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Abstract

Autarkies arise in studies of satisfiability of CNF theoriés this paper we extend the notion
of an autarky to arbitrary propositional theories. We nbt in this general setting autarkies are
related to the 3-valued logic. Most of our results are comegrwith algorithmic properties of
autarkies. We prove that the problem of the existence ofriaetais NP-complete and that, as in
the case of SAT, if an autarky exists then it can be computedédnns of polynomially many calls
to an oracle for the decision version of the problem. We ateuethat, while intractable in general,
the problem of the existence of autarkies is in P if we ressthie class of autarkies of interest to
those that are consistent with a fixed complete and consis&trof literals, or if we restrict the
class of theories to 2CNF, Horn, and affine theories. In galar we present normal form results
for autarkies of theories of special types.

KEYWORDS Autarky, algorithms, complexity

1. Introduction

Autarkies arise in studies of propositional satisfiability. They were intredun [7] in order to
establish sufficient conditions for pruning the search for a satisfyingprdgtation of a CNF theory.

Let T be a collection of propositional clauses (a CNF theory). A nonempty ansistent set
of literals is anautarkyfor 7' if every clause”' € T that contains a dual of a literal fromcontains
also a literal fromw. Pure literals are simplest examples of autarkies. Namely, if a litesgdure
in a CNF theoryT’, that is,T' contains no occurrence of the dual literallfghen the se{l} is an
autarky forT.

Let us denote by~ the set of all clauses i that contain neither a literal fromnor the dual
of a literal inv. The following simple result gives a fundamental property of autarkigsniadkes
them useful in satisfiability research.

Theorem 1.1. LetT be a CNF theory. I is an autarky forl” thenT is satisfiable if and only if
T, is satisfiable.

Theorem 1.1 implies that it is an autarky for a CNF theory then testing whether is
satisfiable can be reduced to testing wheffjers satisfiable. This latter task is easierigs has at
least|v| fewer atoms thaff’. We note that it consists of a pure literal, the simplification described
by Theorem 1.1 is known as thpeire-literal pruning rule.

Using Theorem 1.1, researchers designed algorithms testing satisfiabBBNH theories with
the worst-case running times exponentially better than the trivial boud{ ¥f), wheren is the
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number of atoms in the input thedtyThe first such algorithm, with the worst-case running time
of O(1.619™), was presented in [7]. The line of research it started culminated with anitalgo
running in timeO(1.497™), described in [9, 4].

A most direct use of autarkies to decide satisfiability of a theory consisepeftedly comput-
ing an autarky and using its literals to reduce the theory. The problem withrtméng mechanism
is that computing autarkies is hard. The corresponding decision probésmeported to be NP-
complete in [5]. To circumvent that problem [5] introduced the notion lfie@ar autarky, defined
in terms of a certain linear programming problem. Linear autarkies can be ¢tedipyolynomial
time. Using linear autarkies in place of general ones makes the reductiondhttberibed above
polynomial. Moreover, [5] shows that the class of theories for which théhodeactually decides
satisfiability contains, in particular, some well-known classes of theoriesHimh the satisfiability
problem is polynomial: 2CNF theories and Horn theories.

In this paper we study general autarkies. We first show that the cbotcap autarky can be ex-
tended to the case of theories consisting of arbitrary propositional fosmtifeat generalization em-
phasizes and exploits a connection to 3-valued logic, already preseetaniginal setting of CNF
theories but obscured by the syntactic simplicity of clauses. We then focakyorithmic proper-
ties of autarkies and show that the problem to decide the existence ofiaatarlP-complete, a
fact reported without proof in [5]. We also show explicitly the propertyself-reducibility — the
existence of a reduction from a search problem for autarkies to its desisision. We investigate
the problem of existence of autarkies consistent with a given completeoaststent set of literals.
We show that for every such sebf literals, the problem to decide whether a finite theory possesses
an autarky consistent withis in P. In particular, the problems of existence of positive and negative
autarkies are polynomial. Next, we prove that for several classes arfigsefor which the satisfi-
ability problem is in the class P, the existence of autarkies can also be détideaignomial time.
In addition, we obtain results concerning the structure of the set of ssaok theories in these
classes. Finally, in the conclusions we offer some more comments on the thie®#alued logic
for the concept of an autarky.

The fact that computing autarkies is hard limited their role in the design of shiig§izolvers
(and as we noted, prompted research of special autarkies that camipaited efficiently). The
situation may be different, however, when we consider the problem adidgahe truth of a quan-
tified boolean formula (QBF). This problem is PSPACE-complete in genadedeen those pruning
techniques that require exponential time may be beneficial, as demonstri@gdAntarkies may
provide such pruning techniques, as we have the following genesabwesf Lemma 2.4 from [1],
concerned with simplifications by pure literals whose atoms are existentiallyifieen

Lemma 1.2. LetQiz1 ... Qrx, F be a QBF, wherdr is a formula in CNF. Ifv is an autarky for
E such that every atom that appearsiifis existentially quantified, the@1z1 . .. Qnx, F is true if
andonly ifQz; ... Qnx, E, IS true.

The theoryE  contains no atoms that appear«rand the corresponding quantifiers can be
dropped from the prefix. Thus, the QBFR z; ... Q,x, E, constitutes a simplification of the origi-
nal one. If the cost of finding autarkies can be offset by gains in tackdime resulting from better
pruning, autarkies will prove useful in the design of fast QBF solvedsdeserve further study.

1. We provide worst-case estimates of the running times of satisfiabilityrsalpeto a polynomial factor.
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2. Preliminaries

We consider the language of propositional logic determined by a set of atontewo constantsL
andT, and the boolean connectivesV, A, — and® (the last one denoting thexclusive o).

A literal is an atom or the negation of an atom. In the first case, the literal is qailgtveand
in the second case -regative Given a literal there is arunderlying atom|l|. Thus|—p| = p. The
dual of literal [, denoted, is —p if [ = p andp is an atom, ang if [ = —p. A clauseis a disjunction
of literals. Thus, clauses do not contain constantend T. We identify the empty clause with the
constantL.

For a formulap, we write At() for the set of atoms that appeargrand Lit(y) for the set of
literals one can built of these atoms. We extend this notation to sets of literalserteth

A 3-valued interpretatiorof a set of atomsit is a functionv : At — {t,f, u}, wheret, f and
u represent truth valugsue, falseandunknown There is a one-to-one correspondence between
3-valued interpretations and consistent sets of literals. It maps a 3-viateggretatiorv to the set
of literals

{p:vlp) =ty U{-p:v(p) =f}

Therefore, we identify 3-valued interpretations and consistent sets l$iteand use the same
symbols (typicallyv andw) to denote them. Aompletenterpretation is a 3-valued interpretation
that assigns only valugsandf. When we identify such interpretation with a set of literals, the
resulting set is completeandconsistentthat is, for every literal eitherl or I belongs tov.

We define the truth value of a formulain a 3-valued interpretation, which we denote by
[v(p)]s, in a standard way by using the 3-valued truth tables for the logical ctwesdn the
language [3, Section 64]. They are shown in Table 1. Whep)|; = t, we say that 3-satisfiesp.

PlA|pAq|pVa|Pp—q|pDyg
fl|f f f t f
flu f u t u
p|—p flt f t t t
flt u|f f u u u
t| f uju u u u u
ul u ult u t t u
t|f f t f t
t|u u t u u
Tt t t t f

Figure 1. Truth tables for the 3-valued logic of Kleene.

Whenv is a complete interpretation (that is, whers a complete and consistent set of literals),
the truth value of every formula is the same under, regardless of whether we viewas a 3-valued
or a 2-valued interpretation. In such case, whenéwver)|s = t (which is precisely when(yp) =t
in the 2-valued logic), we say thatsatisfiesp.

There is a natural ordering, (calledknowledge orderingon the truth value$t, f, u} of three-
valued logic. In this ordering =< t, andu =< f (while t andf are non comparable). This ordering of
truth values extends (via product ordering) to 3-valued interpretatidtiien we identify 3-valued
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interpretations with consistent sets of literals, the orderfagoecomes the inclusion ordering of
the family of consistent sets of literals.
In the paper we need a fundamental property of 3-valued interpretatitaislished by Kleene.

Proposition 2.1 (Kleene).Lety be a propositional formula, and let, v’ be two 3-valued interpre-
tations such that <, v’ (thatis,v C v). Then[v(p)]s =< [v'(¥)]s.

We will now introduce autarkies of arbitrary propositional theories. Wetlsatv touchesy if
At(p) N At(v) # 0.

Definition 2.2. LetT be a set of propositional formulas. A consistent:set literals is anautarky
for T if everyp € T that is touched by is 3-satisfied by.

Our general definition of autarkies, when limited to clauses, is equivalghtetdefinition we
presented in the introduction. Indeed, a consistent eéliterals 3-satisfies a claugeif and only if
C contains a literal fromv. In addition, we can extend to the general case the fundamental property
of autarkies, Theorem 1.1. Letbe a consistent set of literals afida set of formulas. We define
T,  to be the set of all formulas ifi that are not touched by (contain no atom fromi¢(v)). This
notation is a direct extension of the notation we introduced for CNF theortbe introduction. We
now have the following result.

Proposition 2.3. Letv be a consistent set of literals afida set of formulas. It is an autarky for
T, thenT is satisfiable if and only i, is satisfiable.

Next, we state some basic properties of autarkies that we refer to lateprdtofs are straight-
forward and we omit them.

Proposition 2.4. LetT be a propositional theory.
1. If v is a consistent and complete set of literals that satisfidésenw is an autarky forl’
2. If v an autarky forT then for every set of formuldg' C T, v N Lit(T") is an autarky forl”.

Finally, we state and prove a result, which allows us to reduce a theory sdaohing for its
autarkies. Letp be a formula of propositional logic and let C At(p). We denote byp4 the
formula obtained fromy by replacing all positive occurrences of atoms frehwith 1 and all
negative occurrences of atoms frafnwith T. The formulap4 underestimates by making the
atoms fromA to contribute to the satisfaction gfas little as possible. There is also a dual notion.
We definep” to be the formula obtained from by replacing all positive occurrences of atoms
from A with T, all negative occurrence of atoms frafnwith L and, as before, by simplifying the
constants away. This formutaverestimates.

We have the following general property of 3-valued logic.

Proposition 2.5. Lety be a propositional formulay a consistent set of literals andl a set of atoms
such thatd N At(v) = 0. Then:

1. [v(p)]z =tifand only if[v(pa)]z =t
2. [v(y))s = fif and only if[u(x?)]5 = f
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Proof: First, we observe that positive occurrences of atoms in a forgnate negative occurrences
in =, and similarly, negative occurrences of atomspifare positive occurrences ifp. Then,
assuming that) = -, we have:

PYa = - and P = —p4. 1)

Now we proceed by simultaneous induction on the complexity of formula
Base CaseThe formulay is an atom, say. There are two subcases.
(@)p ¢ A. Inthis casep, = p* = p and both equivalences hold.
(b) p € A. In this casep ¢ At(v) and so,[v(p)]3 = u. Moreover,ps = L andp? = T. We
havelv(p)]s # t and[v(pa)] # t. Thus, the first equivalence holds. Similary(p)]s # f and
[v(pa)] # £. Hence the second equivalence holds, as well.
Inductive step: Let « be a formula of length at least 2. The cases when the main functor in
is A andV are obvious. So letr = —¢p. We have thafv(¢y)]s = t if and only if [v(p)]s = f.
By the inductive hypothesis, the second equivalence holdg.fdrhus,[v(¢)]s = f if and only if
[v(¢?)]3 = f. Next, we have thd ()]s = fif and only if [v(=p?)]3 = t. By (1), [u(—p?)]3 =t
if and only if [v(14)]3 = t. Thus, the first equivalence holds for= —¢. The second equivalence
can be argued in a similar way.
Since the cases of> and @ reduce to—, A, andV, the inductive step is complete and the
assertion follows. O
We extend the mapping — ¢4 to theories. Given a propositional thedfyand a set of atoms
A C At(T'), we definel’y = {pa: ¢ € T'}. We have now the following reduction result.

Proposition 2.6. LetT" be a set of formulasd C A¢(T') a set of atoms and a set of literals such
that At(v) N A = (. Thenw is an autarky forT" if and only ifv is an autarky forT'4.

Proof: If v is an autarky fofl" thenv is nonempty and consistent. Let us assume ¢hatuches a
formulay € T4. We havey = ¢4, for some formulap € T'. SinceAt(y) C At(yp), v touchesy
and consequently, asis an autarky foff', v 3-satisfiesp. By Proposition 2.5y 3-satisfiesp4 = 1.
Thus,v is an autarky fofl'4 (asy was chosen arbitrarily). The converse implication can be proved
similarly, once we observe that if a setof literals such thatd¢(v) N A = () touches a formula
¢ € T then it touches the formulay € T4. O

In several places in the paper we will use a symmetry argument applied tiethebtained by
replacing some literals with others. rAnamingis a permutation of the set of literalst(A¢) such

that for every literal, (1) = = (l).

If = is a renaming and is aconsistenset of literals (a 3-valued interpretation),v) is also a
consistent set of literals (a 3-valued interpretation).

The so callegermutation lemméas another useful property. Letbe a renaming and let be
a propositional formula. We will now define a formutéy) obtained by applyingr to ¢. To this
end, we viewp as a tree with atoms in the leaves and boolean operators in the internal kdeles.
definen () to be the formula obtained by replacing in the treepodvery subtree representing a
literal [ with the subtree for the dual literal.

We note that this type of renaming of literals preserves clauses. Thatiss i clause and is
a renamings(C) is a clause, too.

We have the following property of renamings.
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Lemma 2.7 (Permutation Lemma). For every 3-valued interpretation, for every renamingr of
literals, and for every formula of L,

[r(v) (7 (p)]3 = [v(©)]s-

For every renaming, 3-valued interpretation touches a formula if and only if 7 (v) touches
(). Letus definer(T') = {n(p) : ¢ € T'}. As a direct consequence of Lemma 2.7, we obtain a
“symmetry” result for autarkies.

Proposition 2.8. Letv be a 3-valued interpretation arifl a set of propositional formulas. Then
is an autarky forT" if and only ifr(v) is an autarky forr (7).

3. Decision and search problems for autarkies

The main objective of this section is to establish the complexity of the problem adxilstence
of autarkies. We will also consider searchversion of the problem (to compute an autarky or
determine that none exists).

Definition 3.1. AUTARKY EXISTENCE Given a propositional theor§’, decide whethe¥" has an
autarky.

First, we note the following obvious property that follows directly from thérd&on of an
autarky.

Proposition 3.2. LetT" be a propositional theory anda consistent set of literals, C Lit(T"). The
guestion whether is an autarky forT" can be decided in polynomial time in the sizdof

Proposition 3.2 implies that theUXARKY EXISTENCE problem is in the class NP. Our goal
now is to show that it is NP-complete.

Proposition 3.3. TheAUTARKY EXISTENCE problem is NP-complete.

Proof: By the comments above, we focus on the NP-hardness only. rob&ip by the reduction
from a variant of the propositional satisfiability problem, in which we resiriput theories to
those that do not contain the empty clause nor tautologies. Clearly this depisibiem is also
NP-complete.

LetT be a CNF theory and let;, 0 < i < n — 1, be all atoms that appearin We introducen
newatomsg;, 0 < i < n — 1, and define a CNF theor#(T") to consist of three groups of clauses:

1. all clauses i’
2. clause9; V ¢; and—p; V —¢q;, where0 <i<n—1

3. clausesp; V pit1 V qiy1, Pi V Piv1 V Git1, G V piy1 V Giv1, andg; V pir1 V qip1, Where
0 <7 <n -1, and the addition of indices is moduto

The theoryA(T') can be constructed in linear time in the sizgofWe will show thatl’ is satisfiable
if and only if A(T") has an autarky.
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(=) SinceT is satisfiable, there is a setC Lit(T") such that for every, 0 < i < n — 1, exactly
one ofp; and—p; belongs tow, andv satisfiesl” (indeed, each complete interpretation satisfyihg
can be represented by such set of literals). We defims follows:

vV =vU{~g:pi€v,i=0,1,....n—1}U{g: -p;€v,i=0,1,...,n— 1}.

We will show thatv’ is an autarky forA(T'). To this end, it is enough to show that every clause in
A(T) contains a literal from’.

Sincew satisfiesT' andT' consists of non-tautological clauses, every clausé iocontains a
literal fromv and so, also a literal fron¥. By the definition ofv’, every clause of type (2) contains
a literal frome’, as well. Since all clauses of type (3) are subsumed by clauses of fype/éRy
clause of type (3) also contains a literal frafm
(<) Letus assume that is an autarky forA(7"). By the definitionp’ is consistent and contains at
least one literal. Due to the symmetry of the clauses of types (2) and (3),utlties of generality
we can assume that it is onemf, qo, —po, Ofr =qg. Since the proof in each case is the same, let us
assume thaty € v'. Since—pg V —qo is in A(T") and is touched by, it follows that—qy € v'. Let
us consider the clause

“poVp1Vaq

from A(T). It is touched byy’. Consequently, it is satisfied hy, which in turn implies that’
containsp; or ¢;. In the first case, sinc€ touches and so, satisfies the clauge V —q1, ¢ € v'.
In the second case, for the same reaseps,c v'. Continuing this argument, we show thatis a
complete set of literals ovett(A(T)).

Letv =o' N Lit(T). Let us consider a clauge € T'. It follows thatC' € A(T'). SinceT does
not contain the empty clause and sintés a complete set of literals ovelrt(A(T)), v' touchesC'.
Consequentlyy’ contains a literal fronC'. Since every literal irC' belongs toLit(T'), v contains a
literal from C. Thus,v satisfies”' and saT’, as well (ag” is an arbitrary close frorif’). O

We will now show that the ATARKY SEARCH problem, where the goal is tmmputean autarky
or determine that none exists, can be solved directly by means of polynomially cais to an
algorithm for the AJITARKY EXISTENCE problem. While every NP-complete search problem can
be solved by means of polynomially many calls to an oracle for its decision vem@®show here
anexplicitreduction of AITARKY SEARCH to AUTARKY EXISTENCE. Our reduction is based on
two lemmas of separate interest.

Lemma 3.4. LetT be a CNF theory and a consistent set of literals.

1. If a € At(T), thenv is an autarky forT" and a, —a ¢ v if and only ifv is an autarky for
T U{a,—a}

2. Iffor everya € At(T'), T U {a,—a} has no autarkies then every autarky fBiis a complete
set of literals overdt(T).

Proof: Part (1) of the assertion follows directly from the definition of atagky.
(2) Letv be an autarky fofl". By (1) it follows that for everyw € At(T'), a € v or =a € v. Thus,v
is a complete set of literals. O

Lemma 3.5. LetT be a CNF theory such that every autarky fois a complete set of literals over
At(T). Then, for every literal € Lit(T), a set of literalsv C Lit(T) is an autarky forT" U {{} if
and only ifv is an autarky forT" and! € v.
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Proof: (<) Sincew is an autarky fofl" andi € v, v is an autarky fofl" U {l}.

(=) Conversely, let us assume thais an autarky fofl’ U {i}. Thenw is an autarky fofl" (Propo-

sition 2.4(2)). Thusy is a complete set of literals ovett(7") and so, it touches the unit clauke

Consequentlyy containg. O
We are now ready to show how a procedure to decide the existence tdiesitzan be used to

compute them. LeT” be an input CNF theory

1. If T has no autarkies, output ‘no autarkies’ and terminate.

2. As long as there is an atome At(T') such thatl’ U {a, —a} has an autarky, we replace
T by the theory obtained frorify,, by removing L and—T from every clause of/,;.
This operation preserves autarkies and ensures that the resulting theoicollection of
disjunctions of literals. We then continue. We denot€elthythe theory we obtain when the
process terminates.

3. We fix an enumeration of atoms #¥.(7"), sayA¢(T) = {au, ..., a,}, and definely := T".

Fori = 1,...,n, we proceed as follows. [f;_; U {a;} has an autarky, we sét := a;.
Otherwise, we sdf; := —a;. We then sef; := T,_; U {/;}. When the loop terminates, we
setv = {l,...,l,} and output it as an autarky @f.

Let us analyze Step 2. Let € At(T) be an atom such th& U {a,—a} has an autarky.
Then, by Lemma 3.4(1)]" has an autarky that contains neitlhenor ~a. By Proposition 2.677,,
has an autarky and every autarky’f,; is an autarky ofl” (and this property holds also for the
modification ofT},;, as described Step 2). Since the input thebripas an autarky (we moved
past Step 1)7” has an autarky and every autarkydfis an autarky fofl". Moreover, for no atom
a € At(T"), T'U{a,~a} has an autarky. Thus, by Lemma 3.4(2), every autarky @ a complete
set of literals. Using that fact, we find one autarkyZéfin Step 3 of the algorithm. As we noted it
is also an autarky fdr'.

We prove the correctness of Step 3 by showing that for eyery< i < n, T; has an autarky,
that every autarky of; is a complete set of literals ovelt(7”), and that every autarky df; is an
autarky ofT;_1. In particular, the claim implies thdf, has a complete autarky. Sin€g contains
unit clausess, ..., l,,v = {l1,...,l,} is an autarky fofl;,. By the claim, it is also an autarky for
T" and so, forT'.

To prove the claim, we note that the claim holds#et 1. Indeed,7;, = 7" and so,T; has an
autarky and every autarky fdf, is a complete set of literals. Thus, every autarkyfgprontainsa;
or -ay. By Lemma 3.5, it follows thaf; has an autarky. Moreover, sinég C 11, every autarky
for T is an autarky foffj. It also follows then that every autarky fé§ is a complete set of literals.
Assuming that the claim holds for somel < ¢ < n, we prove in the same way as in the case of
i = 1, that the claim holds foi 4 1. Thus, the claim follows by induction.

It is clear that the method described above requires linear number of calfgrezedure decid-
ing the AUTARKY EXISTENCE problem.

We now discuss the relation of Theorem 3.3 with one of the results of [6].

Let S be a set of clauses. A clauéé e S islean in S if for some resolution refutation tree
T with premises fromS, C' is one of premises (leaves) @f. A subsetl of S isleanin S if it
consists of clauses that are learbinClearly, for every sef of clausesS has a largest lean subset;
it consists of all clauses that are leanSinWe denote this set b¥g.
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A nonemptysubsetd C S is anautarkof S with awitnessv if v is an autarky foiS and A is
the set of all clauses touched (thus satisfiedybyrhere is an operation on the set of 3-valued
interpretations. This operation is defined by

viovy =v1 U{l:l €vyandl ¢ v}

One can check that if bothy , v are autarkies fof then so isv; o vo. Moreover, if4; is an autark
subset for whichy; is a withessj = 1, 2, thenwvy o v, is a withess ford; U As.

We also note that the collection of autarkiessak closed under the unions of increasing chains.
Thus, if S has autarkies, it has maximal autarkies. Ldte a maximal autarky of and letA be
the set of all clauses if touched byv. Clearly, A is an autark ofS (v is its witness). We claim
that A is a largest autark it5. Indeed, letd’ be an autark ir5 and letv’ be its witness. By our
comments above; o v’ is an autarky of5. Sincev is a subset of o v/, the maximality ofv implies
thatvov’ = v. Consequently, is a witness of the fact thatU A’ is an autark. In particular) U A’
consists of all clauses il touched byv. By the definition ofd, AU A’ = A and so,A’ C A.

This argument shows that i has autarks, it has a largest autark. We denote this largest autark
of S by Ag. In the case whels has no autarks, we sdts = (). Since autarks are nonempgyhas
autarks if and only ifAg # . In [6] Kullmann shows the following elegant result.

Proposition 3.6 ([6]). For every set of clause$, As U Ls = SandAg N Lg = 0.

The definitions imply thatls # () if and only if S has an autarky. But, of course, by Proposition
3.6,Ag # Difand only if S # Lg. Now, let LEAN be the language consisting of those sets of
clauses for whicty = Lg. Then Kullmann’s result implies that for every finite set of clauSeS €
AUTARKY ExISTENCEIf and only if S ¢ LEAN. Since AUTARKY EXISTENCE is NP-complete
(Theorem 3.3), we get the following result of Kullmann from [6], Lemma 5.7.

Proposition 3.7 ([6]). The problenlLEAN is co-NP-complete.

We note, however, that by the same observation (complementarity of laegBagaRKY EX-
ISTENCE and LEAN), Proposition 3.7 can be used as an alternative argument to show heore
3.3.

4. Autarkies consistent with a given interpretation

In the previous section we demonstrated that the problem to decide the egisfem autarky is NP-
complete. In this section, we will show that versions of that problem, in whielane interested in
autarkies of some particular types are easierab bt a complete interpretation (that is, a complete
and consistent set of literals). We say that a 3-valued interpretai®oonsistentvith w if v C w
(that is, sincew is complete, ifv U w is consistent). We will now study the problem of testing
if a theoryT has an autarky consistent with a complete 3-valued interpretatioiVe will first
show that for a specific interpretatian consisting of atoms only the corresponding problem is
polynomial and then use a symmetry argument to extend that result to arlcibraplete 3-valued
interpretations.

Formally we say that an autarkyfor T is positiveif v consists of atoms. Let; be a complete
interpretation defined by

Vg = At.
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Clearly, positive autarkies are precisely those autarkies that are totsisth vy

We call a formulap € L ageneralized constrainiconstraint for short) if A¢(¢) # () and the
interpretatiorvy doesnotsatisfyy (v¢(¢) # t).

It is common to refer to clauses consisting entirely of negative literat®astraints One can
check that a claus€ is a constraint if and only ity (C') # t. The conditionu¢(¢) # t generalizes
a key property characterizing constraint clauses, which justifies micelf terminology.

Given a set of propositional formulds, we defineT = {¢ € T : pis aconstraint. and
AS = At(T°). The subscripfl” is dropped ifT" is clear from the context. We have the following
properties of positive autarkies.

Proposition 4.1. LetT" be a set of formulas. LetC At(7") be a set of atoms. Theris an autarky
for T if and only ifv C At(T'sc) andv is an autarky forT 4.

Proof: Let us assume thatis an autarky fofl". We need to show thatn A¢ = () and that is an
autarky forT 4e.

Letp € T°. Let us assume thattouchesp. Sincev is an autarky fofl’, v 3-satisfiesp. Since
v < v, by Proposition 2.1 we have thag 3-satisfiesp, a contradiction with the fact that is a
constraint. It follows that N A° = v N A¢(T°) = 0 and, consequently, C A¢(T sc).

Next, let us consider a formula € T4 such thatv touchesy. There is a formulgp € T
such thaty = p4c. Sincewv touchesy, v touchesy as well. Consequently; 3-satisfiesp. By
Proposition 2.5 (1)y 3-satisfiesp 4, that is,v 3-satisfies). Sincey was arbitraryp is an autarky
for T4e.

Conversely, let us assume theis a set of atoms; C At(T4<), and thaw is an autarky fofl 4c.
From the first assumption, it follows thatn A° = (). Let us consider a formula € 7" such thaw
touchesp. Sincev N A¢ = (), v touchesp 4. Consequentlyy 3-satisfiesp 4c. By Proposition 2.5
(1) again,v 3-satisfiesp, and sincep is an arbitrary formula iff’, the other implication follows, as
well. O

Proposition 4.1 entails an algorithm that decides if alseff formulas has a positive autarky
and if so, computes it. To this end, the algorithm computes a sequence of Bairs, ), starting
with T, = T, and Ay = AS. If after the iterationk, A, = (), the computation of the sequence
terminates. Otherwise, the algorithm proceeds to the iteratiori and compute§y 1 = (T%) 4, ,
andA;,, = ACTk. This construction terminates because in every iteration the number of atoms in
the theory decreases. We denote(By, A ) the last element in the sequence. Before we continue
the description of the algorithm, we note the following consequence of Bitapo4.1.

Corollary 4.2. LetT be a set of formulas. Let C At(7T') be a set of atoms. Thenis an autarky
for T if and only ifv C A¢(Ty) andv is an autarky for7’; .

We return to the algorithm. By the definitiod,. = (). Two cases are possible.
Case 1.7, = 0. In this casel’, has no autarkies and, in particular, no positive autarkies. By
Proposition 4.1 (and by inductiori;, has no positive autarkies.
Case 2 Ty # (). Then, by the definition of"., At(T}) # 0. SinceA, = 0, vy satisfies every
formula inT'y which contains at least one atom. Consequently, each such formulatisfiaday
v = At(T}). Sincev # 0, v is an autarky fofl’; and so, by Corollary 4.2, also far. Thus we get
the following corollary.

Corollary 4.3. The problem{T" : T is a finite propositional theory and’ possesses a positive
autarky} is polynomial.

10
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To extend the Corollary 4.3 to the case of arbitrary interpretations, weareadditional concept
and a lemma. Ashiftis a renamingr such that for all, |I| = |7 (l)| (we recall that/| denotes the
atom of the literal). Thus shift does not change the underlying atom, but can only ctithaggn.

Lemma 4.4. Let w be a complete interpretation. Then there is a unique shjfisuch thatw =
mw(vg). The shiftr,, can be computed froma in linear time.

Let w be a complete interpretation. We defiilg as the problem consisting of those finite
theoriesI” which possess an autarky consistent with

Proposition 4.5. For every complete interpretatian, the problemP,, is polynomial.

Proof: Given a finite theor{’, let us applyr,, to T. Then, by Proposition 2.8 the resulting theory

T’ possesses a positive autarky if and only ipossesses an autarky consistent witlBut we have

a polynomial-time algorithm for testing if’ possesses a positive autarky, and one can compute

from 7" in polynomial time. Thus the assertion follows. O
One interesting interpretation ig defined by:

ve = {—p: p € At},

A negative autarky fofl" is an autarky fofl’ consisting of negative literals. It is quite clear that a
negative autarky is one that is consistent with Let us call a formulay € L ageneralized dual-
constraint(abbreviated simply tdual-constraintif At(y) # () and the interpretations defined by
doesnotsatisfyp. Dual-constraints generalize the notion gi@sitiveclause.

Our algorithm for finding positive autarkies allows us to define an algorignfiriding negative
autarkies. We can do this in either of two ways. One is to use Permutation LenthfRa@position
2.8. But there is another, direct way. We defifié¢ = {¢ € T : ¢is a dual-constraint and
A% = At(T?). We then have by a reasoning following that of the proof of Propositiorthe1
following fact.

Proposition 4.6. LetT be a set of formulas. Letbe a set of negative literals. Thers an autarky
for T'if and only if A¢(v) C At(T42) andwv is an autarky forT' 4.

Now, it is clear that we can follow the algorithm for computing positive autarilenost verba-
tim; all we need to do is to consid@i? instead ofl’*. The next corollary follows from Proposition
4.5, or directly via the reasoning outlined above.

Corollary 4.7. The problem{T" : T is a finite propositional theory an@’ possesses a negative
autarky} is polynomial.

We will use the results of this section in the next section, when studying theassugarkies
for Horn theories.
5. Classes of theories for whiclAUTARKY EXISTENCEIS easy
It is well known that the SAT problem is in P for the following classes of thesor

1. 2CNF theories

2. Horn theories, dual-Horn theories and renameable-Horn theories

11
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3. Affine theories

We will show that for each of these classes the problem of the existemtgarkies is also in P.
In some cases, we will also identify minimal autarkies and characterize tfetustwof the family
of autarkies of a theory. This forms a partial solution to a general profifow the structure of a
set of formulad” is reflected in its collection of autarkiesformulated in Section 9 of [6].

5.1 The class of 2CNF theories

The results of this section are related to the results from [5], becauseamnshow that every
autarky of a 2CNF theory is a linear autarky. Here we study the connectiamitarkies with
boolean constraint propagation and obtain results on the structure adttbéautarkies of 2CNF
theories.

LetT be a CNF theory and léte a literal. The key tool in studying autarkies of 2CNF theories
is a version of the well-known boolean constraint (or unit) propagatienZlbe a CNF theory and
let! be aliteral] € Lit(T). We setL, := {l}. We defineL,; to consist of those literalé that are
in L; or that can be derived by resolving literalsfip with a clause irl". If the resolution results
in the empty clause., we include itinL;, too. We setBCP(T,1) = |J;2, L;. We note that in
the version of unit-propagation we presented here we do not incluB€'f (T, [) literals that form
unit clauses irf". In order to include a literal other thdrin BCP (T, 1), it must be derived from a
non-unit clause iff" by resolving it against literals included BCP (T, 1) earlier.

Proposition 5.1. Let7" be a 2CNF theory and an autarky for7". If [ € v thenBCP(T,1) C v.

Proof: We use the notation introduced above. By the definifignc v. Let us assume thdt; C v.

First, let us assume that € L;;;. SinceL; C v, L ¢ L;. Thus, there is a literdl € L; such
thatC = [ is a clause iff". Sincel € v, v touchesC but, being consistent, contains no literalin
This contradicts the fact thatis an autarky fofl". Thus, L ¢ L;;.

Next, let us consider a literdl such that’ € L;,; \ L;. It follows that there is a literal € L;
such that the claus€ = I’ v [ belongs tal". Sincel € v, v touchesC. Thus,v contains a literal
from C. Sincel ¢ v, it follows that!’ € v. ConsequentlyL;,; C v. By induction,BCP(T,1) C .
O

Proposition 5.2. LetT" be a 2CNF theory and léte Lit(T). If BCP(T,!) is consistent then it is
an autarky off".

Proof: SinceBCP(T,1) is consistent, itis a set of literals (that is, it does not contginMoreover,
by the definition,BCP(T,1) # (. Let C be a clause touched by a liteidle BCP(T,1). If I is a
literal of C, BCP(T,1) contains a literal fronC. So, let us assume thétis a literal of C. Since
1 ¢ BCP(T,1), C contains a literal” that is different from/’. It follows that!” € BCP(T, 1) and
so, BCP(T,1) contains a literal fron€ in this case, too. O

These two results form the basis for a necessary and sufficient confditithe existence of au-
tarkies for 2CNF theories, and for a characterization of minimal autargjescifically, Propositions
5.1 and 5.2 imply the following result.

Proposition 5.3. LetT" be a 2CNF theory.

1. T has an autarky if and only if for some literake Lit(T") the setBCP(T,1) is consistent

12
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2. Every autarky of" is the union of a nonempty family of autarkies of the f&iP (7, 7).

It is now clear that in order to decide whether a 2CNF thébiyas an autarky, it is enough to
computeBCP(T,1) for every literall € Lit(T). If in at least one case, we obtain a consistent set of
literals, this set is an autarky f@r. Otherwise,I" has no autarkies. This method can be implemented
to run in polynomial time in the size &f.

Theorem 5.3 also implies a method to compute minimal autarkies of a 2CNF thedkythis
end, we observe that minimal autarkies are precisely minimal consistent dedarm BCP (T, 1).

To compute them all we need to do is to identify minimal elements in the famitpos$istensets
of the form BCP (T, 1), which can be accomplished in polynomial time.

5.2 The class of Horn theories

We now consider the case of Horn theories. As in the previous sectioreghlts we present here
are related to those presented in [5]. Unlike [5] however, our focus ih® structure of autarkies
and we do not impose restrictions on the class of Horn theories that wigleons

A clause isHorn if it contains at most one non-negated literal. A Horn clausgeifiniteif it
contains exactly one non-negated literal. Otherwise, it imdefiniteclause or @onstraint A Horn
clause is dactif it is a positive unit clause (consists of a single literal and this literal is an atom)

A Horn theoryis a collection of Horn clauses. We denote the set of constraints and the set
facts of a Horn theory” by T¢ and T/, respectively. Facts are the only dual constraints a Horn
theory may contain. Thug}/ = 7.

If T contains no constraintd’'¢ = (), it is definite If 7' contains no factsit/ = (), it is dual
definite We note that the set of all atoms of a definite Horn theory is a 2-valued nobdieat
theory. Similarly, the set of all literals obtained by negating all atoms appeiriaglual definite
Horn theory is a 2-valued model of that theory.

Given a set of literals, we definev™ as the set of positive literals (that is, atoms)irandv ™
as the set of negative literals (negated atoms) e then have the following fact.

Lemma 5.4. LetT be a Horn theory. Let be an autarky fofl"’ such thatv~ # (). Thenv™ is an
autarky forT'.

Proof: LetC' be a clause ifi’ such that~ touches”. Sincev™ C v, v touches” and, consequently,
v contains a literal fron®”'. Let us assume thatdoes not contain a negative literal frarh It follows
that C' is definite, sayC' = —p; V...V —=pg V ¢, andg € v. Sincev is consistent;q ¢ v and
so,~q ¢ v~. Further, for every, 1 < i < k, -p; ¢ v and so,~p; ¢ v~. This is a contradiction
with the fact that~ touchesC'. Thus,v contains a negative literal frod, and consequently;™
contains a literal front. It follows thatv~ is an autarky fofl". O

Corollary 5.5. LetT be a Horn theory. Ifl" has an autarky then it has a positive autarky or a
negative autarky.

Proof: Let us assume thdt does not have a positive autarky. Lebe an autarky fof”. By our
assumptiony™ # () and, by Lemma 5.4, is a negative autarky faf . O

Corollary 5.6. The problem of the existence of an autarky for Horn theories s in
Proof: To decide whether a Horn thedfyhas an autarky we use first the algorithm described in
Section 4 to find a positive autarky @f. If we succeed]” has an autarky and we stop. Otherwise,

13
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we use the dual version of this algorithm that finds a negative autarky€iegists). If we succeed,

T has an autarky and we stop. Otherwise, we returnfhads no autarkies and stop. Corollary 5.5

implies that the algorithm is correct. It is evident that it can be implemented to rpolymomial

time. O
We now turn attention to minimal autarkies of Horn theories. We have the folloreisigt.

Proposition 5.7. If v is a minimal autarky of a Horn theor¥ thenw is positive orv is negative.

Proof: Let us assume thatis not positive. It follows that~ # (). Thus,v~ is an autarky fofl’
(Lemma 5.4). Since is a minimal autarky fofl’, v = v~, that is,v is a negative autarky faf. O

Positive autarkies of Horn theories have a characterization basedetamcfficient compu-
tational procedure with a flavor of a bottom-up constraint propagation?’llee a Horn theory and
let « be an atom. We set, = {a}. Next, given a set of atom4;, we define4,; to contain every
atom fromA; and in addition, every atomsuch that there is a clauée= bV —b; V...V =b in T,
with at least oné; in A;. We then sed P (T, a) = |J;2, A; (AP stands forautarky propagatioh
We have the following basic result. We use in it the notafign which was introduced in Section
4,

Proposition 5.8. LetT be a Horn theory and an atom inA¢(7%.).
1. The set of atomd P(7T%,a) is an autarky forl’
2. Ifvis a positive autarky fof” anda € v thenAP(T,a) C v
3. Every positive autarky d@F is the union of sets of the forthP (7%, a).

Proof: (1) We recall that ifl’y, # (, then theories” and 7', have the same positive autarkies
(Corollary 4.2). Consequently, sincéP (7%, a) consists of atoms only, it suffices to show that
AP(Ty,a) is an autarky foff,. Let C be a clause iff;. such thatdP(T,a) touchesC'. Let
us assume that’' = b v —b; Vv ... V —b; (we recall thatl’, is definite). Ifb € AP(T,,a), then
AP(Ty,a) contains a literal front'. So, let us assume thiat € AP (T, a) and, more specifically
thatb; € A;, for some non-negative integerBy the definitionb € A;; and sop € AP(T';,a).
Thus,AP(T4, a) contains a literal front' in this case, too.
(2) Letv be a positive autarky fdf. Then,v is an autarky foff .. (Corollary 4.2). Since € v, Ay =
{a} C v (we use the notation introduced above). Let us assumedthat v and let us consider an
atomb € A;+1 \ A;. It follows that there is a claus€@ € T, such thatC' = bV —b; V...V by
and for somej, b; € A;. Henceb; € v and so,v touchesC. Sincewv is an autarky forT', v
contains a literal fromC'. Sincewv consists of atoms; € v. Thus,A;; C v and, by induction,
AP(T4,a) Cw.
(3) This part of the assertion is a direct consequence of (2). O

We note that our results imply a polynomial-time algorithm to compute minimal positive au-
tarkies of Horn theories. Indeed to accomplish that task, one needs tatoaipsetsA P (7', a),
wherea € At(T), and then select the minimal ones.

Let us observe that similar effective characterizations of negativekéegaof Horn theories are
unlikely to exist, as negative autarkies are related to hitting sets of hypégra connection that
implies the following result.

Proposition 5.9. The following problem is NP-complete: given a Horn the®rgnd an integelk,
decide whethef” has a negative autarky with no more thaelements.
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Proof: The membership in the class NP is evident. To prove NP-hardmessnstruct a reduction
from thehitting set problemgiven a familyH of finite sets and an integét decide whetheH has
a hitting set with at most elements. This problem is known to be NP-complete [2]. Xet | J H.
We define a Horn theory'(H) as follows. For every: € X, we include inl'(H) all clauses of the
form

aV-ap V...V -oan (2)

where{as,...,a,} is a set inH. We observe that the theofy() can be constructed in polyno-
mial time.

Let H be a hitting set fof{. Then,v = {-h: h € H} is an autarky fofl'(H), as it 3-satisfies
T(H). Conversely, leb be a negative autarky féF(+). Then,v = {-h: h € H}, for some
H C X. Let us choose: € H (sincew is an autarky,H is not empty). Thenyp touches and
so, satisfies all clauses of the form (2), whéte, .. ., a,,} ranges over all sets iK. Sincev is
negative, it follows tha#{ is a hitting set forH.

Thus,H has a hitting set with at mogét elements if and only iff'({) has a negative autarky
with at mostk elements, and the hardness follows. O

We conclude with a result on autarkies of a certain subclass of Horn¢lseor

Proposition 5.10. Every autarky of a Horn theory consisting of facts and constraints cositain
pure literal.

Proof: Letv be an autarky for such a theory, sBylf v contains a negative literal! does not touch
facts inT'. Thus,l is pureinT.

So let us suppose thatconsists of positive literals (atoms) only. Themoes not satisfy any
constraint inl’, and so all literals inv are pure. O

5.3 Dual-Horn theories

The results we obtained for Horn theories in Section 5.2 extend to the dadeal-d1orn theories.

A clause isdual-Horniif it contains at most one negative literal. On analogy with Horn clauses,
we havefacts definite dual-Horn clauses and dual-constraints. Facts in curretext@me negative
units.

We state in a single proposition properties of autarkies for dual-Hornidgeorhe proofs of
these results are similar to those of Section 5.2.

Proposition 5.11. 1. LetG be a dual-Horn theory. Let be an autarky foG such thaty™ # ().
Thenvt is an autarky forG.

2. LetG be a dual-Horn theory. I&7 has an autarky then it has a positive autarky or a negative
autarky.

3. The problem of existence of an autarky for dual-Horn theories is pafya.
4. If v is a minimal autarky of a dual-Horn theoly thenv is positive orv is negative.

5. Every autarky of a dual-Horn theory consisting of facts and duabktraits contains a pure
literal.
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5.4 Renameable-Horn theories

A theory T is arenameable-Horn theori there is a renaming such thatr(T") is a Horn theory.

It is well known that renameable-Horn theories can be recognized impuiial time and, given

a renameable-Horn theory, an appropriate renaming can be constimigelynomial time, too.

Of course the dual-Horn theories are renameable-Horn, but the ¢leessameable-Horn formulas

is wider than dual-Horn. The property of Horn and dual-Horn theorias wWhenever they have
autarkies then they have positive or negative autarkies does not liftaoneable-Horn theories. For
instance, the theoryp Vv ¢, —p V =¢}, which is renameable-Horn, has no positive and no negative
autarkies. Nevertheless, as in the case of Horn theories, the problgma efistence of autarkies
for renameable-Horn is easy. Applying a shift transforming a renamé#dnle theoryR to a Horn
theory Hg, checking if the theonRy possesses an autarky, and if so, shifting the autarky back (via
the same shift) gives a polynomial-time method to compute autarkies of renankt@ipléheories.
Thus, we have the following fact.

Proposition 5.12. The problem of existence of an autarky for renameable-Horn theorjesyso-
mial.

5.5 Affine theories

In this subsection, we study affine theories. These theories do nastohslauses and our gener-
alization of autarkies to the case of arbitrary theories becomes essential.
A propositional formula isffineif it is of the form

C=21D22D...Dxy

wherezx, ... x;_1 are propositional variables ang is a propositional variable or a boolean con-
stantT or L.

Letwv be a set of literals. Let us observe tha-satisfies a affine formula= 21 ®x2 ... Dy
if and only if At(¢) C At(v) andv satisfiesp in 2-valued logic.

Let T be a affine theory. A set of atom¥ C A¢(T) is acomponendf T if X is a minimal
nonempty subset afit such that for every formula’ € T, At(C) C X or At(C)N X = 0.
Alternatively, letG(T') be the graph with the vertex sét(7'), in which two vertices are connected
with an edge if they appear in the same formuldlof Then, components df are precisely the
vertex sets of connected component&:¢f’). It follows that components of a affine thedFyform
a partition of the setl¢(7).

Proposition 5.13. Let T be a affine theory and letbe an autarky fofl". Then
1. ForeveryC € T, either At(C) C At(v) or At(C)N At(v) =0
2. For every component of T, either X C At(v) or X N At(v) = 0.

3. For every componedt of T'such thatX C At(v), v satisfies{C': At(C') C X} (in 2-valued
logic).

Proof: (1) LetC' € T. If v does not touchC then A¢t(C) N At(v) = (. If v touchesC then,v
3-satisfies”'. By our earlier observation, it follows thatt(C') C At(v).
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(2) Letus assume th&f\ A¢(v) # @ andX N At(v) # (. ThenX \ At(v) is a nonempty proper sub-
set of X and so, itis not a component. Thus, there is a formiuauch thatd¢(C)N (X \ At(v)) # 0
andAt(C) \ (X \ At(v)) # 0. SinceAt(C)N X # 0, At(C) C X. Thus,At(C) N At(v) # 0. It
follows thatC' is touched bw but not 3-satisfied by, a contradiction with (1).

(3) Sincev touches every formula iiC: At(C) C X}, v 3-satisfies every formula iC': At(C) C
X}. By our earlier observation, satisfies every formula iiC: A¢(C') C X'} in 2-valued logic.0

Corollary 5.14. LetT be a affine theory.

1. If for every componenkX the theory{C € T': At(C) C X} is unsatisfiable (in 2-valued
logic) thenT has no autarkies

2. If there is a componeX such that{C' € T': At(C) C X} is satisfiable (in 2-valued logic),
then the set of literals such thatd¢(v) = X andwv satisfies{C € T: At(C) C X}isa
minimal autarky forl’

3. Every autarky fofl” is the union of minimal autarkies @f of the kind described in (2).

Thus, to decide the existence of autarkies of a affine th&ome first find all components &Ff
(one can accomplish that in polynomial time, as finding connected compongmégpbsk is in P) and
we use a polynomial-time algorithm deciding satisfiability of affine theories, todindmponent
X such that{C € T': At(C) C X} is satisfiable (in 2-valued logic). If none exist5,has no
autarkies. Otherwisd, has a satisfiable component and, by Corollary 5.14, has an autarky.

6. Conclusions

The contribution of this paper is twofold. First, we studied computationalgstigs of autarkies.
We proved that the existence problem for autarkies is NP-complete. Védeshawn a direct reduc-
tion of the search version of the problem to the decision version in a lineabewuof calls to the
decision version. We found a new classeafsyautarkies - those that are consistent with a given
complete interpretation. We also found several classes of theories iich thie problem of autarky
existence can be solved in polynomial time. More importantly, in each of thess ege classi-
fied autarkies and obtained the results on their structure in terms of miniméaktiaata®ur results
complement those of [5] and [6].

Second, we generalized autarkies to the case of arbitrary propositi@uales by exploiting
the concept of satisfiability in 3-valued logic. The choice of the logic wasranme comments. Let
us call a set of literals weak autarkyof a theoryT if for every formulay € T that is touched by
v, v entailsy (in 2-valued logic). It is well known that ifu(p)]s = t thenwv entailsy (in 2-valued
logic). Thus, every autarky is a weak autarky. In addition, a fundarhpnt@erty of autarkies,
Theorem 2.3, holds for weak autarkies, as well. Why then not to use w#akkies rather than
autarkies? In the case of clausal theories, there is no essential mifferBoth concepts coincide
if we exclude tautological clauses from considerations, a typical assumiptithe satisfiability
research. However, in the general case, the difference is signifiCere can verify whethey 3-
satisfiesp in polynomial time, while the problem to verify whetherentailsy is co-NP-complete
in general (we stress thatis not necessarily a complete set of literals). Thus, the choice of logic in
extending the notion of an autarky to the case of arbitrary theories is cliselp the difficulty of
recognizing autarkies.
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