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Abstract

We investigate mca-programs, that is, logic programs with clauses built of monotone
cardinality atoms of the form kX , where k is a non-negative integer and X is a finite set
of propositional atoms. We develop a theory of mca-programs. We demonstrate that the
operational concept of the one-step provability operator generalizes to mca-programs, but
the generalization involves nondeterminism. Our main results show that the formalism
of mca-programs is a common generalization of (1) normal logic programming with its
semantics of models, supported models and stable models, (2) logic programming with
cardinality atoms and with the semantics of stable models, as defined by Niemelä, Simons
and Soininen, and (3) of disjunctive logic programming with the possible-model semantics
of Sakama and Inoue.

1 Introduction

We introduce and study logic programs whose clauses are built of monotone car-

dinality atoms (mc-atoms), that is, expressions of the form kX , where k is a non-

negative integer and X is a finite set of propositional atoms. Intuitively, kX is true

in an interpretation M if at least k atoms in X are true in M . Thus, the intended

role for mc-atoms is to represent constraints on lower bounds of cardinalities of

sets. We refer to programs with mc-atoms as mca-programs. We are motivated in

this work by the recent emergence and demonstrated effectiveness of logic program-

ming extended with means to model cardinality constraints (Niemelä et al. 1999;

Niemelä and Simons 2000; Simons et al. 2002), and by the need to establish sound

theoretical basis for such formalisms.

In the paper, we develop a theory of mca-programs. In that we closely follow the

development of normal logic programming and lift all its major concepts, techniques

and results to the setting of mca-programs. There is, however, a basic difference. Mc-

atoms have, by their very nature, a built-in nondeterminism. They can be viewed
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as shorthands for certain disjunctions and, in general, there are many ways to make

an mc-atom kX true. This nondeterminism has a key consequence. The one-step

provability operator is no longer deterministic, as in normal logic programming,

where it maps interpretations to interpretations. In the case of mca-programs, the

one-step provability operator is nondeterministic. It assigns to an interpretation M

a set of interpretations, each regarded as possible and equally likely outcome of

applying the operator to M .

Modulo this difference, our theory of mca-programs parallels that of normal logic

programs. First, we introduce models and supported models of an mca-program,

and describe them in terms of the one-step provability operator in much the same

way it is done in normal logic programming. To define stable models we first define

the class of Horn mca-programs by disallowing the negation operator in the bodies

of clauses. We show that the nondeterministic one-step provability operator asso-

ciates with Horn mca-programs a notion of a (nondeterministic) derivation (the

counterpart to the bottom-up derivation with normal Horn programs) and a class

of derivable models (counterparts to the least model of a normal Horn program).

We then lift the notion of the Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1988)

to the case of mca-programs and use the notions of a derivation and the reduct

to define a stable model of an mca-program. A striking aspect of our construction

is that all its steps are literal extensions of the corresponding steps in the original

approach. We show that stable models behave as expected. They are supported

and, in case of Horn mca-programs, derivable.

An intended meaning of an mc-atom 1{a} is that a be true. More formally,

1{a} is true in an interpretation if and only if a is true in that interpretation.

That connection implies a natural representation of normal logic programs as mca-

programs. We show that this representation preserves all semantics we discuss in

the paper. It follows that the formalism of mca-programs can be viewed as a direct

generalization of normal logic programming.

As we noted, an extension of logic programming with direct ways to model car-

dinality constraints was first proposed in (Niemelä et al. 1999). That work defined

a syntax of logic programs with cardinality constraints (in fact, with more gen-

eral weight constraints) and introduced the notion of a stable model. We will refer

to programs in that formalism as ca-programs. One of the results in (Niemelä

et al. 1999) showed that ca-programs generalized normal logic programming with

the stable-model semantics of Gelfond and Lifschitz (Gelfond and Lifschitz 1988).

However, the notion of the reduct underlying the definition of a stable model given

in (Niemelä et al. 1999) is different from that proposed by Gelfond and Lifschitz

(Gelfond and Lifschitz 1988) and the precise nature of the relationship between

normal logic programs and ca-programs was not clear.

Mca-programs explicate this relationship. The formalism of mca-programs paral-

lels normal logic programming. In particular, major concepts, results and techniques

in normal logic programming have counterparts in the setting of mca-programs. On

the other hand, under some simple transformations, ca-programs are equivalent to

mca-programs. Thus, through this connection of ca-programs to mca-programs,



Theory and Practice of Logic Programming 3

the theory of normal logic programming can be lifted to the setting of ca-programs

leading to new characterizations of stable models of ca-programs.

Finally, we show that mca-programs not only provide an overarching framework

for both normal logic programs and ca-programs. They are also useful in investi-

gating disjunctive logic programs. In the paper, we show that logic programming

with mc-atoms generalize disjunctive logic programming with the possible-model

semantics introduced in (Sakama and Inoue 1994).

2 Logic programs with monotone cardinality atoms

Let At be a set of (propositional) atoms. An mc-atom over At (short for a monotone

cardinality atom over At) is any expression of the form kX , where k is a non-negative

integer and X ⊆ At is a finite set such that k ≤ |X |. We call X the atom set of an

mc-atom A = kX and denote it by aset(A). An intuitive reading of an mc-atom kX

is: at least k atoms in X are true. In particular, 1{a} states that a is true. In other

words, intuitively, an mc-atom 1{a} is equivalent to a. The intended meaning of kX

explains the requirement that k ≤ |X |. Clearly, if k > |X |, it is impossible to have

in X at least k true atoms and the expression kX is equivalent to a contradiction.

An mc-literal is an expression of the form A or not(A), where A is an mc-atom.

An mca-clause (short for a monotone-cardinality-atom clause) is an expression r of

the form

H ← L1, . . . ,Lm , (1)

where H is an mc-atom and Li , 1 ≤ i ≤ m, are mc-literals. We call the mc-atom

H the head of r and denote it by hd(r). We call the set {L1, . . . ,Lm} the body

of r and denote it by bd(r). An mca-clause is Horn if its body does not contain

literals of the form not(A). Finally, for an mca-clause r , we define the head set of

r , hset(r), by setting hset(r) = aset(hd(r)).

Mca-clauses form mca-programs. We define the head set of an mca-program P ,

hset(P), by hset(P) =
⋃
{hset(r): r ∈ P} (if P = ∅, hset(P) = ∅, as well). If all

clauses in an mca-program P are Horn, P is a Horn mca-program.

One can give a declarative interpretation to mca-programs in terms of a natural

extension of the semantics of propositional logic. We say that a set M of atoms

satisfies an mc-atom kX if |M ∩ X | ≥ k , and M satisfies an mc-literal not(kX )

if it does not satisfy kX (that is, if |M ∩ X | < k). A set of atoms M satisfies an

mca-clause (1) if M satisfies H whenever M satisfies all literals Li , 1 ≤ i ≤ m.

Finally, a set of atoms M satisfies an mca-program P if it satisfies all clauses in P .

We often say “is a model of” instead of “satisfies”. We use the symbol |= to denote

the satisfaction relation.

The following straightforward property of mc-atoms explains the use of the term

“monotone” in their name.

Proposition 1

Let A be an mc-atom over a set of atoms At. For every sets M ,M ′ ⊆ At, if M ⊆ M ′

and M |= A then M ′ |= A.
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Mca-clauses also have a procedural interpretation in which they are viewed as

derivation rules. Intuitively, if an mca-clause r has its body satisfied by some set of

atoms M , then r provides support for deriving from M any set of atoms M ′ such

that

1. M ′ consists of atoms mentioned in the head of r (r provides no grounds for

deriving atoms that do not appear in its head)

2. M ′ satisfies the head of r (since r “fires”, the constraint imposed by its head

must hold).

Clearly, the process of deriving M ′ from M by means of r is nondeterministic in

the sense that, in general, there are several sets that are supported by r and M .

This notion of nondeterministic derivability extends to programs and leads to the

concept of the nondeterministic one-step provability operator. Let P be an mca-

program and let M ⊆ At be a set of atoms. We set P(M ) = {r ∈ P : M |= bd(r)}.

We call mca-clauses in P(M ), M -applicable.

Definition 1

Let P be an mca-program and let M ⊆ At. A set M ′ is nondeterministically one-

step provable from M by means of P , if M ′ ⊆ hset(P(M )) and M ′ |= hd(r), for

every mca-clause r in P(M ).

The nondeterministic one-step provability operator Tnd
P

, is a function from P(At)

to P(P(At)) such that for every M ⊆ At, Tnd
P

(M ) consists all sets M ′ that are

nondeterministically one-step provable from M by means of P .

We first observe that for every M ⊆ At, Tnd
P

(M ) is nonempty.

Proposition 2

Let P be an mca-program and let M ⊆ At. Then, hset(P(M )) ∈ Tnd
P

(M ). In

particular, Tnd
P

(M ) 6= ∅.

Proof

Let r ∈ P(M ). Then, hset(P(M )) ∩ hset(r) = hset(r). By the definition of mc-

atoms, hset(r) |= hd(r). Thus, hset(P(M )) |= hd(r) and, consequently, hset(P(M )) ∈

Tnd
P

(M ).

It follows that Tnd
P

can be viewed as a formal representation of a nondeter-

ministic operator on P(At), which assigns to every subset M of At a subset of At

arbitrarily selected from the collection Tnd
P

(M ) of possible outcomes. Since Tnd
P

(M )

is nonempty, this nondeterministic operator is well defined.

The operator Tnd
P

plays a fundamental role in our research. It allows us to for-

malize procedural interpretations of mca-clauses and identify for them matching

classes of models that provide the corresponding declarative account.

Our first result characterizes models of mca-programs. This characterization is

a generalization of the familiar description of models of normal logic programs as

prefixpoints of TP in terms of the operator Tnd
P

.
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Theorem 2

Let P be an mca-program and let M ⊆ At. The set M is a model of P if and only

if there is M ′ ∈ Tnd
P

(M ) such that M ′ ⊆ M .

Proof

Let M be a model of P and M ′ = M ∩ hset(P(M )). Let r ∈ P(M ). Since M is

a model of r , M |= hd(r). Clearly, hset(r) ⊆ hset(P(M )). Thus, M ∩ hset(r) =

M ′ ∩ hset(r) and, consequently, M ′ |= hd(r). It follows that M ′ ∈ Tnd
P

(M ). Since

M ′ ⊆ M , the assertion follows.

Conversely, let us assume that there is M ′ ∈ Tnd
P

(M ) such that M ′ ⊆ M . Let

r ∈ P be a clause such that M |= bd(r). Since M ′ ∈ Tnd
P

(M ), M ′ |= hd(r). We

recall that hd(r) is an mc-atom. Thus, by Proposition 1, M |= hd(r), as well. It

follows that M is a model of every clause in P and, consequently, of P .

A straightforward corollary states that every mca-program has a model.

Corollary 1

Let P be an mca-program. Then, hset(P) is a model of P .

Proof

Let us denote M = hset(P). By Proposition 2, hset(P(M )) ∈ Tnd
P

(M ). Since we

have hset(P(M )) ⊆ hset(P) = M , the assertion follows by Theorem 2.

In fact, a stronger property holds. We can show, that like normal logic programs,

mca-programs have minimal models.

Proposition 3

Every model of an mca-program P contains a minimal model. In particular, every

mca-program P has a minimal model.

Proof

Let 〈Mξ〉ξ<β be a descending family of models of P (that is, Mξ ⊇ Mξ′ , for every

ξ < ξ′ < β). We will show that M ∩ =
⋂

ξ<β Mξ is a model of P . To this end, let us

consider an arbitrary rule r ∈ P , say

r = kX ← k1X1, . . . , kmXm ,not(l1Y1), . . . ,not(lnYn)

such that M ∩ |= bd(r). Since all sets X , X1, . . . ,Xm and Y1, . . . ,Yn are finite,

there is η < β such that X ∩M ∩ = X ∩Mη, Xi ∩M ∩ = Xi ∩Mη, 1 ≤ i ≤ m,

and Yi ∩M ∩ = Yi ∩Mη, 1 ≤ i ≤ n. Thus, Mη |= bd(r). Since Mη is a model of P ,

Mη |= hd(r). Since X ∩Mη = X ∩M ∩, M ∩ |= hd(r). Thus, M ∩ is a model of P .

Let us now consider a model M of P . From our argument, it follows that the

poset of all models of P that are contained in M (ordered by the relation ⊇) satisfies

the assumptions of the Zorn Lemma. Consequently, it contains minimal elements.

Thus, the assertion follows.
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Models of mca-programs may contain elements that have no support in a program

and the model itself, that is, cannot be derived from atoms in the model by means

of rules in the program. For instance, let us consider an mca-program P consisting

of the clause: 1{p, q} ← not(1{q}), where p and q are two different atoms. Let

M1 = {q}. Clearly, M1 is a model of P . However, M1 has no support in P and

itself. Indeed, Tnd
P

(M1) = {∅} and so, P and M1 do not provide support for any

atom. Similarly, another model of P , the set M2 = {p, r}, where r ∈ At is an

atom different from p and q , has no support in P and itself. We have Tnd
P

(M2) =

{{p}, {q}, {p, q}} and so, p has support in P and M2, but r does not. Finally, the

set M3 = {p}, which is also a model of P , has support in P and itself. Indeed,

Tnd
P

(M3) = {{p}, {q}, {p, q}} and there is a way to derive M3 from P and M3. We

formalize now this discussion in the following definition.

Definition 3

Let P be an mca-program. A set of atoms M is a supported model of P if M ∈

Tnd
P

(M ).

The use of the term “model” is justified. By Theorem 2, supported models of P

are indeed models of P , as stated in the following result.

Corollary 2

Every supported model of an mca-program P is a model of P .

Finally, we have the following characterization of supported models.

Proposition 4

Let P be an mca-program. A set M ⊆ At is a supported model of P if and only if

M is a model of P and M ⊆ hset(P(M )).

Proof

If M is a supported model of P then it is a model of P . Moreover, since M ∈

Tnd
P

(M ), M ⊆ hset(P(M )). Conversely, if M is a model of P then M |= P(M ).

Since M ⊆ hset(P(M )), M ∈ Tnd
P

(M ), that is, M is a supported model of P .

3 Horn mca-programs

To introduce stable models of mca-programs, we need first to study Horn mca-

programs. With each Horn mca-program P one can associate the concept of a

P -derivation. Namely, a P -derivation is a sequence (Xn)n=0,1,... such that X0 = ∅

and, for every non-negative integer n,

1. Xn ⊆ Xn+1, and

2. Xn+1 ∈ Tnd
P

(Xn).

Given a derivation t = (Xn)n=0,1,..., we call
⋃

∞

n=0 Xn the result of the derivation t

and denote it by Rt .

Proposition 5

Let P be a Horn mca-program and let t be a P -derivation. Then Rt ⊆ hset(P(Rt)).
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Proof

Let t = (Xn)n=0,1,.... Clearly X0 ⊆ hset(P(Rt)). Let n be a non-negative integer.

Since Xn+1 ∈ Tnd
P

(Xn), Xn+1 ⊆ hset(P(Xn)) ⊆ hset(P(Rt)) (the last inclusion

follows from the fact that Xn ⊆ Rt). Thus, Rt =
⋃

∞

n=0 Xn ⊆ hset(P(Rt)).

If P is a Horn mca-program then P -derivations exist. Let M be a model of P .

We define the sequence tP,M = (XP,M
n

)n=0,1,... as follows. We set X
P,M
0 = ∅ and,

for every n ≥ 0, X
P,M
n+1 = hset(P(XP,M

n
)) ∩M .

Theorem 4

Let P be a Horn mca-program and let M ⊆ At be its model. The sequence tP,M is

a P -derivation.

Proof

We need to show that the conditions (1) and (2) from the definition of a P -derivation

hold for the sequence tP,M . To prove (1), we proceed by induction on n. For n = 0,

the condition (1) is clearly satisfied. Let us assume that for some non-negative

integer n, XP,M
n

⊆ X
P,M
n+1 holds. Then

hset(P(XP,M
n

)) ⊆ hset(P(XP,M
n+1 ))·

It follows that

X
P,M
n+1 = hset(P(XP,M

n )) ∩M ⊆ hset(P(XP,M
n+1 )) ∩M = X

P,M
n+2 ·

To prove (2), let us consider a non-negative integer n. By the definition, X
P,M
n+1 ⊆

hset(P(XP,M
n )). It remains to prove that X

P,M
n+1 |= P(XP,M

n ). Let r ∈ P(XP,M
n ).

Then XP,M
n |= bd(r) and, since XP,M

n ⊆ M , M |= bd(r). We recall that M is a

model of P . Thus, M |= hd(r). It follows that M ∩ hset(r) |= hd(r) and, con-

sequently, M ∩ hset(P(XP,M
n )) |= hd(r). Since X

P,M
n+1 = M ∩ hset(P(XP,M

n )), it

follows that X
P,M
n+1 |= P(XP,M

n
).

We call the P -derivation tP,M the canonical P -derivation for M . Since every

mca-program P has models, we obtain the following corollary.

Corollary 3

Every Horn mca-program has at least one derivation.

The results of derivations are supported models (and, thus, also models) of Horn

mca-programs.

Proposition 6

Let P be a Horn mca-program and let t be a P -derivation. Then, the result of t ,

Rt , is a supported model of P .
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Proof

Let t = (Xn)n=0,1,... and let us consider a clause r ∈ P(Rt). Since r has finitely

many mc-atoms in the body, and since for each mc-atom A in bd(r), aset(A) is finite,

there is i such that Xi |= bd(r). By the definition of a P -derivation, Xi+1 ∈ Tnd
P

(Xi).

Thus, Xi+1 |= hd(r) and, since Xi+1 ⊆ Rt , Rt |= hd(r). It follows that Rt is a model

of P . Moreover, by Proposition 5, Rt ⊆ hset(P(Rt)). Thus, Rt is a supported model

of P (Proposition 4).

We use the concept of a derivation to identify a certain class of models of Horn

mca-programs.

Definition 5

Let P be a Horn mca-program. We say that a set of atoms M is a derivable model

of P if there exists a P -derivation t such that M = Rt .

Derivable models can be obtained as results of their own canonical derivations.

Proposition 7

A model M of a Horn mca-program P is a derivable model of P if and only if

M = RtP,M .

Proof

We assume first that M is a derivable model of P . Let (Xn)n=0,1,... be a derivation

with the result M (that is M =
⋃

∞

n=0 Xn). Since for every non-negative integer n,

XP,M
n ⊆ M , to prove the assertion it is enough to show that for every non-negative

integer n, Xn ⊆ XP,M
n . We proceed by induction on n. The claim is evident for

n = 0, as X0 = ∅. Let us assume that the claim holds for some non-negative inte-

ger n. By the definition of P -derivation, Xn+1 ⊆ hset(P(Xn)) ⊆ hset(P(XP,M
n )).

Since Xn+1 ⊆ M , Xn+1 ⊆ M ∩hset(P(XP,M
n

)) = X
P,M
n+1 . That completes the induc-

tive step and the proof of the necessity of the condition. The converse implication

(sufficiency) is straightforward.

Proposition 6 and Theorem 4 entail several properties of Horn mca-programs,

their derivations and models. We gather them in the following corollary.

Corollary 4

Let P be a Horn mca-program. Then:

1. P has at least one derivable model.

2. P has a largest derivable model.

3. Every derivable model of P is a supported model of P .

4. For every model M of P there is a derivable model M ′ of P such that

M ′ ⊆ M .

5. Every minimal model of P is derivable.
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Proof

(1) Since P has a model, it has a P -derivation (Theorem 4). The result of this

derivation is a model of P (Proposition 6). By the definition, this model is derivable.

(2) The set hset(P) is a model of P . Let R be the result of the canonical P -derivation

for hset(P). Clearly, R is a derivable model of P . We will show that every derivable

model of P is a subset of R. Let M be a derivable model of P . Then M is the result

of a canonical derivation for M . Since M ⊆ hset(P), it follows by an easy induction

that for every non-negative integer n, XP,M
n

⊆ X
P,hset(P)
n . Consequently, M ⊆ R.

(3) This assertion follows directly from Proposition 6.

(4) Let M be a model of P and let t be a canonical P -derivation for M . Then,

Rt ⊆ M and, by Proposition 6, Rt is a model of P . Moreover, since Rt is the result

of a derivation, it is a derivable model of P .

(5) This assertion follows directly from (4).

Proposition 7 allows us to determine the complexity of the problem to verify

whether a finite set of atoms M is a derivable model of a Horn mca-program P .

First, we note that checking whether M is a model of P is a polynomial-time task.

If M is not a model of P , it is not a derivable model of P . Thus, from now on, we

can assume that M is a model of P and that the canonical P -derivation tP,M is

well defined. Next, we observe that given the set XP,M
n

of atoms (we recall that we

write XP,M
n

for terms of the canonical P -derivation for M ), the set X
P,M
n+1 can be

computed in polynomial time. Indeed, it takes polynomially many steps to verify

whether an mca-clause r ∈ P belongs to P(M ) and, if so, to compute hd(r) ∩M

— the contribution of the clause r to X
P,M
n+1 . Since M is finite, the canonical P -

derivation tP,M stabilizes (reaches its result) in at most |M | steps. By Proposition

7, M is a derivable model of P if and only if it is a model of P and M = RtP,M .

Our argument shows one can verify these two conditions in polynomial time. Thus,

we get the following result.

Corollary 5

Given a finite Horn mca-program P and a finite set of atoms M , the problem to

verify whether M is a derivable model of P is solvable in polynomial time.

We finish this section by proving some monotonicity properties concerning the

non-deterministic one-step provability operators corresponding to Horn mca-programs.

Proposition 8

Let P be a Horn mca-program and let M1 ⊆ M2 be two sets of atoms. Then:

1. For every Y ∈ Tnd
P

(M2) there exists X ∈ Tnd
P

(M1) such that X ⊆ Y

2. For every X ∈ Tnd
P

(M1) there exists Y ∈ Tnd
P

(M2) such that X ⊆ Y

Proof

(1) By the definition, Y ⊆ hset(P(M2)) and Y |= hd(P(M2)). Let X = Y ∩

hset(P(M1)). Clearly, X ⊆ hset(P(M1)). Next, we note that since P is a Horn

mca-program, P(M1) ⊆ P(M2) and, consequently, Y |= hd(P(M1)). Thus, X |=

hd(P(M1)) and X ∈ Tnd
P

(M1).

(2) Let Y = hset(P(M2)). By Proposition 2, Y ∈ Tnd
P

(M2). Moreover, we have

X ⊆ hset(P(M1)) and P(M1) ⊆ P(M2). Thus, X ⊆ Y .



10 V.W. Marek, I. Niemelä and M. Truszczyński

Proposition 9

Let P1 ⊆ P2 be two Horn mca-programs and let M be a set of atoms. Then:

1. For every Y ∈ Tnd
P2

(M ) there exists X ∈ Tnd
P1

(M ) such that X ⊆ Y

2. For every X ∈ Tnd
P1

(M ) there exists Y ∈ Tnd
P2

(M ) such that X ⊆ Y

Proof

(1) Let us set X = Y ∩ hset(P1(M )). Clearly, X ⊆ hset(P1(M )). Moreover, Y |=

hd(P2(M )) and, consequently, Y |= hd(P1(M )). It follows that X |= hd(P1(M )),

too.

(2) It is easy to check that Y = hset(P2(M )) has all the required properties.

4 Stable models of mca-programs

We will now use the results of the two previous sections to introduce and study the

class of stable models of mca-programs.

Definition 6

Let P be an mca-program and let M ⊆ At. The reduct of P with respect to M ,

PM in symbols, is a Horn mca-program obtained from P by (1) removing from P

every clause containing in the body a literal not(A) such that M |= A, and (2)

removing all literals of the form not(A) from all remaining clauses in P . A set of

atoms M is a stable model of P if M is a derivable model of the reduct PM .

Stable models of an mca-program P are indeed models of P . Thus, the use of the

term “model” in their name is justified. In fact, a stronger property holds: stable

models of mca-programs are supported.

Proposition 10

Let P be an mca-program. If M ⊆ At is a stable model of P then M is a supported

model of P .

Proof

First, it follows directly from the corresponding definitions that Tnd
P

(M ) = Tnd
PM (M ).

Next, since M is a derivable model of PM , M is a supported model of PM (Corol-

lary 4(3)). Thus, M ∈ Tnd
PM (M ) and, consequently, M ∈ Tnd

P
(M ). It follows that

M is a supported model of P .

With the notion of a stable model in hand, we can strengthen Proposition 6.

Proposition 11

Let P be a Horn mca-program. A set of atoms M ⊆ At is a derivable model of P

if and only if M is a stable model of P .

Proof

The assertion is a direct consequence of the fact that for every Horn mca-program

P and for every set of atoms M , P = PM .

We will now prove yet another result that generalizes a well-known property of

stable models of normal logic programs.
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Proposition 12

Let Q and R be two mca-logic programs, and let M be a stable model of Q . If M

is a model of R then M is a stable model of Q ∪ R.

Proof

Since M is a stable model of Q , M is a derivable model of QM . By Proposition

7, M is the result of the canonical QM -derivation with respect to M . Since M

is a model of Q ∪ R, M is a model of (Q ∪ R)M = QM ∪ RM . Therefore, the

canonical (QM ∪ RM )-derivation with respect to M is well defined. Its result is

clearly contained in M . On the other hand, it contains the result of the canonical

QM -derivation with respect to M , which is M . Therefore, the result of the canonical

(QM ∪ RM )-derivation with respect to M is M . Thus, M is a derivable model of

(Q ∪ R)M and a stable model of Q ∪ R.

We will now describe a procedural characterization of stable models of mca-

programs, relying on a notion of a derivation related to but different from the one

we discussed in Section 3 in the context of Horn programs. A difference is that

now at each stage in a derivation we must make sure that once a clause is applied,

it remains applicable at any stage of the process. That property is not a priori

guaranteed, due to the presence of negation in the bodies of general mca-clauses.

We observe that, like before, this property of mca-programs generalizes a property

of normal logic programs discussed in (Marek, Nerode and Remmel 1999).

Let P be an mca-program. A cautious P -derivation is a sequence 〈Xn〉n=0,1,... of

sets of atoms such that X0 = ∅ and there exists a sequence of programs 〈Pn〉n=0,1,...

such that for all n ∈ N , Pn ⊆ P , Pn ⊆ Pn+1 and

(a) Xn+1 ∈ Tnd
Pn

(Xn)

(b) For every rule r ∈ Pn , if not(L) ∈ bd(r) then Xn+1 |= not(L).

Thus, in a cautious P -derivation, the choice of the next set in the sequence is

bound by two conditions. First, we choose a set according to the operation of the

nondeterministic one-step-provability operator, but in each step the program used

is only growing. Second, the choice made at step n never invalidates the application

of any rule used in step n or earlier. We use the term cautious to emphasize that

latter restriction.

We now have the following result.

Theorem 7

Let P be an mca-program and let M be a set of atoms. Then M is a stable model of

M if and only if M is a model of P and there is a cautious P -derivation 〈Xn〉n=0,1,...

such that M =
⋃

n∈N
Xn .

Proof

We assume first that M is a stable model of P . Then M is a model of P . Let

us consider the reduct PM of P with respect to M and let 〈Xn〉n=0,1,... be the

canonical PM -derivation of M (since M is a model of P , M is a model of PM ).
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By Proposition 7, M =
⋃

∞

n=0 Xn . Thus, to complete the proof of this part of the

assertion, it suffices to show that 〈Xn〉n=0,1,... is a cautious P -derivation.

Let X be a set of atoms. We call an mca-clause r ∈ P X -allowed if X |= not(L),

for every negated literal not(L) in the body of r . We denote the set of all X -allowed

mca-clauses in P by P−(X ). We then define:

Pn = P−(M ) ∩ P(Xn)·

Let r ∈ Pn . Then r ∈ P−(M ). Since Xn+1 ⊆ M , Xn+1 satisfies all negated literals

in the body of r . Moreover, since Xn ⊆ Xn+1 and r ∈ P(Xn), Xn+1 satisfies all

other literals in the body of r , as well. Thus, r ∈ P(Xn+1) and, consequently,

r ∈ Pn+1. It follows that Pn ⊆ Pn+1.

By the definition of Pn , it follows that Tnd
Pn

(Xn) = Tnd
PM (Xn). Since 〈Xn〉n=0,1,...

is a PM -derivation, the condition (a) of the definition of a cautious P -derivation

holds. Let r ∈ Pn . Then r ∈ P−(M ). Since Xn+1 ⊆ M , the condition (b) follows.

Thus 〈Xn〉n=0,1,... is a cautious P -derivation.

Conversely, let us assume that M is a model of P and that for some cautious

P -derivation 〈Xn〉n=0,1,..., M =
⋃

∞

n=0 Xn . Moreover, let 〈Pn〉n=0,1,... be any “wit-

nessing” sequence of subprograms of P , guaranteed to exist by the definition of a

cautious P -derivation.

Since M is a model of P , M is a model of the reduct PM . Let 〈Yn〉n=0,1,... be

the canonical PM -derivation for M . Clearly,
⋃

∞

n=0 Yn ⊆ M and, for every n ≥ 0,

Yn+1 = hset(P−(M )(Yn))∩M , where P−(M )(Yn) consists of all clauses in P that

are M -allowed and Yn -applicable.

We will show that for every n, Xn ⊆ Yn . We proceed by the induction. The inclu-

sion clearly holds for n = 0 (both sets are empty, then). Let us assume that Xn ⊆

Yn . Since Pn ⊆ P−(M ) and Xn+1 ∈ Tnd
Pn

(Xn), Xn+1 ⊆ hset(P−(M )(Xn)). By the

induction hypothesis, Xn ⊆ Yn . Thus, hset(P−(M )(Xn)) ⊆ hset(P−(M )(Yn)).

Moreover, Xn+1 ⊆ M . Consequently, Xn+1 ⊆ hset(P−(M )(Yn)) ∩M = Yn+1.

We now have M =
⋃

∞

n=0 Xn ⊆
⋃

∞

n=0 Yn ⊆ M . Thus,
⋃

∞

n=0 Yn = M and M is a

derivable model of PM or, equivalently, a stable model of M .

Theorem 7 states that if we apply clauses carefully, making sure that at no stage

we satisfy an mc-atom appearing negated in clauses applied so far (including the

one selected to apply at the present stage) and we ever compute a model in this

way, then this model is a stable model of P . Conversely, every stable model can be

obtained as a result of such a careful derivation.

5 Constraints in mca-programs

Let P be an mca-program. An mca-clause in P is a constraint for P if it is of the

form

1{a} ← L1, . . . ,Lm ,not(1{a}), (2)
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where Li , 1 ≤ i ≤ m, are mc-literals and a is an atom that does not appear in any

of the literals Li and in no other rule of P . We commonly write a constraint of the

form (2) as

← L1, . . . ,Lm ·

We have the following result concerning supported and stable models of programs

with constraints.

Proposition 13

Let P be an mca-program and let P ′ be the set of mca-clauses in P that are

constraints for P . A set of atoms M is a supported (stable) model of P if and only

if M is a supported (stable) model of P \ P ′ and a model of P ′.

Proof

The assertion concerning supported models is an easy consequence of Proposition

4.

Let M be a stable model of P . Then M is a model of P and so, also of P ′. We

next observe that M contains no atom appearing in the head of a constraint for

P . Indeed, if a is an atom appearing in the head of an mca-clause r ∈ P ′ and

a ∈ M , then r does not contribute to the reduct PM (r is not M -allowed). Since

no mca-clause in P other than r contains a in the head, no model derivable from

PM contains a, a contradiction. Since M is a derivable model of PM and since no

rule in the reduct PM contributed by a constraint is applied in the corresponding

PM -derivation (otherwise, the atom in the head of that constraint would belong

to M ), M is a derivable model of (P \ P ′)M and, consequently, a stable model of

P \ P ′.

Conversely, if M is a stable model of P \ P ′, then M is a derivable model of

(P \ P ′)M . Since M is a model of P ′, it follows that every (P \ P ′)M -derivation

that has M as its result is also a PM -derivation. Thus, M is a derivable model of

PM and, consequently, a stable model of P .

6 Mca-programs and normal logic programming

An mc-atom 1{a} is true in a model M if and only if a is true in M . Thus, intuitively,

1{a} and a are equivalent. That suggests a way to interpret normal clauses and

programs as mca-clauses and mca-programs. Let r be the following normal clause:

r = c ← a1, . . . , am ,not(b1), . . . ,not(bn)·

By mca(r) we mean the mc-clause

1{c} ← 1{a1}, . . . , 1{am},not(1{b1}), . . . ,not(1{bn})·

(If all ai and all bi are distinct, which we can assume without loss of generality,

a simpler translation, 1{c} ← m{a1, . . . , am},not(1{b1, . . . , bn}), could be used.)

Moreover, given a normal program P , we set mca(P) = {mc(r): r ∈ P}.

This encoding interprets normal logic programs as mca-programs so that basic

properties and concepts of normal logic programming can be viewed as special

cases of properties and concepts in mca-programming. In the following theorem, we

gather several results establishing appropriate correspondences.
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Theorem 8

Let P be a normal logic program and let M be a set of atoms.

1. P is a Horn program if and only if mca(P) is a Horn mca-program.

2. If P is a Horn program then the least model of P is the only derivable

model of mca(P).

3. {TP (M )} = Tnd
mca(P)(M ).

4. mca(PM ) = mca(P)M .

5. M is a model (supported model, stable model) of P if and only if M is

a model (supported model, stable model) of mca(P).

Theorem 8 allows us to establish the complexity of deciding whether an mca-

program P has a supported (stable) model.

Corollary 6

Given a finite mca-program P , the problems to decide whether P has supported

(respectively, stable) models is NP-complete.

Proof

Hardness follows by Theorem 8 directly from the fact the the corresponding prob-

lems are NP-complete for the class of normal logic programs (Marek and Truszczyński

1991). To see that the problem of existence of supported models is in the class NP,

we note that, given a set of atoms M , the conditions of Proposition 4 can be verified

in polynomial time. To prove that the problem of existence of stable models is in

the class NP, we note that, given a set of atoms M , computing the reduct PM can

be done in polynomial time and verifying whether M is a derivable model of PM

is also a polynomial-time task (Corollary 5).

Finally, we define a class of mca-programs, which offers a most direct extension

of normal logic programming. This class of programs, in a more general first-order

setting, was thoroughly studied in (Denecker et al. 2001; Pelov et al. 2004).

Definition 9

An mca-clause r is deterministic if hd(r) = 1{a}, for some atom a. An mca-program

is deterministic if every clause in P is deterministic.

The intuition behind the term is clear. If the head of an mca-clause is of the

form 1{a}, then there is only one possible effect of applying the clause: a has to

be concluded. Thus, the nondeterminism that arises in the context of arbitrary

mc-atoms disappears. Formally, we capture this property in the following result.

Proposition 14

Let P be a deterministic mca-program. Then, for every set of atoms M , Tnd
P

(M ) =

{M ′}, for some set of atoms M ′.

Thus, for a deterministic mca-program P , the operator Tnd
P

is deterministic and,

so, can be regarded as an operator with both the domain and codomain P(At). We

will write Td
P

, to denote it. Models, supported models and stable models of a de-

terministic mca-program can be introduced in terms of the operator Td
P

in exactly
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the same way the corresponding concepts are defined in normal logic programming.

In particular, the algebraic treatment of logic programming developed in (Fitting

2002; Przymusinski 1990; Denecker et al. 2000) applies literally to deterministic

mca-programs and results in a natural and direct extension of normal logic pro-

gramming (Denecker et al. 2001; Pelov et al. 2004). We will explicitly mention just

one result here that will be of importance later in the paper.

Proposition 15

Let P be a deterministic Horn program. Then P has exactly one derivable model

and this model is the least model of P .

7 Mca-programs and ca-programs

We will first briefly review the concept of programs with cardinality atoms (Niemelä

et al. 1999) and the semantics of stable models of such programs, as introduced in

(Niemelä et al. 1999). We will then relate this formalism to that of mca-programs.

A cardinality atom (c-atom, for short) is an expression of the form kXl , where

X ⊆ At, and l and k are integers such that 0 ≤ k ≤ l ≤ |X |. We call X an atom

set of a c-atom A = kXl and, as before, we denote it by aset(A)1.

We say that a set of atoms M satisfies a c-atom kXl if k ≤ |M ∩X | ≤ l (M |= kXl ,

in symbols). It is clear that when k = 0 or l = |X |, the corresponding inequality is

trivially true. Thus, we omit from the notation k , if equal to 0, and l , if equal to

|X |.

A cardinality-atom clause (ca-clause, for short) is an expression r of the form

A← B1, . . . ,Bn ,

where A and Bi , 1 ≤ i ≤ n, are c-atoms. We call A the head of r and {B1, . . . ,Bn}

the body of r . We denote them by hd(r) and bd(r), respectively. A ca-program is

a collection of ca-clauses.

We say that a set M ⊆ At satisfies a ca-clause r if M satisfies hd(r) whenever

it satisfies each c-atom in the body of r . We say that M satisfies a ca-program P

if M satisfies each ca-clause in P . We write M |= r and M |= P in these cases,

respectively.

We will now recall the concept of a stable model of a ca-program (Niemelä et al.

1999). Let P be an ca-program and let M ⊆ At. By the NSS-reduct of P with

respect to M we mean the ca-program obtained by:

1. eliminating from P every clause r such that M 6|= B , for at least one c-atom

B ∈ bd(r).

2. replacing each remaining ca-clause r = kXl ← k1Y1l1, . . . , knYn ln with all

clauses of the form 1{a} ← k1Y1, . . . , knYn , where a ∈ X ∩M .

1 To be precise, (Niemelä et al. 1999) allows also for negated atoms to appear as elements of X .
One can eliminate occurrences of negative literals by introducing new atoms. We give further
details in the end of the section.
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With some abuse of notation, we denote the resulting program by PM (the type

of the program determines which reduct we have in mind). It is clear that PM is a

deterministic Horn mca-program. Thus, it has a least model, lm(PM ).

Definition 10

Let P be a ca-program. A set M ⊆ At is a stable model of P if M = lm(PM ) and

M |= P .

We will now show that the formalisms of mca-programs and ca-programs with

their corresponding stable-model semantics are equivalent. We start by describing

an encoding of ca-clauses and ca-programs by mca-clauses and mca-programs. To

simplify the description of the encoding and make it uniform, we assume that all

bounds are present (we recall that whenever any of the bounds are missing from

the notation, they can be introduced back). Let r be the following ca-clause:

kXl ← k1X1l1, . . . , kmXm lm ·

We represent this ca-clause by a pair of mca-clauses, e1
mca(r) and e2

mca(r) that we

define as

kX ← k1X1, . . . , kmXm ,not((l1 + 1)X1), . . . ,not((lm + 1)Xm),

and

← (l + 1)X , k1X1, . . . , kmXm ,not((l1 + 1)X1), . . . ,not((lm + 1)Xm),

respectively. Given a ca-program P , we translate it into an mca-program

emca(P) =
⋃

r∈P

{e1
mca(r), e2

mca(r)}·

Theorem 11

Let P be a ca-program. A set of atoms M is a stable model of P , as defined for

ca-programs, if and only if M is a stable model of emca(P), as defined for mca-

programs.

Proof

In the proof we write NSS-stable and mca-stable to emphasize the notion of stability

we have in mind (even though the two notions can be distinguished from the context

by the type of a program, to which they are applied). We will also use the notation:

P1
mca =

⋃
{e1

mca(r): r ∈ P} and P2
mca =

⋃
{e2

mca(r): r ∈ P}·

Let us assume first that M is an NSS-stable model of a ca-program P . We will

show that M is an mca-stable model of the mca-program emca(P), which in our

terminology is equal to P1
mca ∪ P2

mca.

Since M is an NSS-stable model of P , it is a model of P (Definition 10). Con-

sequently, it follows that M is a model of all rules in P2
mca. By Proposition 13, to

complete this part of the proof it suffices to show that M is an mca-stable model
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of the program P1
mca. To this end, we note that the definitions of the respective

reducts imply that a rule

1{a} ← k1X1, . . . kmXm

belongs to the NSS-reduct of P with respect to M if and only if for some X ⊆ At,

a ∈ X ∩M and there is a rule

kX ← k1X1, . . . kmXm

in the reduct of P1
mca with respect to M . We will denote the two reducts by Q and

Q ′, respectively. From this relationship it follows that the results of the canonical

derivations from Q and Q ′ with respect to M coincide (we recall that both reducts

are Horn mca-programs). Since M is the least model of Q , it is the result of the

canonical derivation from Q with respect to M . Thus, M is also the result of the

canonical derivation from Q ′ with respect to M . In other words,, M is a derivable

model of Q ′ and, consequently, an mca-stable model of P1
mca.

Conversely, let us assume that M is an mca-stable model of P1
mca ∪ P2

mca. It

follows that M is a model of P1
mca ∪ P2

mca and, consequently, a model of P . Next,

we note that since M is an mca-stable model of P1
mca ∪ P2

mca, it is an mca-stable

model of P1
mca (by Proposition 13). Thus, it is a derivable model of its reduct Q ′

and, therefore, it is also the result of the canonical derivation from Q ′ with respect

to M . Our observation about the relationship between the reducts Q ′ of P1
mca and

Q of P (both with respect to M ) applies now, as well. Consequently, M is the result

of the canonical derivation from Q with respect to M . Thus, M is a derivable model

of Q . Since Q is a deterministic Horn mca-program, it has only one derivable model

— its least model. It follows that M is the least model of Q and, consequently, an

NSS-stable model of P .

This theorem shows that the formalism of mca-programs is at least as expressive

as that of ca-programs. The converse is true as well: ca-programs are at least as

expressive as mca-programs. Let r be the following mca-clause:

kX ← k1X1, . . . , kmXm ,not(l1Y1), . . . ,not(lnXn)·

We define eca(r) as follows. If there is i , 1 ≤ i ≤ n, such that li = 0, we set

eca(r) = kX ← kX (in fact any tautology would do). Otherwise, we set

eca(r) = kX ← k1X1, . . . , kmXm ,Y1(l1 − 1), . . . ,Yn(ln − 1)·

Given an mca-program P , we define eca(P) = {eca(r): r ∈ P}.

Theorem 12

Let P be an mca-program. A set of atoms M is a stable model of P , as defined

for mca-programs, if and only if M is a stable model of eca(P), as defined for

ca-programs.
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Proof

First, we observe that P and eca(P) have the same models. Next, similarly as before,

we have that the NSS-reduct Q of eca(P) contains a rule of the form

1{a}X ← k1X1, . . . kmXm ,Y1, . . . ,Yn

if and only if there is X ⊆ At such that a ∈ X ∩M and the rule

kX ← k1X1, . . . kmXm

belongs to the reduct Q ′ of P with respect to M . Since in the rules of the first type

mc-atoms Yi are always true, as before, the results of the canonical derivations from

Q and Q ′ with respect to every model M of P (or, equivalently, of eca(P)) coincide

(we recall that both reducts are Horn mca-programs). Using this observation one

can complete the proof reasoning as in the previous proof.

Theorems 11 and 12 establish the equivalence of ca-programs and mca-programs

with respect to the stable model semantics. The same translations also preserve the

concept of a model. Finally, Theorem 11 suggests a way to introduce the notion of

a supported model for a ca-program: a set of atoms M is defined to be a supported

model of a ca-program P if it is a supported model of the mca-program emca(P).

With this definition, the two translations emca and eca also preserve the concept of a

supported model. In other words, the translations emca and eca uniformly preserve

several semantic notions and allow us to view ca-programs and mca-programs as

syntactic variations of each other.

We also note that this equivalence demonstrates that ca-programs with the se-

mantics of stable models as defined in (Niemelä et al. 1999) can be viewed as a

generalization of normal logic programming. It follows from Theorems 8 and 12

that the encoding of normal logic programs as ca-programs, defined as the compo-

sition of the translations mca and eca, preserves the semantics of models, supported

models and stable models (an alternative proof of this fact, restricted to the case of

stable models only was first given in (Niemelä et al. 1999) and served as a motivation

for the class of ca-programs and its stable-model semantics). This result is impor-

tant, as it is not at all evident that the NSS-reduct and Definition 10 generalize the

semantics of stable models as defined in (Gelfond and Lifschitz 1988).

Given that the formalisms of ca-atoms and mca-atoms are equivalent, it is impor-

tant to stress what differs them. The advantage of the formalism of ca-programs is

that it does not require the negation operator in the language. The strength of the

formalism of mca-programs lies in the fact that its syntax so closely resembles that

of normal logic programs, and that the development of the theory of mca-programs

so closely follows that of the normal logic programming.

As we noted at the beginning of the section, (Niemelä et al. 1999) allow also

for negated atoms to appear as elements of X in a cardinality atom kXl . One can

eliminate occurrences of negative literals by introducing new atoms in the following

way. First, for each negated literal not(b) appearing in the set of a c-atom, we

introduce a new propositional atom b̄. Then, for each such atom, we include a

ca-clause b̄i ← {bi}0. Finally, we replace each cardinality atom

k{a1, . . . , am ,not(b1), . . . ,not(bn)}l ·
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with a c-atom

k{a1, . . . , am , b̄1, . . . , b̄n}l ·

This transformation has the property that stable models are preserved. However,

it remains an open question whether negative literals in cardinality atoms can be

eliminated without introducing new atoms in the program.

8 Normal form for mca-programs

In the case of normal logic programs researchers proved several normal form theo-

rems. A general template for such results is: for every normal logic program P there

is a normal logic program P1, in some restricted syntactic form, such that P and

P1 have the same (possibly modulo some new atoms) intended models (typically,

stable, supported or both).

Here are two examples of results of this type. We recall that a normal logic

program P is purely negative if the clauses of P have no positive atoms. Further,

a logic program P is a 2-program if the bodies of clauses in P consist of at most 2

literals.

Proposition 16 (Dung and Kanchansut 1989)

For every normal logic program P there exists a purely negative program P1 (over

the same set of atoms) such that P and P1 have the same stable models.

Proposition 17 (Blair 1989)

For every normal program P there is a 2-program P1 (in general, over a larger set

of atoms), such that there is a one-to-one projection from the set of stable models

of P1 to the set of stable models of P . The program P1 can be computed from P

in linear time.

We know of no generalization of the result by Dung to the classes of mca- and

ca-programs. The result of Blair generalizes to each of these broader settings. It

is a consequence of a normal form result proved by Marek and Remmel (Marek

and Remmel 2005). An mca-program (ca-program) P is body-normal if the bodies

of its clauses are normal, that is, consist of atoms and negated atoms (or, to be

precise, of their representations in the respective formalisms: expressions 1{a} and

not(1{a}), in the case of mca-programs, and expressions 1{a}1 and 0{a}0 in the

case of ca-programs).

Proposition 18 (Marek and Remmel 2005 )

For every mca-program (and also for every ca-program) P there exists a body-

normal program P1, over the same set of atoms, such that P and P1 have precisely

the same stable models. There also exists a body-normal program P2 (in general,

over a bigger set of atoms) that can be constructed from P in polynomial time, so

that there is a one-to-one projection from the set of stable models of P2 to the set

of stable models of P .
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We observe that the method used by Blair in transform arbitrary normal logic

programs to 2-programs applies in the case of body-normal mca- and ca-programs.

That implies that we can limit to two the number of literals in the bodies of clauses

of programs P1 and P2 asserted in Proposition 18.

We also note that there are other normal form results that may be of some

importance in the context of algorithms for computing stable models. Here are

several obvious transformation techniques. If the body of a clause contains the

atoms kX1 and lX2 where |X1| = k and |X2| = l , then these two atoms can be

combined into a single atom (k + l −m)(X1 ∪X2), where m = |X1 ∩X2|. A similar

transformation rule exists for c-atoms expressing upper bounds (and, consequently,

for negated atoms not(kX1) and not(lX2)).

9 Mca-programs and disjunctive logic programs

The formalism of mca-programs also extends an approach to disjunctive logic pro-

gramming, proposed in (Sakama and Inoue 1994). In that paper, the authors in-

troduced and investigated a semantics of possible models for disjunctive logic pro-

grams. We will now show that disjunctive programming with the semantics of pos-

sible models is a special case of the logic mca-programs with the semantics of stable

models.

Let r be a disjunctive logic program clause of the form:

c1 ∨ . . . ∨ ck ← a1, . . . , am ,not(b1), . . . ,not(bn),

where all ai , bi and ci are atoms. We define an mca-clause

mcad(r) = 1{c1, . . . , ck} ← 1{a1}, . . . , 1{am},not(1{b1}), . . . ,not(1{bn})·

(If all ai and bi are distinct, the following translation could be used instead:

1{c1, . . . , ck} ← m{a1, . . . , am},not(1{b1, . . . , bn}).) For a disjunctive logic pro-

gram P , we define mcad(P) = {mcad(r): r ∈ P}. We have the following theorem.

Theorem 13

Let P be a disjunctive logic program. A set of atoms M is a possible model of P if

and only if M is a stable model of the mca-program mcad(P).

We also note that there are strong analogies between the approach we propose

here and some of the techniques discussed in (Sakama and Inoue 1994). In partic-

ular, (Sakama and Inoue 1994) presents a computational procedure for disjunctive

programs without negation that is equivalent to our notion of a P -derivation. We

stress however, that the class of mca-programs is more general and that our ap-

proach, consistently exploiting properties of an operator Tnd
P

, is better aligned with

a standard development of normal logic programming.

10 Discussion

Results of our paper point to a central position of mca-programs among other logic

programming formalisms. First, mca-programs form a natural generalization of nor-

mal logic programs, with most concepts and techniques closely patterned after their
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counterparts in normal logic programming. Second, mca-programs with the stable-

model semantics generalize disjunctive logic programming with the possible-model

semantics of (Sakama and Inoue 1994). Third, mca-programs provide direct means

to model cardinality constraints, a feature that has become broadly recognized

as essential to computational knowledge representation formalisms. Moreover, it

turns out that mca-programs are, in a certain sense that we made precise in the

paper, equivalent, to logic programs with cardinality atoms proposed and studied

in (Niemelä et al. 1999). Thus, mca-programs provide a natural link between nor-

mal logic programs and the formalism of (Niemelä et al. 1999), and help explain

the nature of this relationship, hidden by the original definitions in (Niemelä et al.

1999).

Even more, there is straightforward extension of our theory to the case of pro-

grams built of monotone-weight atoms, that is, expressions of the form a{p1 :

w1, . . . , pk : wk}, where a, w1, . . .wk are non-negative reals and p1, . . . , pk are propo-

sitional atoms. Intuitively, such an atom is satisfied by an interpretation (set of

atoms) M if the sum of weights assigned to atoms in M ∩{p1, . . . , pk} is at least a.

The theory of programs with monotone-weight atoms, that closely parallels the the-

ory presented here, offers a theoretical account to programs with weight constraints,

as introduced and studied in (Niemelä et al. 1999; Simons et al. 2002).

In this paper, we outlined the rudiments of the theory of mca-programs. There

are several questions that follow from our work and that deserve more attention.

For instance, there is a question whether Fages lemma (Fages 1994) generalizes to

mca-programs. If so, for some classes of programs, one could reduce stable-model

computation to satisfiability checking for propositional theories with cardinality

atoms (East and Truszczyński 2001; Liu and Truszczyński 2003). That, in turn,

might lead to effective computational methods, alternative to direct algorithms

such as smodels (Niemelä and Simons 1996) and similar in spirit to the approach

of cmodels (Erdem and Lifschitz 2003; Babovich and Lifschitz 2002). A related

question is that of generalizing to the class of mca-programs the concepts of com-

pletion (Clark 1978) and of a loop formula (Lin and Zhao 2002), as that might

lead to methods to compute stable models of mca-programs (or, more generally,

programs with monotone-weight atoms) by means of pseudo-boolean satisfiability

solvers (Barth 1995; Walser 1997; Aloul et al. 2002; East and Truszczyński 2004).

We believe these questions can be studied in a general context of programs built of

monotone constraint atoms (Marek and Truszczyński 2004).

The emergence of a nondeterministic one-step provability operator is particularly

intriguing. It suggests that, as in the case of normal logic programming (Fitting

2002; Przymusinski 1990), the theory of mca-programs can be developed by al-

gebraic means. For that to happen, one would need techniques for handling non-

deterministic operators on lattices, similar to those presented in the deterministic

operators in (Denecker et al. 2000; Denecker et al. 2002). That approach might

ultimately lead to a generalization of the well-founded semantics to the case of

mca-programs.
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Denecker, M., Marek, V., and Truszczyński, M. 2002. Ultimate approximations in
nonmonotonic knowledge representation systems. In Principles of Knowledge Repre-
sentation and Reasoning, Proceedings of the 8th International Conference (KR2002).
Morgan Kaufmann Publishers, 177–188.

Denecker, M., Pelov, N., and Bruynooghe, M. 2001. Ultimate well-founded and
stable semantics for logic programs with aggregates. In Logic programming, Proceedings
of the 2001 International Conference on Logic Programming, P. Codognet, Ed. Vol. 2237.
Springer, 212–226.

Dung, P.M. and Kanchanasut, K.. 1989. On the generalized predicate completion
of non-Horn programs. In: Logic programming, Proceedings of the North American
Conference, MIT Press, pages 587–603.
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