.5. LetT be a CNF theory such that every autarky forT is a complete set of literals over
At(T ). Then, for every literall ∈ Lit(T ), a set of literalsv ⊆ Lit(T ) is an autarky forT ∪ {l} if
and only ifv is an autarky forT andl ∈ v.
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Proof: (⇐) Sincev is an autarky forT andl ∈ v, v is an autarky forT ∪ {l}.
(⇒) Conversely, let us assume thatv is an autarky forT ∪ {l}. Thenv is an autarky forT (Propo-
sition 2.4(2)). Thus,v is a complete set of literals overAt(T ) and so, it touches the unit clausel.
Consequently,v containsl. 2

We are now ready to show how a procedure to decide the existence of autarkies can be used to
compute them. LetT be an input CNF theory

1. If T has no autarkies, output ‘no autarkies’ and terminate.

2. As long as there is an atoma ∈ At(T ) such thatT ∪ {a,¬a} has an autarky, we replace
T by the theory obtained fromT{a} by removing⊥ and¬⊤ from every clause ofT{a}.
This operation preserves autarkies and ensures that the resulting theory is a collection of
disjunctions of literals. We then continue. We denote byT ′ the theory we obtain when the
process terminates.

3. We fix an enumeration of atoms inAt(T ′), sayAt(T ) = {a1, . . . , an}, and defineT0 := T ′.
For i = 1, . . . , n, we proceed as follows. IfTi−1 ∪ {ai} has an autarky, we setli := ai.
Otherwise, we setli := ¬ai. We then setTi := Ti−1 ∪ {li}. When the loop terminates, we
setv = {l1, . . . , ln} and output it as an autarky ofT .

Let us analyze Step 2. Leta ∈ At(T ) be an atom such thatT ∪ {a,¬a} has an autarky.
Then, by Lemma 3.4(1),T has an autarky that contains neithera nor¬a. By Proposition 2.6,T{a}
has an autarky and every autarky ofT{a} is an autarky ofT (and this property holds also for the
modification ofT{a}, as described Step 2). Since the input theoryT has an autarky (we moved
past Step 1),T ′ has an autarky and every autarky ofT ′ is an autarky forT . Moreover, for no atom
a ∈ At(T ′), T ′∪{a,¬a} has an autarky. Thus, by Lemma 3.4(2), every autarky ofT ′ is a complete
set of literals. Using that fact, we find one autarky ofT ′ in Step 3 of the algorithm. As we noted it
is also an autarky forT .

We prove the correctness of Step 3 by showing that for everyi, 1 ≤ i ≤ n, Ti has an autarky,
that every autarky ofTi is a complete set of literals overAt(T ′), and that every autarky ofTi is an
autarky ofTi−1. In particular, the claim implies thatTn has a complete autarky. SinceTn contains
unit clausesl1, . . . , ln, v = {l1, . . . , ln} is an autarky forTn. By the claim, it is also an autarky for
T ′ and so, forT .

To prove the claim, we note that the claim holds fori = 1. Indeed,T0 = T ′ and so,T0 has an
autarky and every autarky forT0 is a complete set of literals. Thus, every autarky forT0 containsa1

or ¬a1. By Lemma 3.5, it follows thatT1 has an autarky. Moreover, sinceT0 ⊆ T1, every autarky
for T1 is an autarky forT0. It also follows then that every autarky forT1 is a complete set of literals.
Assuming that the claim holds for somei, 1 ≤ i < n, we prove in the same way as in the case of
i = 1, that the claim holds fori+ 1. Thus, the claim follows by induction.

It is clear that the method described above requires linear number of calls toa procedure decid-
ing the AUTARKY EXISTENCE problem.

We now discuss the relation of Theorem 3.3 with one of the results of [6].
Let S be a set of clauses. A clauseC ∈ S is lean inS if for some resolution refutation tree

T with premises fromS, C is one of premises (leaves) ofT . A subsetL of S is lean in S if it
consists of clauses that are lean inS. Clearly, for every setS of clauses,S has a largest lean subset;
it consists of all clauses that are lean inS. We denote this set byLS .
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A nonemptysubsetA ⊆ S is anautarkof S with a witnessv if v is an autarky forS andA is
the set of all clauses touched (thus satisfied) byv. There is an operation◦ on the set of 3-valued
interpretations. This operation is defined by

v1 ◦ v2 = v1 ∪ {l : l ∈ v2 andl̄ /∈ v1}

One can check that if bothv1, v2 are autarkies forS then so isv1 ◦ v2. Moreover, ifAi is an autark
subset for whichvi is a witness,i = 1, 2, thenv1 ◦ v2 is a witness forA1 ∪A2.

We also note that the collection of autarkies ofS is closed under the unions of increasing chains.
Thus, ifS has autarkies, it has maximal autarkies. Letv be a maximal autarky ofS and letA be
the set of all clauses inS touched byv. Clearly,A is an autark ofS (v is its witness). We claim
thatA is a largest autark inS. Indeed, letA′ be an autark inS and letv′ be its witness. By our
comments above,v ◦ v′ is an autarky ofS. Sincev is a subset ofv ◦ v′, the maximality ofv implies
thatv ◦v′ = v. Consequently,v is a witness of the fact thatA∪A′ is an autark. In particular,A∪A′

consists of all clauses inS touched byv. By the definition ofA,A ∪A′ = A and so,A′ ⊆ A.
This argument shows that ifS has autarks, it has a largest autark. We denote this largest autark

of S byAS . In the case whenS has no autarks, we setAS = ∅. Since autarks are nonempty,S has
autarks if and only ifAS 6= ∅. In [6] Kullmann shows the following elegant result.

Proposition 3.6 ([6]). For every set of clausesS,AS ∪ LS = S andAS ∩ LS = ∅.

The definitions imply thatAS 6= ∅ if and only ifS has an autarky. But, of course, by Proposition
3.6,AS 6= ∅ if and only if S 6= LS . Now, let LEAN be the language consisting of those sets of
clauses for whichS = LS . Then Kullmann’s result implies that for every finite set of clausesS, S ∈
AUTARKY EXISTENCE if and only if S /∈ LEAN. Since AUTARKY EXISTENCE is NP-complete
(Theorem 3.3), we get the following result of Kullmann from [6], Lemma 5.7.

Proposition 3.7 ([6]). The problemLEAN is co-NP-complete.

We note, however, that by the same observation (complementarity of languages AUTARKY EX-
ISTENCE and LEAN), Proposition 3.7 can be used as an alternative argument to show Theorem
3.3.

4. Autarkies consistent with a given interpretation

In the previous section we demonstrated that the problem to decide the existence of an autarky is NP-
complete. In this section, we will show that versions of that problem, in which we are interested in
autarkies of some particular types are easier. Letw be a complete interpretation (that is, a complete
and consistent set of literals). We say that a 3-valued interpretationv is consistentwith w if v ⊆ w
(that is, sincew is complete, ifv ∪ w is consistent). We will now study the problem of testing
if a theoryT has an autarky consistent with a complete 3-valued interpretationw. We will first
show that for a specific interpretationw consisting of atoms only the corresponding problem is
polynomial and then use a symmetry argument to extend that result to arbitrarycomplete 3-valued
interpretations.

Formally we say that an autarkyv for T is positiveif v consists of atoms. Letvt be a complete
interpretation defined by

vt = At .

9
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Clearly, positive autarkies are precisely those autarkies that are consistent withvt.
We call a formulaϕ ∈ L a generalized constraint(constraint, for short) ifAt(ϕ) 6= ∅ and the

interpretationvt doesnotsatisfyϕ (vt(ϕ) 6= t).
It is common to refer to clauses consisting entirely of negative literals asconstraints. One can

check that a clauseC is a constraint if and only ifvt(C) 6= t. The conditionvt(ϕ) 6= t generalizes
a key property characterizing constraint clauses, which justifies our choice of terminology.

Given a set of propositional formulasT , we defineT c = {ϕ ∈ T : ϕ is a constraint}. and
Ac

T = At(T c). The subscriptT is dropped ifT is clear from the context. We have the following
properties of positive autarkies.

Proposition 4.1. LetT be a set of formulas. Letv ⊆ At(T ) be a set of atoms. Thenv is an autarky
for T if and only ifv ⊆ At(TAc) andv is an autarky forTAc .

Proof: Let us assume thatv is an autarky forT . We need to show thatv ∩ Ac = ∅ and thatv is an
autarky forTAc .

Let ϕ ∈ T c. Let us assume thatv touchesϕ. Sincev is an autarky forT , v 3-satisfiesϕ. Since
v �k vt, by Proposition 2.1 we have thatvt 3-satisfiesϕ, a contradiction with the fact thatϕ is a
constraint. It follows thatv ∩Ac = v ∩ At(T c) = ∅ and, consequently,v ⊆ At(TAc).

Next, let us consider a formulaψ ∈ TAc such thatv touchesψ. There is a formulaϕ ∈ T
such thatψ = ϕAc . Sincev touchesψ, v touchesϕ as well. Consequently,v 3-satisfiesϕ. By
Proposition 2.5 (1),v 3-satisfiesϕAc , that is,v 3-satisfiesψ. Sinceψ was arbitrary,v is an autarky
for TAc .

Conversely, let us assume thatv is a set of atoms,v ⊆ At(TAc), and thatv is an autarky forTAc .
From the first assumption, it follows thatv ∩ Ac = ∅. Let us consider a formulaϕ ∈ T such thatv
touchesϕ. Sincev ∩ Ac = ∅, v touchesϕAc . Consequently,v 3-satisfiesϕAc . By Proposition 2.5
(1) again,v 3-satisfiesϕ, and sinceϕ is an arbitrary formula inT , the other implication follows, as
well. 2

Proposition 4.1 entails an algorithm that decides if a setT of formulas has a positive autarky
and if so, computes it. To this end, the algorithm computes a sequence of pairs〈Tn, An〉, starting
with T0 = T , andA0 = Ac

T . If after the iterationk, Ak = ∅, the computation of the sequence
terminates. Otherwise, the algorithm proceeds to the iterationk + 1 and computesTk+1 = (Tk)Ak

,
andAk+1 = Ac

Tk
. This construction terminates because in every iteration the number of atoms in

the theory decreases. We denote by〈T+, A+〉 the last element in the sequence. Before we continue
the description of the algorithm, we note the following consequence of Proposition 4.1.

Corollary 4.2. LetT be a set of formulas. Letv ⊆ At(T ) be a set of atoms. Thenv is an autarky
for T if and only ifv ⊆ At(T+) andv is an autarky forT+.

We return to the algorithm. By the definition,A+ = ∅. Two cases are possible.
Case 1. T+ = ∅. In this case,T+ has no autarkies and, in particular, no positive autarkies. By
Proposition 4.1 (and by induction),T has no positive autarkies.
Case 2. T+ 6= ∅. Then, by the definition ofT+, At(T+) 6= ∅. SinceA+ = ∅, vt satisfies every
formula inT+ which contains at least one atom. Consequently, each such formula is 3-satisfied by
v = At(T+). Sincev 6= ∅, v is an autarky forT+ and so, by Corollary 4.2, also forT . Thus we get
the following corollary.

Corollary 4.3. The problem{T : T is a finite propositional theory andT possesses a positive
autarky} is polynomial.

10
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To extend the Corollary 4.3 to the case of arbitrary interpretations, we needan additional concept
and a lemma. Ashift is a renamingπ such that for alll, |l| = |π(l)| (we recall that|l| denotes the
atom of the literall). Thus shift does not change the underlying atom, but can only changethe sign.

Lemma 4.4. Letw be a complete interpretation. Then there is a unique shiftπw such thatw =
πw(vt). The shiftπw can be computed fromw in linear time.

Let w be a complete interpretation. We definePw as the problem consisting of those finite
theoriesT which possess an autarky consistent withw.

Proposition 4.5. For every complete interpretationw, the problemPw is polynomial.

Proof: Given a finite theoryT , let us applyπw to T . Then, by Proposition 2.8 the resulting theory
T ′ possesses a positive autarky if and only ifT possesses an autarky consistent withw. But we have
a polynomial-time algorithm for testing ifT ′ possesses a positive autarky, and one can computeT ′

from T in polynomial time. Thus the assertion follows. 2

One interesting interpretation isvf defined by:

vf = {¬p : p ∈ At},

A negative autarky forT is an autarky forT consisting of negative literals. It is quite clear that a
negative autarky is one that is consistent withvf . Let us call a formulaϕ ∈ L a generalized dual-
constraint(abbreviated simply todual-constraint) if At(ϕ) 6= ∅ and the interpretationvf defined by
doesnotsatisfyϕ. Dual-constraints generalize the notion of apositiveclause.

Our algorithm for finding positive autarkies allows us to define an algorithm for finding negative
autarkies. We can do this in either of two ways. One is to use Permutation Lemma and Proposition
2.8. But there is another, direct way. We defineT d = {ϕ ∈ T : ϕ is a dual-constraint}, and
Ad

T = At(T d). We then have by a reasoning following that of the proof of Proposition 4.1the
following fact.

Proposition 4.6. LetT be a set of formulas. Letv be a set of negative literals. Thenv is an autarky
for T if and only ifAt(v) ⊆ At(TAd) andv is an autarky forTAd .

Now, it is clear that we can follow the algorithm for computing positive autarkies almost verba-
tim; all we need to do is to considerT d instead ofT c. The next corollary follows from Proposition
4.5, or directly via the reasoning outlined above.

Corollary 4.7. The problem{T : T is a finite propositional theory andT possesses a negative
autarky} is polynomial.

We will use the results of this section in the next section, when studying the issueof autarkies
for Horn theories.

5. Classes of theories for whichAUTARKY EXISTENCE is easy

It is well known that the SAT problem is in P for the following classes of theories:

1. 2CNF theories

2. Horn theories, dual-Horn theories and renameable-Horn theories

11
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3. Affine theories

We will show that for each of these classes the problem of the existence ofautarkies is also in P.
In some cases, we will also identify minimal autarkies and characterize the structure of the family
of autarkies of a theory. This forms a partial solution to a general problem(How the structure of a
set of formulasF is reflected in its collection of autarkies?) formulated in Section 9 of [6].

5.1 The class of 2CNF theories

The results of this section are related to the results from [5], because onecan show that every
autarky of a 2CNF theory is a linear autarky. Here we study the connectionof autarkies with
boolean constraint propagation and obtain results on the structure of the set of autarkies of 2CNF
theories.

LetT be a CNF theory and letl be a literal. The key tool in studying autarkies of 2CNF theories
is a version of the well-known boolean constraint (or unit) propagation. LetT be a CNF theory and
let l be a literal,l ∈ Lit(T ). We setL0 := {l}. We defineLi+1 to consist of those literalsl′ that are
in Li or that can be derived by resolving literals inLi with a clause inT . If the resolution results
in the empty clause⊥, we include it inLi+1, too. We setBCP(T, l) =

⋃∞
i=0

Li. We note that in
the version of unit-propagation we presented here we do not include inBCP(T, l) literals that form
unit clauses inT . In order to include a literal other thanl in BCP(T, l), it must be derived from a
non-unit clause inT by resolving it against literals included inBCP(T, l) earlier.

Proposition 5.1. LetT be a 2CNF theory andv an autarky forT . If l ∈ v thenBCP(T, l) ⊆ v.

Proof: We use the notation introduced above. By the definition,L0 ⊆ v. Let us assume thatLi ⊆ v.
First, let us assume that⊥ ∈ Li+1. SinceLi ⊆ v, ⊥ /∈ Li. Thus, there is a literall ∈ Li such

thatC = l̄ is a clause inT . Sincel ∈ v, v touchesC but, being consistent, contains no literal inC.
This contradicts the fact thatv is an autarky forT . Thus,⊥ /∈ Li+1.

Next, let us consider a literall′ such thatl′ ∈ Li+1 \ Li. It follows that there is a literall ∈ Li

such that the clauseC = l′ ∨ l̄ belongs toT . Sincel ∈ v, v touchesC. Thus,v contains a literal
fromC. Sincel̄ /∈ v, it follows thatl′ ∈ v. Consequently,Li+1 ⊆ v. By induction,BCP(T, l) ⊆ v.
2

Proposition 5.2. LetT be a 2CNF theory and letl ∈ Lit(T ). If BCP(T, l) is consistent then it is
an autarky ofT .

Proof: SinceBCP(T, l) is consistent, it is a set of literals (that is, it does not contain⊥). Moreover,
by the definition,BCP(T, l) 6= ∅. LetC be a clause touched by a literall′ ∈ BCP(T, l). If l′ is a
literal of C, BCP(T, l) contains a literal fromC. So, let us assume thatl̄′ is a literal ofC. Since
⊥ /∈ BCP(T, l), C contains a literall′′ that is different from̄l′. It follows thatl′′ ∈ BCP(T, l) and
so,BCP(T, l) contains a literal fromC in this case, too. 2

These two results form the basis for a necessary and sufficient condition for the existence of au-
tarkies for 2CNF theories, and for a characterization of minimal autarkies.Specifically, Propositions
5.1 and 5.2 imply the following result.

Proposition 5.3. LetT be a 2CNF theory.

1. T has an autarky if and only if for some literall ∈ Lit(T ) the setBCP(T, l) is consistent

12
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2. Every autarky ofT is the union of a nonempty family of autarkies of the formBCP(T, l).

It is now clear that in order to decide whether a 2CNF theoryT has an autarky, it is enough to
computeBCP(T, l) for every literall ∈ Lit(T ). If in at least one case, we obtain a consistent set of
literals, this set is an autarky forT . Otherwise,T has no autarkies. This method can be implemented
to run in polynomial time in the size ofT .

Theorem 5.3 also implies a method to compute minimal autarkies of a 2CNF theoryT . To this
end, we observe that minimal autarkies are precisely minimal consistent sets of the formBCP(T, l).
To compute them all we need to do is to identify minimal elements in the family ofconsistentsets
of the formBCP(T, l), which can be accomplished in polynomial time.

5.2 The class of Horn theories

We now consider the case of Horn theories. As in the previous section, theresults we present here
are related to those presented in [5]. Unlike [5] however, our focus is on the structure of autarkies
and we do not impose restrictions on the class of Horn theories that we consider.

A clause isHorn if it contains at most one non-negated literal. A Horn clause isdefiniteif it
contains exactly one non-negated literal. Otherwise, it is anindefiniteclause or aconstraint. A Horn
clause is afact if it is a positive unit clause (consists of a single literal and this literal is an atom).

A Horn theoryis a collection of Horn clauses. We denote the set of constraints and the setof
facts of a Horn theoryT by T c andT f , respectively. Facts are the only dual constraints a Horn
theory may contain. Thus,T f = T d.

If T contains no constraints (T c = ∅), it is definite. If T contains no facts (T f = ∅), it is dual
definite. We note that the set of all atoms of a definite Horn theory is a 2-valued modelof that
theory. Similarly, the set of all literals obtained by negating all atoms appearingin a dual definite
Horn theory is a 2-valued model of that theory.

Given a set of literalsv, we definev+ as the set of positive literals (that is, atoms) inv, andv−

as the set of negative literals (negated atoms) inv. We then have the following fact.

Lemma 5.4. LetT be a Horn theory. Letv be an autarky forT such thatv− 6= ∅. Thenv− is an
autarky forT .

Proof: LetC be a clause inT such thatv− touchesC. Sincev− ⊆ v, v touchesC and, consequently,
v contains a literal fromC. Let us assume thatv does not contain a negative literal fromC. It follows
thatC is definite, sayC = ¬p1 ∨ . . . ∨ ¬pk ∨ q, andq ∈ v. Sincev is consistent,¬q /∈ v and
so,¬q /∈ v−. Further, for everyi, 1 ≤ i ≤ k, ¬pi /∈ v and so,¬pi /∈ v−. This is a contradiction
with the fact thatv− touchesC. Thus,v contains a negative literal fromC, and consequently,v−

contains a literal fromC. It follows thatv− is an autarky forT . 2

Corollary 5.5. Let T be a Horn theory. IfT has an autarky then it has a positive autarky or a
negative autarky.

Proof: Let us assume thatT does not have a positive autarky. Letv be an autarky forT . By our
assumption,v− 6= ∅ and, by Lemma 5.4,v− is a negative autarky forH. 2

Corollary 5.6. The problem of the existence of an autarky for Horn theories is inP.

Proof: To decide whether a Horn theoryT has an autarky we use first the algorithm described in
Section 4 to find a positive autarky ofT . If we succeed,T has an autarky and we stop. Otherwise,
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we use the dual version of this algorithm that finds a negative autarky (if one exists). If we succeed,
T has an autarky and we stop. Otherwise, we return thatT has no autarkies and stop. Corollary 5.5
implies that the algorithm is correct. It is evident that it can be implemented to run inpolynomial
time. 2

We now turn attention to minimal autarkies of Horn theories. We have the followingresult.

Proposition 5.7. If v is a minimal autarky of a Horn theoryT thenv is positive orv is negative.

Proof: Let us assume thatv is not positive. It follows thatv− 6= ∅. Thus,v− is an autarky forT
(Lemma 5.4). Sincev is a minimal autarky forT , v = v−, that is,v is a negative autarky forT . 2

Positive autarkies of Horn theories have a characterization based on a certain efficient compu-
tational procedure with a flavor of a bottom-up constraint propagation. Let T be a Horn theory and
let a be an atom. We setA0 = {a}. Next, given a set of atomsAi, we defineAi+1 to contain every
atom fromAi and in addition, every atomb such that there is a clauseC = b∨¬b1∨ . . .∨¬bk in T ,
with at least onebj in Ai. We then setAP(T, a) =

⋃∞
i=0

Ai (AP stands forautarky propagation).
We have the following basic result. We use in it the notationT+, which was introduced in Section
4.

Proposition 5.8. LetT be a Horn theory anda an atom inAt(T+).

1. The set of atomsAP(T+, a) is an autarky forT

2. If v is a positive autarky forT anda ∈ v thenAP(T+, a) ⊆ v

3. Every positive autarky ofT is the union of sets of the formAP(T+, a).

Proof: (1) We recall that ifT+ 6= ∅, then theoriesT andT+ have the same positive autarkies
(Corollary 4.2). Consequently, sinceAP(T+, a) consists of atoms only, it suffices to show that
AP(T+, a) is an autarky forT+. Let C be a clause inT+ such thatAP(T+, a) touchesC. Let
us assume thatC = b ∨ ¬b1 ∨ . . . ∨ ¬bk (we recall thatT+ is definite). Ifb ∈ AP(T+, a), then
AP(T+, a) contains a literal fromC. So, let us assume thatbj ∈ AP(T+, a) and, more specifically
thatbj ∈ Ai, for some non-negative integeri. By the definition,b ∈ Ai+1 and so,b ∈ AP(T+, a).
Thus,AP(T+, a) contains a literal fromC in this case, too.
(2) Letv be a positive autarky forT . Then,v is an autarky forT+ (Corollary 4.2). Sincea ∈ v,A0 =
{a} ⊆ v (we use the notation introduced above). Let us assume thatAi ⊆ v and let us consider an
atomb ∈ Ai+1 \ Ai. It follows that there is a clauseC ∈ T+ such thatC = b ∨ ¬b1 ∨ . . . ∨ ¬bk
and for somej, bj ∈ Ai. Hencebj ∈ v and so,v touchesC. Sincev is an autarky forT+, v
contains a literal fromC. Sincev consists of atoms,b ∈ v. Thus,Ai+1 ⊆ v and, by induction,
AP(T+, a) ⊆ v.
(3) This part of the assertion is a direct consequence of (2). 2

We note that our results imply a polynomial-time algorithm to compute minimal positive au-
tarkies of Horn theories. Indeed to accomplish that task, one needs to compute all setsAP(T+, a),
wherea ∈ At(T+), and then select the minimal ones.

Let us observe that similar effective characterizations of negative autarkies of Horn theories are
unlikely to exist, as negative autarkies are related to hitting sets of hypergraphs, a connection that
implies the following result.

Proposition 5.9. The following problem is NP-complete: given a Horn theoryT and an integerk,
decide whetherT has a negative autarky with no more thank elements.

14



ALGORITHMIC PROPERTIES OF AUTARKIES

Proof: The membership in the class NP is evident. To prove NP-hardness,we construct a reduction
from thehitting set problem: given a familyH of finite sets and an integerk, decide whetherH has
a hitting set with at mostk elements. This problem is known to be NP-complete [2]. LetX =

⋃
H.

We define a Horn theoryT (H) as follows. For everya ∈ X, we include inT (H) all clauses of the
form

a ∨ ¬a1 ∨ . . . ∨ ¬am (2)

where{a1, . . . , am} is a set inH. We observe that the theoryT (H) can be constructed in polyno-
mial time.

LetH be a hitting set forH. Then,v = {¬h : h ∈ H} is an autarky forT (H), as it 3-satisfies
T (H). Conversely, letv be a negative autarky forT (H). Then,v = {¬h : h ∈ H}, for some
H ⊆ X. Let us choosea ∈ H (sincev is an autarky,H is not empty). Then,v touches and
so, satisfies all clauses of the form (2), where{a1, . . . , am} ranges over all sets inH. Sincev is
negative, it follows thatH is a hitting set forH.

Thus,H has a hitting set with at mostk elements if and only ifT (H) has a negative autarky
with at mostk elements, and the hardness follows. 2

We conclude with a result on autarkies of a certain subclass of Horn theories.

Proposition 5.10. Every autarky of a Horn theory consisting of facts and constraints contains a
pure literal.

Proof: Letv be an autarky for such a theory, sayT . If v contains a negative literall, l does not touch
facts inT . Thus,l is pure inT .

So let us suppose thatv consists of positive literals (atoms) only. Thenv does not satisfy any
constraint inT , and so all literals inv are pure. 2

5.3 Dual-Horn theories

The results we obtained for Horn theories in Section 5.2 extend to the cases of dual-Horn theories.
A clause isdual-Horn if it contains at most one negative literal. On analogy with Horn clauses,
we havefacts, definite dual-Horn clauses and dual-constraints. Facts in current context are negative
units.

We state in a single proposition properties of autarkies for dual-Horn theories. The proofs of
these results are similar to those of Section 5.2.

Proposition 5.11. 1. LetG be a dual-Horn theory. Letv be an autarky forG such thatv+ 6= ∅.
Thenv+ is an autarky forG.

2. LetG be a dual-Horn theory. IfG has an autarky then it has a positive autarky or a negative
autarky.

3. The problem of existence of an autarky for dual-Horn theories is polynomial.

4. If v is a minimal autarky of a dual-Horn theoryG thenv is positive orv is negative.

5. Every autarky of a dual-Horn theory consisting of facts and dual-constraints contains a pure
literal.
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5.4 Renameable-Horn theories

A theoryT is a renameable-Horn theoryif there is a renamingπ such thatπ(T ) is a Horn theory.
It is well known that renameable-Horn theories can be recognized in polynomial time and, given
a renameable-Horn theory, an appropriate renaming can be constructedin polynomial time, too.
Of course the dual-Horn theories are renameable-Horn, but the class of renameable-Horn formulas
is wider than dual-Horn. The property of Horn and dual-Horn theories that whenever they have
autarkies then they have positive or negative autarkies does not lift to renameable-Horn theories. For
instance, the theory{p ∨ q,¬p ∨ ¬q}, which is renameable-Horn, has no positive and no negative
autarkies. Nevertheless, as in the case of Horn theories, the problem ofthe existence of autarkies
for renameable-Horn is easy. Applying a shift transforming a renameable-Horn theoryR to a Horn
theoryHR, checking if the theoryRH possesses an autarky, and if so, shifting the autarky back (via
the same shift) gives a polynomial-time method to compute autarkies of renameable-Horn theories.
Thus, we have the following fact.

Proposition 5.12. The problem of existence of an autarky for renameable-Horn theories ispolyno-
mial.

5.5 Affine theories

In this subsection, we study affine theories. These theories do not consist of clauses and our gener-
alization of autarkies to the case of arbitrary theories becomes essential.

A propositional formula isaffineif it is of the form

C = x1 ⊕ x2 ⊕ . . .⊕ xk

wherex1, . . . xk−1 are propositional variables andxk is a propositional variable or a boolean con-
stant⊤ or⊥.

Let v be a set of literals. Let us observe thatv 3-satisfies a affine formulaϕ = x1⊕x2⊕ . . .⊕xk

if and only if At(ϕ) ⊆ At(v) andv satisfiesϕ in 2-valued logic.
Let T be a affine theory. A set of atomsX ⊆ At(T ) is a componentof T if X is a minimal

nonempty subset ofAt such that for every formulaC ∈ T , At(C) ⊆ X or At(C) ∩ X = ∅.
Alternatively, letG(T ) be the graph with the vertex setAt(T ), in which two vertices are connected
with an edge if they appear in the same formula ofT . Then, components ofT are precisely the
vertex sets of connected components ofG(T ). It follows that components of a affine theoryT form
a partition of the setAt(T ).

Proposition 5.13. LetT be a affine theory and letv be an autarky forT . Then

1. For everyC ∈ T , eitherAt(C) ⊆ At(v) or At(C) ∩ At(v) = ∅

2. For every componentX of T , eitherX ⊆ At(v) or X ∩ At(v) = ∅.

3. For every componentX ofT such thatX ⊆ At(v), v satisfies{C : At(C) ⊆ X} (in 2-valued
logic).

Proof: (1) LetC ∈ T . If v does not touchC thenAt(C) ∩ At(v) = ∅. If v touchesC then,v
3-satisfiesC. By our earlier observation, it follows thatAt(C) ⊆ At(v).
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(2) Let us assume thatX\At(v) 6= ∅ andX∩At(v) 6= ∅. ThenX\At(v) is a nonempty proper sub-
set ofX and so, it is not a component. Thus, there is a formulaC such thatAt(C)∩(X\At(v)) 6= ∅
andAt(C) \ (X \ At(v)) 6= ∅. SinceAt(C) ∩X 6= ∅, At(C) ⊆ X. Thus,At(C) ∩ At(v) 6= ∅. It
follows thatC is touched byv but not 3-satisfied byv, a contradiction with (1).
(3) Sincev touches every formula in{C : At(C) ⊆ X}, v 3-satisfies every formula in{C : At(C) ⊆
X}. By our earlier observation,v satisfies every formula in{C : At(C) ⊆ X} in 2-valued logic.2

Corollary 5.14. LetT be a affine theory.

1. If for every componentX the theory{C ∈ T : At(C) ⊆ X} is unsatisfiable (in 2-valued
logic) thenT has no autarkies

2. If there is a componentX such that{C ∈ T : At(C) ⊆ X} is satisfiable (in 2-valued logic),
then the setv of literals such thatAt(v) = X andv satisfies{C ∈ T : At(C) ⊆ X} is a
minimal autarky forT

3. Every autarky forT is the union of minimal autarkies ofT of the kind described in (2).

Thus, to decide the existence of autarkies of a affine theoryT we first find all components ofT
(one can accomplish that in polynomial time, as finding connected components ofgraphs is in P) and
we use a polynomial-time algorithm deciding satisfiability of affine theories, to finda component
X such that{C ∈ T : At(C) ⊆ X} is satisfiable (in 2-valued logic). If none exists,T has no
autarkies. Otherwise,T has a satisfiable component and, by Corollary 5.14, has an autarky.

6. Conclusions

The contribution of this paper is twofold. First, we studied computational properties of autarkies.
We proved that the existence problem for autarkies is NP-complete. We have shown a direct reduc-
tion of the search version of the problem to the decision version in a linear number of calls to the
decision version. We found a new class ofeasyautarkies - those that are consistent with a given
complete interpretation. We also found several classes of theories for which the problem of autarky
existence can be solved in polynomial time. More importantly, in each of these cases we classi-
fied autarkies and obtained the results on their structure in terms of minimal autarkies. Our results
complement those of [5] and [6].

Second, we generalized autarkies to the case of arbitrary propositionaltheories by exploiting
the concept of satisfiability in 3-valued logic. The choice of the logic warrants some comments. Let
us call a set of literals aweak autarkyof a theoryT if for every formulaϕ ∈ T that is touched by
v, v entailsϕ (in 2-valued logic). It is well known that if[v(ϕ)]3 = t thenv entailsϕ (in 2-valued
logic). Thus, every autarky is a weak autarky. In addition, a fundamental property of autarkies,
Theorem 2.3, holds for weak autarkies, as well. Why then not to use weakautarkies rather than
autarkies? In the case of clausal theories, there is no essential difference. Both concepts coincide
if we exclude tautological clauses from considerations, a typical assumption in the satisfiability
research. However, in the general case, the difference is significant. One can verify whetherv 3-
satisfiesϕ in polynomial time, while the problem to verify whetherv entailsϕ is co-NP-complete
in general (we stress thatv is not necessarily a complete set of literals). Thus, the choice of logic in
extending the notion of an autarky to the case of arbitrary theories is closelytied to the difficulty of
recognizing autarkies.

17



MAREK & T RUSZCZYŃSKI
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