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Abstract

We revisit the issue of epistemological and semantic foundations for autoepistemic and
default logics, two leading formalisms in nonmonotonic reasoning. We develop a general
semantic approach to autoepistemic and default logics that is based on the notion of a
belief pair and that exploits the lattice structure of the collection of all belief pairs. For
each logic, we introduce a monotone operator on the lattice of belief pairs. We then show
that a whole family of semantics can be defined in a systematic and principled way in
terms of fixpoints of this operator (or as fixpoints of certain closely related operators). Our
approach elucidates fundamental constructive principles in which agents form their belief
sets, and leads to approximation semantics for autoepistemic and default logics. It also
allows us to establish a precise one-to-one correspondence between the family of semantics
for default logic and the family of semantics for autoepistemic logic. The correspondence
exploits the modal interpretation of a default proposed by Konolige. Our results establish
conclusively that default logic can be viewed as a fragment of autoepistemic logic, a result
that has been long anticipated. At the same time, they explain the source of the difficulty to
formally relate the semantics of default extensions by Reiter and autoepistemic expansions
by Moore. These two semantics occupy different locations in the corresponding families of
semantics for default and autoepistemic logics.

1 Introduction

In this paper, we conduct a systematic study of epistemological and semantic foundations of
default and autoepistemic logics. We identify some basic common principles behind these two
formalisms and state them in terms of lattices of possible-world structures and belief pairs,
operators on these lattices and fixpoints of these operators. We use these principles to develop
a comprehensive unified semantic treatment of default and autoepistemic logics. The approach
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we propose helps explain how agents form their belief sets. It allows us to study constructive
ways in which belief sets can be approximated and leads to a comprehensive and precise account
of the relationship between the two logics in question.

The default logic introduced by Reiter [Rei80] and the autoepistemic logic introduced by
Moore [Moo84, Moo85] are among the most widely studied nonmonotonic knowledge represen-
tation systems. Research monographs [Bes89, MT93, Ant97] provide extensive presentations
of these two logics, and of their properties. The default and the autoepistemic logics were
designed to model commonsense forms of reasoning, in particular, reasoning patterns of the
form “in the absence of any information to the contrary infer ...”. Such patterns were seen
as a basic reasoning mechanism in the context of partial knowledge. Reiter referred to such
patterns as defaults.

In the default logic of Reiter, a default is represented as a non-standard inference rule
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where «a, §;, 1 < i < k, and v are propositional formulas (we limit our attention to the
propositional case only). Speaking informally, the intended meaning of a default is: if @ can
be derived and if for every i, 1 < i < k, [3; is consistent, then derive y. This intuition points
to the key idea behind a default. It has premises of two different types. The premise « is
called the prerequisite of a default and is treated just like premises of standard (monotone)
inference rules. Premises [3; are called justifications. The symbol M that prefixes justifications
is commonly used in modal logic to denote the modality of “being consistent”. Reiter used it
to emphasize the way in which justifications are interpreted. In order to apply the rule, they
just need to be consistent (rather than derived). To formally define the semantics of default
logic, Reiter provided a precise mathematical interpretation for the phrases “a can be derived
and “0; is consistent” and defined the notion of an extension as a formal representation of a
belief set that an agent might adopt when reasoning on the basis of a default theory.

Though Reiter used the modal notation Mg for justifications to emphasize the intended
meaning of justifications, he did not use the syntax of modal logic nor the semantic techniques
developed there. In fact, in current literature dealing with default logic, the letter M is
dropped from the notation of justifications. We will also do so throughout the paper. The
idea to use a modal language and modal logic techniques in the area of nonmonotonic logics
is due to McDermott and Doyle [MD80, McD82]. For the primary modality in the language
they chose the modality of consistency which, as we mentioned earlier, is commonly denoted
by M. McDermott and Doyle [MD80] and, later, McDermott [McD82] introduced several
nonmonotonic semantics for the operator M. They suggested that an inference rule of the
form “infer v if in the absence of any information contradicting 3”7 should be represented by
the modal formula Mg = 7.

Moore [Moo85] developed autoepistemic logic departing from the nonmonotonic logics of
McDermott and Doyle. Moore pointed out some technical problems arising in the context
of the original modal nonmonotonic logic described in [MD80], observing that the notion of
consistency proposed there was too weak. He also discarded a more refined approach from
[McD82], where modal nonmonotonic logics based on monotone modal systems T, S4 and S5
were studied. Moore suggested to use the modality of belief as the primary modality in the
language. This modality is usually denoted by K and is related to M through the identity
M = =K-. Further, and more importantly, Moore suggested that the semantics of a modal




nonmonotonic logic be designed so that to model reasoning of a rational agent reflecting on
her own beliefs. Moore postulated that such a rational agent should have perfect introspection
capabilities. That is, if ¢ is in the agent’s belief set then K¢ should be a belief too (the agent
believes in her own beliefs) and if ¢ is not in the agent’s belief set then =K should be in the
belief set (the agent disbelieves her non-beliefs). Moore proposed a way to complete collections
of base facts about the world (possibly referring to agent’s beliefs or disbeliefs) to belief sets,
called exzpansions, that the agent might hold given the base theory.

This brief overview points to similarities in motivations and intuitions behind default and
autoepistemic logics. These similarities drew attention to the issue of a formal account of
the relationship between the two logics, which quickly became a subject of active research.
Konolige [Kon88] proposed to translate a default
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into the autoepistemic formula:
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The translation was an attempt to reflect the intuition that in order to apply a default, its
prerequisite must be derived and its justifications must be consistent. To model the statement
“«vis derived”, Konolige used the formula K«a. To model the statement that “3; are consistent”,
Konolige used the formula =K —(; (which is equivalent to M ;).

There was, however, a problem. It turned out that, while seemingly well motivated, the
translation does not relate extensions and expansions. Specifically, modal counterparts (under
Konolige’s translation) of default theories could have expansions not corresponding to exten-
sions. That discovery suggested a possibility that the autoepistemic logic may not be the right
modal counterpart to the default logic or that the modal reading of a default proposed by
Konolige is not appropriate. Thus, researchers began to look for other modal logics and for
other translations. Konolige related default logic to a wversion of autoepistemic logic based
on the notion of a strongly grounded expansion [Kon88]. Marek and Truszczynski [MT89b]
proposed an alternative translation and represented extensions as expansions of a modal non-
monotonic logic constructed by the method of McDermott from the weakest modal logic V.
Truszczynski [Tru91] found that the Godel translation of intuitionistic logic to modal logic S4
could be used to translate the default logic into the nonmonotonic modal logic S4F.

Gottlob [Got95] returned to the original problem of relating default and autoepistemic
logic. He described a mapping translating default theories into modal ones so that extensions
correspond precisely to expansions. The problem is that his translation is not modular. The
autoepistemic representation of a default theory depends on the whole theory and cannot be
obtained as the union of independent translations of individual defaults. Thus, the approach
of Gottlob does not provide an autoepistemic reading of an individual default. In fact, in the
same paper Gottlob proved that a modular translation from default logic with the semantics of
extensions to autoepistemic logic with the semantics of expansions does not exist. In conclusion,
there is mo modal interpretation of a default under which extensions would correspond to
eTPansions.

Results of Gottlob provided strong evidence that extensions and expansions are, in some
sense, essentially different. A careful examination of intuitions as well as of formal definitions



of extensions and expansions provides some further evidence to this effect. Moore’s logic some-
times sanctions unsupported beliefs. For example, the theory {Kp = p} has two expansions.
One of them is generated by the set of all tautologies, the other one is generated by p. Pres-
ence of p in this latter expansion is justified only by the belief in p (by the formula Kp). In
other words, the belief in p is self-supporting. In contrast, belief sets containing self-supporting
beliefs are not sanctioned by the default logic. Even if a default
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providing self-supporting evidence for p, is included in the theory, the semantics of default
logic does not make any use of it. The default theory ({%}, () has only one extension and
it consists of tautologies only. Thus, the autoepistemic logic of Moore could be viewed as a
nonmonotonic logic of belief and the default logic of Reiter could be viewed as a nonmonotonic
logic of justified belief.

As for the translation proposed by Konolige, it is clear that it does not relate extensions
and expansions. It does, however, provide some link between default logic and autoepistemic
logic. Marek and Truszczynski [MT89a] proposed the concept of a weak extension of a default
theory and proved that under the translation of Konolige, weak extensions and expansions
coincide. In other words, they proposed an alternative semantics for default theories that
could be viewed as the semantics of belief, yielding a default version of the logic of belief.
Thus, the Konolige’s translation might be the right one, once proper semantics on each side
are identified and correctly aligned.

The picture that emerges is that of a substantial research effort and several significant
results but with no definite systematic account of semantics for default and autoepistemic
theories and with no clear understanding of constructive principles behind the process of ar-
riving at a belief set. There has been no satisfactory solution to the matter of the relationship
between the two logics and there have been questions concerning the adequacy of the modal
reading of defaults that was proposed by Konolige. In this paper we resolve all these issues.

We propose a unifying semantic treatment of default and autoepistemic logics in terms
of possible-world structures. A possible-world structure is a collection of two-valued proposi-
tional interpretations each representing a state of the world that is possible according to the
agent. Possible-world structures can be seen as special Kripke structures [HC84]. They are of
fundamental importance in semantic studies of the modalities of knowledge and belief.

Possible-world structures were used in the study of autoepistemic logic. Moore described
a possible-world characterization of expansions in [Moo84]. They also figured prominently in
Levesque’s studies of autoepistemic logic as the logic of “only knowing” [Lev90]. Possible-world
structures appeared in the study of default logic but only marginally. Guerreiro and Casanova
[GCI0] found a characterization of extensions in terms of possible-world structures. Their work
was later further expanded by Lifschitz [Lif90]. Possible-world structures in default logic were
also studied by Besnard and Schaub [BS94].

In this paper, we propose a comprehensive semantic framework based on the concept of a
possible-world structure and on the intuition that belief sets can be obtained in a constructive
process of building their increasingly more precise approximations. To formally represent an
approximation to a possible-world structure we use the concept of a belief pair, that is, a pair
of possible-world structures one of which provides a conservative and the other one a liberal



estimate. We introduced this notion [DMT99] and used it there to study ways to approximate
the semantics of expansions.

Belief pairs form a complete lattice. We model the process of revising one approximation
(belief pair) to obtain another approximation (that is, another belief pair) in default and au-
toepistemic logics as monotone operators on the lattice of belief pairs. By selecting different
fixpoints of these operators we obtain structured families of semantics for default and autoepis-
temic logics. Some of these semantics are appropriate to model the notion of belief. Others
are well suited to model the concept of justified belief. Still others have a strong constructive
flavor  the corresponding fixpoints can be obtained by iterating the operators over the least
precise approximation. Qur main contributions can be summarized as follows:

e With every modal theory T we associate an operator Dp defined on the lattice of be-
lief pairs. Applying purely algebraic means to the operator Dp, we obtain a family of
semantics for T. These semantics capture different modes of reasoning in autoepistemic
logic. One of them corresponds to the semantics of expansions as introduced by Moore.
Another one is the semantics of justified belief that eliminates expansions containing
self-supporting beliefs.

e The same approach works for the default logic! With every default theory A we associate
an operator £a defined on the lattice of belief pairs. We apply to £a the same algebraic
techniques we used in the study of the operator Dy and obtain a family of semantics for
A. Among these semantics there are the semantics of weak extensions and the semantics
of extensions capturing within default logic the concepts of belief and justified belief,
respectively.

e The semantic operator of a default theory A and of the autoepistemic theory obtained
by applying to A the translation of Konolige are identical. This fact has far reaching
consequences. Konolige’s translation establishes an isomorphism between the two families
of semantics of default and autoepistemic logics. In particular, the meaning of a default
theory under a particular semantics of default logic is identical to the meaning of its
translation in the corresponding semantics of the autoepistemic logic.

In this way, we resolve the issue of the relationship between default and autoepistemic
logics and the question why Konolige’s translation did not work. Default logic under
the semantics of extensions and autoepistemic logic under the semantics of expansions
model different modes of autoepistemic reasoning and occupy different locations in their
respective families of semantics. This fact is responsible for Gottlob’s result that defaults
cannot be translated to autoepistemic formulas one by one. However, once we properly
align different semantics of default and autoepistemic logics, we find that Konolige’s
translation is correct! Viewed in the context of a family of semantics, rather than in the
context of a single one, default logic turns out to be just a fragment of autoepistemic logic.
The original default logic with extensions can be seen as a fragment of the autoepistemic
logic of justified belief. The default logic with weak extensions (expansions) is a fragment
of the autoepistemic logic of belief (the original autoepistemic logic with expansions).

e We identify two different constructive semantics describing how to approximate the
knowledge in an autoepistemic or default theory. They are obtained by iterating cer-
tain monotone operators on the lattice of belief pairs (operators Dy, Ea and two other



operators that are derived from them). This constructive process provides insights on
how agents can gain information about an unknown belief set by starting with the weak-
est approximation possible (the bottom of the lattice of belief pairs) and by using their
base theory to iteratively improve upon this approximation until further improvements
are no longer possible. We show how these semantics can be used to obtain sufficient con-
ditions for the existence of a single belief set. We also study the complexity of computing
these approximation semantics and show that it is lower than the complexity of com-
puting individual belief sets. This result may have implications for building automated
reasoning systems for default and autoepistemic logics.

e Our investigations are based on algebraic considerations concerning fixpoints of operators
on lattices. In that we follow the approach developed by Fitting [Fit02] and further
extended in [DMTO0O0b] to study semantics for logic programs with negation. Connections
between logic programming with negation and autoepistemic and default logics were
established a long time ago [Gel87, MT89b, BF91]. It turns out that the structure of
most important semantics for logic programs revealed by Fitting’s work is isomorphic to
the structure of the semantics for autoepistemic and default logics that we derive in this

paper.

The paper is organized as follows. First, in Section 2, we introduce basic logic terminology
and review the semantic approach to autoepistemic logic proposed by Moore [Moo84]. In
Section 3, we introduce and study the operator Dr, defined on the lattice of belief pairs.
Fixpoints of the operator Dr give rise to the semantics of partial expansions and expansions
for autoepistemic logic. The least fixpoint of Dr yields the Kripke-Kleene semantics. In Section
4, we introduce stable operators associated with the operator Dr. Fixpoints of these operators
define several new semantics for the autoepistemic logic. In Section 5, we study semantical
foundations of Reiter’s default logic. We define an operator £a on the lattice of belief pairs,
which is a default-logic counterpart of the operator Dp. As in the case of autoepistemic
logic, we derive from £a several other operators and show how their fixpoints describe major
semantics of default theories. Exploiting the relationship between the operators Dy and Ea
(under the Konolige’s modal interpretation of defaults), we establish in Section 6 a precise
correspondence between default and autoepistemic logics and explain earlier problems with
relating the two logics. In Section 7, we study the complexity of computation of suitably chosen
representations of Kripke-Kleene and well-founded fixpoints and show that the corresponding
decision problems are in the class A¥. The last section contains additional discussion of the
results and conclusions.

2 Autoepistemic logic — preliminaries

In this section, we introduce basic logic terminology that we will use in the paper. We also
recall the semantic treatment of autoepistemic logic proposed by Moore [Moo84] and studied
by Levesque [Lev90].

In the paper, we consider the language of propositional logic determined by a set of propo-
sitional atoms A¢. We denote this language by £. We also consider the language of modal
propositional logic obtained by extending £ with a modal operator K. We denote this lan-
guage by Lx. We call formulas in Lx that do not contain any occurrences of K modal-free



or propositional formulas. Of particular interest in the paper are modal formulas of the form
Kp. We call them modal atoms. We refer to collections of modal formulas (that is, subsets of
Lk) as modal theories.

A two-valued interpretation assigns to each atom from At a truth value t or £f. These two
truth values, together with the ordering f < t, form the standard Boolean lattice of truth
values. The set of all two-valued interpretations of At will be denoted by A.

Any set Q C A is called a possible-world structure and can be viewed as a universal Kripke
model with a total accessibility relation [Che80, HC84]'. Possible-world structures constitute
a basic tool in semantic studies of modal logics. As we stated earlier, they represent the agent’s
knowledge about the world. Possible-world structures were used by Moore [Moo84] and later
by Levesque [Lev90] in the investigations of autoepistemic logic.

We denote the collection of all possible-world structures (with respect to the set of atoms
At) by W. This set can be ordered by the reverse set inclusion C: for Q1,Q2 € W, Q1 C Q2
if Q2 C Q1. The reason for the choice of this ordering is that if Q1 C @2, and T;,1 = 1,2,
are the sets of sentences of £ true in @;, then 77 C T5. The ordering C can be thought of
as a knowledge ordering. As we move up in the lattice, more and more interpretations are
excluded from possible-world structures. Thus, our knowledge of the interpretation describing
the actual world improves. Clearly, (W, C) is a complete lattice.

Example 2.1 As a running example, to illustrate concepts in the paper, we will consider the
language over the set of atoms At, = {p}. We will denote this language as £,. The set of
interpretations A (denoted A, in this special case) consists of two interpretations, say I, and
Jp, where I,,(p) = t and J,(p) = f. The set W (denoted by W,) has four elements: 0, Z, = {I,},
Jp = {Jp} and A,. The lattice (W,, C) is shown in Figure 1. O

Figure 1: Lattice (W,.C)

To study formalisms based on the modal language, we study operators on the lattice W
and their fixpoints. We start by defining the truth function Hg 1 (Q C A is a possible-world
structure, I € A is an interpretation). The definition is inductive and proceeds as follows:

1. Ho,r(p) = I(p), if p is an atom.

2. ”HQ’[(gol A (pg) =t if 'HQy[((pl) =t and ’HQ,[(QOQ) = t. Otherwise, ’HQJ(QOl AN QOQ) =f

!Usually, the universe of a Kripke model is required to be nonempty. The empty set of worlds satisfies all
formulas, and thus corresponds to the inconsistent theory. At times, autoepistemic expansions are inconsistent,
and allowing for an empty set of worlds, as we do in this paper, captures this case.



3. HQ}[(gol Vpg) =t if HQ}[(QM) =t or ’HQ,[(QDQ) = t. Otherwise, HQy[(QDl Vpg) =1
4. 'HQy[(—'(p) =t if 'HQy[(Qp) = f. Otherwise, 'HQy[(Qp) =T
5. Hg,1(Kp) = t, if for every interpretation J € Q, Hg j(p) = t. Otherwise, Hq 1(K¢) = f.

Let us note that the value of a modal atom K¢ given by H¢ ; does not depend on I. Thus, it is
entirely determined by the possible-world structure (). We will denote this value by Hq(Ky).
We define the theory of a possible-world structure @) as the set

Th(Q) = {p: Ho(Kyp) = t}.

It is clear that every modal atom K is either true or false with respect to (). In other words,
for every formula ¢ € L, its epistemic status is fully determined: it is either known in @) or
it is not known in Q.

For every modal theory T', Moore [Moo84] defined an operator Dr on W by:

Dr(Q) ={I : Hg,1(p) = t, for every p € T}.

The intuition behind this definition is as follows. The possible-world structure Dp(Q) is a
revision of a possible-world structure ). This revision consists of the worlds that are acceptable
given the constraints on agent’s beliefs captured by T'. That is, the revision consists precisely
of these worlds that make all formulas in T true (in the context of Q — the current belief
state). Fixpoints of the operator Dy represent “stable” belief sets they cannot be revised
any further. Moore called the theory of a fixpoint of Dt a stable expansion of T and proposed
it as a basis of autoepistemic logic: a formal description of a belief set of a rational agent with
full introspection powers reasoning from a base theory T'. In this paper, we will use the term
“expansion” instead of the original term “stable expansion”. Somewhat abusing the notation,
we will use the term “expansion” also to refer to fixpoints of the operator Dy (and not only
to their theories).

Example 2.1 (cont’d). Let us consider a theory T, = {Kp = p} in the language £, (we
regard @ = 3 as an abbreviation of —a Vv ). We will determine the operator Dr,. To this
end, we will first determine the truth function Hg ; for all possible-world structures QQ € W,
and all interpretations I € A,. Because of the form of the theory 7}, it is enough to establish
the values of H ; for p, Kp and Kp = p, only. Table 1 lists for each pair @, I, those formulas
among p, Kp, Kp = p and their negations that are true under H ;.

L 0 | Z, | T | Ay
I, || p,Kp,Kp=1p p,Kp,Kp=p p,~Kp,Kp=p | p,~Kp,Kp=1p
Jy || 0, Kp,Kp=p | -p,Kp,~(Kp=p) | -p,~Kp,Kp=p | -p,-Kp,Kp=p

Table 1: Truth assignment H¢ r(¢).

The operation of Dy, can be readily obtained from this table. In particular, for each
possible-world structure (), Dr,(Q) is the set of interpretations / for which the table entry
(I, Q) contains Kp = p. Table 2 lists the values of the operator Dy, . It follows that the theory
T, has two expansions: Z, and A,. Let us note that A, is the least expansion in the knowledge
ordering. O



X 01Z, | 7, | 4,
Dr.(X) [ Z, [ Z, | A, | 4,

Table 2: The operator Dy,.

3 Autoepistemic logic — a multivalued generalization

In [DMT99], we generalized Moore’s approach to the three-valued case, in which we allow for
the possibility that the truth value of some modal atoms is neither t nor f but, instead, it is
captured by a new truth value, unknown or u. In this section, we recall essential elements of
our approach from [DMT99] and extend it to the four-valued case.

Let us consider a modal theory T'. We are interested in ways to form a belief set corre-
sponding to T" or its representation in terms of some possible-world structure, say ). However,
instead of searching for direct ways to find @), we exploit the idea of an approximation. An
underestimate (or a conservative view) of ) is given by any superset P of (). Indeed, any such
superset bounds @) from below in the lattice W (with respect to the knowledge ordering C).
Similarly, an overestimate (or a liberal view) of () is provided by any subset S of ), as subsets
of () are upper bounds for () in the lattice W. Interpretations in P can be thought of as those
that are still regarded by the agent as possible (we do not have reasons to eliminate any of
them yet). Interpretations in S are those that are surely in () — we already have established
that they need to be included in the possible-world structure describing the agent’s belief set.
Together, P and S form an approzimation to Q.

To study approximations we introduce the concept of a belief pair. A belief pair is any
pair (P, S) of possible-world structures. The structure P is intuitively regarded as an under-
estimation, S is regarded as an overestimation. Consequently, we say that a belief pair (P, S)
approximates a possible-world structure @ if S C Q C P (or, in terms of the knowledge or-
dering, if P C @ C S). Clearly, the set of possible-world structures approximated by a belief
pair (P, S) is not empty if and only if S C P (equivalently, P C S). We call such belief
pairs consistent (intuitively, their conservative perspective is consistent with the liberal one).
All other belief pairs are called inconsistent they do not approximate any possible-world
structures.

In [DMT99], we considered consistent belief pairs only. As a result we obtained a three-
valued concept of belief set (beliefs could be true, false or undefined). In this paper we allow
inconsistent belief pairs. First, the ways in which the agent establishes estimates P and S
may be independent of each other and, at least at an abstract level, inconsistent belief pairs
may arise. Second, admitting inconsistent belief pairs simplifies mathematical arguments and
yields more elegant algebraic structures. Working in this extended setting, we propose four-
valued semantics for autoepistemic logics and show that they generalize two- and three-valued
semantics that were known before.

Belief pairs can be ordered by a precision ordering <,,. Namely, given two belief pairs
(P,S) and (P',S") we define:

(P,S) <, (P',S") if PPC P, and SCS,

or, equivalently,
(P,S) =pr (P',S") if PCP', and S'C S.



Let us denote by [P, S] the set {Q € W: P C Q C S}. Clearly, if (P, S) <,, (P',S’) then
[P', S| C[P,S].

In other words, larger (in the ordering =<,,) belief pairs provide more precise approximations
— the sets of approximated possible-world structures get smaller. This property motivates our
choice of terminology.

We denote the set of all belief pairs by B. Together with the precision ordering, the set B
forms a complete lattice. Thus, by the theorem of Tarski and Knaster, monotone operators on
B are guaranteed to have a least fixpoint. The lattice (B, <,,) of belief pairs over the language
Lp (Example 2.1) is shown in Figure 2.
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Figure 2: Lattice (Bp, <pr)

We will mention in passing that the set of all belief pairs can also be ordered by another
ordering, C, defined as follows:

(P,Syc (pP',s") if PCP and SCS'.

We refer to this ordering as the knowledge ordering of B as it is a component-wise extension of
the knowledge ordering C of possible-world structures (moreover, we use the same symbol to
denote it). This ordering plays only a limited role in our considerations (it defines the concept
of minimality used in Theorems 4.4 and 5.9) thus, we do not discuss its properties in any
significant detail.

With a belief pair (P, S) and a two-valued interpretation I we associate a two-valued truth

function H%P,S),I defined on the set of all formulas of the modal language. Our intention is
to define ’H%P,S)’,(go) so that it provides a conservative estimate to the truth value of ¢ with
respect to a belief pair (P, S). The definition follows a standard recursive pattern and the only
more subtle point concerns the definition of ,H%P, )1 for modal atoms K.

Before we give a formal definition, let us first consider a modal atom K, where ¢ does not
contain any other occurrences of K. In the belief pair (P, S), P represents the conservative

point of view. Thus, the conservative estimate for the truth value of K¢ will be obtained if
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the set P is used in the evaluation: K¢ should be true according to the conservative point of
view if @ is true in all valuations in P. The situation changes in the case of the formula Ky
where, as before, ¢ is modal-free. To compute the conservative estimate for the truth value
of this formula, we need to negate the liberal estimate for the truth value of K. This liberal
estimate can be computed with the help of §: K is true if ¢ is true in all interpretations
from S.

This discussion can be generalized to arbitrary formulas and suggests the following ap-
proach. To obtain the conservative estimate for the truth value of a formula, modal atoms
that appear positively in the formula must be evaluated with respect to the conservative point
of view (that is with respect to the set of interpretations P). On the other hand, modal atoms
that appear negatively must be evaluated according to the liberal perspective (that is with
respect to the interpretations in §). Formally, we have the following inductive definition of

H(QP,S),I'
1. H%P’S)’I(p) = I(p), for every atom p.

2. H(QP’S)J(% Ap9) =t if H%P,S),I(‘Pl) =t and H(QP’S)’I((‘DQ) = t. Otherwise, H(QP,S),I(‘PI A
QOQ) = f

3. H(QRS)J(@ Vipg) =t if ’H%P,S)’,(gol) =t or ”H(QRS)J(@Q) = t. Otherwise, H(QRS)J(@ Vv
(,02) = f

4. H(prs)yl(_‘SO) = _',H?S,P),[(‘P)-

5. Hip gy ((Kg) =t if HEp o ;(0) =t for all J € P. Otherwise, H{p g (Kp) = f.

Step (4) is the key. It ensures that when evaluating the negation of a formula the roles
of P and S are switched. Consequently, modal atoms appearing positively in a formula are
evaluated with respect to the belief pair (P, S) and modal atoms that appear negatively are
evaluated with respect to the belief pair (S, P).

Clearly, to construct a liberal estimate for the truth value of ¢ with respect to a belief pair
(P, S) we can proceed similarly and use S (respectively, P) to evaluate modal literals appearing
positively (negatively) in . It is easy to see, however, that the resulting truth function can
be expressed as H%S,P),I (we reverse the roles of P and S).

Conservative and liberal estimates of truth values of formulas can be combined into a single
estimate from a four-valued Belnap’s lattice of truth values. The elements of the Belnap’s
lattice are: t4 = (t,t) (true), £, = (f,f) (false), u = (f,t) (unknown) and i = (t,f). These
values are related by the following lattice order <, (the precision ordering in Belnap’s lattice):

(u,v) Zpr (u',0") if u <u' and v >0

(let us recall that < is the ordering of truth values f and t, and that f < t). The Belnap’s
lattice is shown in Figure 3.

An element of the Belnap’s lattice can be viewed as an approximation to an unknown
two-valued truth value. Clearly, the higher we are in the Belnap’s lattice, the more precise is
the approximation. At the bottom both t and f are possible (thus, the term “unknown” for
the truth value u). Each of the approximations at the second level represent exactly one truth
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i=(t,f)

/

f4 = (f7 f) ty = (tat)
NS
u = (f t)

Figure 3: The Belnap’s lattice

value. Lastly, no two-valued truth value is represented by the top element. It is due to these
“precision of approximation” intuitions (similar to intuitions underlying the precision ordering
of belief pairs), that we refer to the ordering =<, as the precision ordering?®.

On the elements of the Belnap lattice one can define the negation operator:

—|f4 = t4, —|t4 = f4, -u=nu, —-i=1.
Under this definition, for every element (z,y) of the Belnap’s lattice we have:

_'(LE, y) = (_'y7 _'x)a

where the negation operator on the right-hand side is the standard two-valued negation oper-
ator.

Using the Belnap lattice of truth values, we now define the four-valued truth function
combining lower and upper estimates H(QRS)J(@) and ’H%S’P)’,(go) as follows:

H?P,S),I(‘P) = (H%P,S),I(W)aH(ZS,P),I(W))-
Directly from this definition, it follows that

Hirs)0(~9) = "Hips).1 (),

where the negation operator on the right-hand side is the negation operator in the Belnap’s
lattice.

It is clear that for a modal atom K¢, the logical values H%P,S)J(Ktp) and ’H?P’S)J(Kgp)
do not depend on the interpretation /. Therefore, we will denote them by H(QP S)(Kgo) and

H?P,S) (K ), respectively.
Example 2.1 (cont’d). To illustrate the concepts we just introduced we will now evaluate

H?P ).y ;. (Kp = p) and H(P 9. (Kp = p) for all belief pairs (P, S) € B),. First, let us notice
that for every interpretation I,

H?P,S),I(KP =p) = (H%P,S),I(_'Kp Vv p), H%S,P),I(_'Kp Vp)) =
(H?P,S),I(_‘Kp) Vv I(p), H?s p),1(7Kp) Vv

(~H2s py(Kp) V I(p), ~Hp g (Kp) V 1(p)).

2As in the case of belief pairs, there is an alternative ordering of the elements in the Belnap’s lattice. It is a
component-wise extension of the standard ordering of the truth values f and t.
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Since I,(p) = t, it follows that for every belief pair (P, S),
Hips) 1, (Kp=p) = (t,t) = ta.
Similarly, since Jp(p) = f, we have

H?P,S),JP(KP =p) = (_',H%S,P)(Kp)v _',H?P,S)(Kp)) = _',HZIP,S)(KP)-

Let us consider the belief pair (A,,Z,). Since A, contains worlds in which p is false, a
conservative estimate (an underestimate) for the truth value of Kp is given by f. On the
other hand, since p is true in all worlds in Z,, the liberal estimate (an overestimate) for this

: 4 _ _ 4 _
truth value is t. Thus, H(Ap,Ip)(Kp) = (f,t) = u. Consequently, H(Ap,zp),Jp(Kp = p) =

_IHEIAP’IP)(KP) - u

L [01%[%[A]
O || £, £4 | i i
Z, | & [ & | 1|1
jp u u t4 ty
.Ap u u t4 t4

Table 3: The truth values HE‘P, s).0,(Ep = p).

The values H?P s) Jp(Kp = p) for the remaining belief pairs can be computed in the same

way by computing ﬁH?P,S)(Kp). They are all listed in Table 3. The value HELP:S):JP(KP =p)

is given at the intersection of the row labeled with P and the column labeled with S. O

Using the truth function H?P g) we can associate with each belief pair (P, S) its epistemic
content. We define the knowledge of (P, S), denoted kn(P,S), by

kn(P,S) = {¢ € Lic: H{p g (Kp) = ta}.
Similarly, we define the ignorance of (P, S), denoted ig(P, S), by
ig(P,S) = {p € Lr:H{p g (Kp) = fu}.

The set kn(P,S) can be viewed as the set of formulas that are known in the belief pair (P, S).
The set ig(P, S) can be regarded as the set of formulas that are unknown in the belief pair
(P, S).

By the meta-knowledge of a belief pair (P, S) we mean the set of those formulas whose
epistemic status is determined: the corresponding belief is either true or false (as opposed to
unknown or inconsistent). These are precisely the formulas in kn(P,S) U ig(P,S). We call
the set of all other formulas, Lx \ (kn(P,S) Uig(P,S)), the meta-ignorance of (P, S) as their
epistemic status is not clear.

The concept of a belief pair generalizes that of a possible-world structure and the truth func-
tion ’H?P, 9.1 is a four-valued generalization of the two-valued truth function Hp;. Moreover,
the concept of knowledge of a belief pair generalizes the notion of the theory of a possible-world
structure. We define a complete belief pair to be any belief pair of the form (P, P). We have
the following result (the proof is self-evident and we omit it).
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Proposition 3.1 Let P be a possible-world structure. Then

1. For every formula ¢ € Ly and every interpretation I € A, H(QRP)J(@) = Hpi(p) and
Hzlpyp)’,(@) = Hpr1(p), Hpri(p)).

2. kn(P,P) ={¢p:Hp(Ky) =t} = Th(P).
3. kn(P,P)Uig(P,P)= Lk

The last assertion of Proposition 3.1 states that the meta-knowledge of a complete belief
pair is complete  the epistemic status of each formula ¢ is fully determined: the logical value
of knowing the formula (the logical value of the modal atom K) is either t4 or fj.

We will now study some basic properties of the truth functions H%P’S)J and H?P,S),I in-
volving the orderings of truth values in the Boolean and Belnap lattices.

Proposition 3.2 Let (P,S) and (P',S") be belief pairs from B such that (P, S) =, (P',S').
Then, for every interpretation I € A and for every modal formula ¢ we have:

1. H(QP,S),[(SO) S ,H%P’,S’),I(@D)'
2' H?P,S),[(gp) jp?“ H?PI’SI)’I(()O).

Proof: It is clear that statement (1) implies statement (2). So, we prove statement (1) only.
We proceed by induction on the complexity of the formula ¢. The induction base is obvious.
The cases of ¢ = 11 Ay and @ = 11 V 1h9 follow immediately from the fact that the operators
A and V are monotone with respect to <.

Next, we will consider the case ¢ = K. If ’H(QPS ;(K%) = f, the inequality (1) follows.
So, let us assume that H(PS [(Kv¢) =t. Let J € P'. Since (P,S) =, (P',5"), we have that
P' C P. Thus, J € P and, consequently, 7-[( P.S )’J(l,[)) =t. By the induction hypothesis it
follows that H?PS) S() < H%P, S’) ;(1)). Hence, H%P, ), ;1) = t. Since J is an arbitrary
element of P’, we obtain that ’H(P, 1), /(K1) = t. Thus, the inequality (1) follows in the case
H(PS (K1) = t, too.

F1nally, we will consider the case when ¢ = —). As before, it is enough to consider the
case when H%P’S)’I(cp) = t. In this case, we have that H(QS’P)J(@/J) = f. Moreover, since
(P,S) =p (P',S"), we also have that (S, P') <,, (S,P). Thus, by the induction hypoth-
esis, H%S',P'),I(d)) < H(QS’P)’I(@ZJ) = f. It follows that H%S,’P,)J(Q/)) = f and, consequently,
H(Qp,ys,)yl(go) = t. Hence, the inequality (1) holds for ¢ = —). a

This result has several interesting corollaries. The first of them is that for a consistent
belief pair (P, S), the truth function H?P )1 assigns only consistent truth values.

Corollary 3.3 If (P S) is a consistent belief pair then for every interpretation I € A and
every formula ¢, H(PS) () is consistent (that is, H(PS () #1i).

Proof: Tt is easy to see that if (P,S) is consistent, then:

(P,S) = (S, P).
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By Proposition 3.2(1), ”H(QRS)J(@) < 7—[(25713)7[(@), and hence ’HEIP,S)J(QD) is consistent. O

The next corollary is concerned with the concept of the epistemic content of a belief pair.
We show that, under the restriction to consistent belief pairs, the notion is monotone with
respect to the ordering =<,,.

Corollary 3.4 Let B and B' be consistent belief pairs. If B <, B' then
kn(B) C kn(B') and ig(B) C ig(B").

Proof: Let us consider a formula ¢ € kn(B). Then, we have that H%(K¢) = t4. Since B’ is
consistent, Hy (Kp) # i (Corollary 3.3). Further, since B =<, B', HL(Kp) =pr Hi (Ko).
Thus, H}, (K@) = t4 and, consequently, ¢ € kn(B'). The proof in the case when ¢ € ig(B) is
similar. O

We will now study operators on the lattice (B, =<,,) and their properties. We will focus
on operators that are monotone with respect to <, (=<p-monotone, for short). Each such
an operator has a =,,-least fixpoint by the theorem of Tarski and Knaster. In addition to
monotonicity, we will impose on operators one more condition, symmetry. An operator O on
B is symmetric if for every belief pairs (P, S) and (P’, S’)

O(P,S) = (P',S") if and only if O(S,P) = (5, P").
Proposition 3.5 Let O be an operator on the lattice B that is <,.-monotone and symmetric.

1. For every consistent belief pair B, O(B) is consistent.

2. The least fizpoint of O is consistent. Moreover, if it is complete, it is o unique fixpoint

of O.

Proof: (1) Let B = (P,S) be a consistent belief pair. Then, P C S and, consequently,
(P,S) <pr (S, P). By the <,,-monotonicity of O, O(P, S) <, O(S, P). Let O(P,S) = (P',5").
By the symmetry of O, O(S,P) = (S',P'). Thus, (P',S") <, (S, P') and, consequently,
P'C S'. That is, O(P, S) is consistent.
(2) Let us denote the least fixpoint of O by (P,S). Since O is symmetric, (S, P) is also a
fixpoint of O. Thus, (P, S) <, (S, P). Consequently, P T S and (P, S) is consistent.

Let us now assume that (P, S) is complete. Let (P’,S’) be a fixpoint of O. By the symmetry
of O, (S', P') is also a fixpoint of O. Since (P, S) is the least fixpoint of O and since P = S
(by the completeness of (P, S)), we obtain

(P, P) <, (P',S") and (P, P) =, (S, P').

The first relation implies that P’ C P and P C S’. The second relation implies that S’ C P
and P C P'. Thus, P’ = S’ = P or, equivalently, (P',S’) = (P, S). O

The next result concerning fixpoints of <,,-monotone and symmetric operators on B shows
that the knowledge and ignorance of the least fixpoint of an operator can be used to approxi-
mate the knowledge and ignorance of any other fixpoint.

Proposition 3.6 Let B be the least fixpoint of a =,.-monotone and symmetric operator O
defined on the lattice (B, =,,). For every fizpoint B' of O we have:

kn(B) C kn(B') and ig(B) C ig(B").
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Proof: Let us assume that B = (P, S) and B’ = (P’,S’). Let us consider a formula ¢ € kn(B)
and an interpretation I € P. We have H?P 9) (@) = t4. Since (P, S) is the least fixpoint of O,

(P,S) =, (P',S"). By Proposition 3.2, it follows that H?P,ys,)yl(go) = t4 or HE‘P,,S,),,(@) =i
Let us assume that H?P,ys,)’,(go) = i. Then, ’H?S,’P,)J((p) = u. However, by the symmetry of
O, (', P') is also a fixpoint of O. It follows that (P, S) <, (5", P') and

ty = ’]—[?P’S)’I(QD) jpr ,Hzl ’,P’),I(‘p) =u,

a contradiction. Consequently, 'H?P,’S,)J(tp) = t4. Since [ is an arbitrary element of P and
P' C P, it follows that ”HE‘P,’S,)(K@) = t4. Thus, ¢ € kn(B’) and kn(B) C kn(B'), as claimed.
The other inclusion can be proved in a similar fashion. O

This result is related to Corollary 3.4. We do not require here that belief pairs B and B’ be
consistent. Instead, we require that one of them is a least fixpoint (and so, it is consistent), and
another one is an arbitrary fixpoint (possibly inconsistent) of a <,,-monotone and symmetric
operator on the lattice (B, <,,).

Let T" be a modal theory. We will now associate with 1" an operator on the lattice B. Let
(P, S) be a belief pair. Extending the definition from [DMT99], we set

DT(Pa S) = (D%(Pv S),'D%(P, S))a

where
DlT(Pa S) ={I: ,H%S,P),I(T) =t} and Dy(P,S) = {I: ,H%P,S),I(T) = t},

and where ’H%’,(T) stands for the greatest lower bound of the set {’H%,,(go): @ € T} (in other
words, 1, ;(T) = t if and only if #3 ;(p) = t for every ¢ € T'). We refer to fixpoints of the
operator Dy as partial expansions.

Intuitively, the operator Dy describes how an agent might revise a belief pair (P, S). The
objective is to obtain a new underestimate P’ and a new overestimate S’. Given the current
belief pair (P, S), the agent can exclude from P’, as definitely impossible, all these interpreta-
tions in which at least one formula in 7" is false even according to the liberal estimate of truth
values. All other must still be regarded as possible and included in P’'. Thus, P’ consists of all
those interpretations for which all formulas from 7" are true according to the liberal estimates
of truth values (given the current approximation (P, S)). To construct S’ (an overestimate)
the agent includes in S’ only those interpretations that the agent is certain should be included,
given the knowledge captured by the current belief pair (P, S). Thus, the agent includes in
S’ all those interpretations which make all formulas in T' true even according to conservative
estimates.

Example 2.1 (cont’d). We will compute DlTp (X, Z,) for all possible-world structures X € W,.
Let us observe that

iz, 4, (0Kp) = "H{y, 1,)(Kp) = t.

Thus,
DlTp (Ap, Lp) = {I: H(QIP,AP),I(_'KP Vp) =t} =A,

Similarly,
HE o (=Kp) = -HE (Kp) =f
(Zp,0) p 0.7,)\ AP :
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Thus,
D%Fp(wazp) ={I: H%Ip,w),[(_‘KP Vp) =t} =1,

The remaining values DlTp (X,Z,) can be computed in the same fashion. They are all are shown
in Table 4.

X 01, | Tp | Ap
Dy (X.T,) | L, | Ty | A | A

Table 4: The operator DlTp(-,Ip).

Proceeding in a similar way, we can also compute values D%p (X,Z,). First, it is easy to see
that for every X € W,

Hix 1,)(-Kp) = =Mz x)(Kp) = f.

Thus, for every X € Wy, Dy, (X;,Z,) = I, (Table 5). O
X 01T, | Ty | A
Dy (X.L) | %, |, |2, | Ty

Table 5: The operator Dr, (-, Zp).

The operator Dr plays a fundamental role in our study of autoepistemic logic. It allows us
to derive all major semantics of autoepistemic theories in two-valued, three-valued and four-
valued settings. We will first briefly discuss how one can reconstruct from the operator Dr the
two-valued approach of Moore and his semantics of expansions.

Proposition 3.7 Let T be a modal theory. Then, for every possible-world structure P, we
have Dy (P, P) = (Dp(P), Dyp(P)). Consequently, a complete belief pair (P, P) is a fizpoint of
Dr if and only if P is a fizpoint of Dr.

Proof: The equality Dy (P, P) = (Dyp(P), Dy(P)) follows directly from Proposition 3.1 and
the definitions of the operators Dr and Dr.
Let us assume that Dy (P) = P. Then

Dr(P, P) = (Dr(P), Dr(P)) = (P, P).

Conversely, if Dp(P, P) = (P, P), then (D¢ (P), Dy(P)) = Dy(P, P) = (P, P). Thus, Dy (P) =
P. O

Example 2.1 (cont’d). Since Z, and A, are fixpoints of the operator Dr,, by Proposition
3.7 the belief pairs (Z,,Z,) and (A,, A,) are fixpoints of the operator Dyz;,. From the results
summarized in Tables 4 and 5, it follows that Dz, has two more fixpoints: (A,,Z,) and (Z,, Ap).
These fixpoints are not complete. The first of them is consistent, the other one is not. O

Next, we observe that two belief pairs that define the same truth value for all modal atoms
occurring in theory 7', that is, are epistemically equivalent, are revised by the operator Dr
into the same belief pair. Formally, we have the following result.
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Proposition 3.8 Let T be a modal theory and let (P,S) and (P',S") be belief pairs such that
for every modal atom K+ of T, H?P’S)(KQ/)) = ’H?P,’S,)(KQ[)). Then, Dy(P,S) = Drp(P',S").

Proof: Clearly,

Hips)(K) = Hipr oy (Kep) and Hig py(Kep) = Hig pry(Kp).

Thus, for every interpretation I and every formula ¢ € T,

H%P,S),I(‘P) = H%P',S'),I(‘P) and H(QS,P),I(‘P) = H%s',P'),I(‘P)-

Therefore,
Dh(P,8) = D(P',8') and D(P,S) = Di(P',§').

Consequently, Dr(P,S) = Dp(P',S"). O

The next result is of fundamental importance. It asserts that the operator D is <p,-
monotone and symmetric. Thus, by the theorem of Tarski and Knaster, it has a unique least
fixpoint. In addition, Propositions 3.5 and 3.6 apply to Dr.

Proposition 3.9 The operator Dy is symmetric and <p,.-monotone.

Proof: Directly from the definitions it follows that DL(P,S) = D%(S, P), hence Dy is sym-
metric.

To prove the monotonicity part of the claim, let us consider two belief pairs (P, S) and
(P',S') such that (P,S) <, (P',S"). We need to prove that

DL(P',S") C DL(P,S) and D%(P,S) C DL(P',S")

Let I € DL(P',S"). Then, Mg pr (T) = t. Since (P, S) =, (P',S'), (8", P') =Zpr (S, P).
Thus, by Proposition 3.2, H(stp)yl(T) = t and, consequently, I € D4 (P,S). The second
inclusion can be proved in the same manner. O

Corollary 3.3 and Propositions 3.5 and 3.9 provide a connection between the approach in
this paper and our earlier work [DMT99]. Corollary 3.3 shows that for a consistent belief pair

(P, S), the truth function H?P75)7[ is three-valued. In fact, one can check that if (P,S) is a
consistent belief pair, then the truth function ’HE‘P’S)’I coincides with the three-valued truth
function considered in [DMT99]. Proposition 3.5 implies that the operator Dy maps consistent
belief pairs into consistent belief pairs. One can check that the restriction of Dy to consistent
belief pairs coincides with the operator on consistent belief pairs considered in [DMT99]. Thus,
the approach developed in this paper, admitting the possibility of inconsistent belief pairs, is
a generalization of the approach from [DMT99].

As we noticed earlier, Proposition 3.9 implies that the operator D has a unique <, -least
fixpoint. We denote it by KK (T') and refer to it as the Kripke-Kleene fizpoint for T'. Similarly,
we call the semantics it defines Kripke-Kleene semantics for T'. In this semantics a formula ¢
has logical value v (where v is from the Belnap lattice) if H}K(T)(ch) = v. This choice of
terms is motivated by a close analogy between the least fixpoint of the operator Dy and the
Kripke-Kleene semantics for logic programs (see Section 8).

The Kripke-Kleene fixpoint has a clear constructive flavor. It can be obtained by iterating
the operator Dp, starting at the least informative belief pair, (A, ().
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Example 2.1 (cont’d). We will now find the least fixpoint of the operator Dr, (the least
partial expansion of T},). We start by computing Dr, (A, (). Let us observe that

H%@,Ap),z(ﬁKp) = ﬁH%Ap,m),z(Kp) = t.
Thus,
D, (A, 0) = {I: Hiy 4,1 (~KpV p) = t} = A,.
In a similar fashion,
H%Ap,@),l(ﬁKp) = ﬁ%%m,Ap),z(Kp) =t

Consequently,

D (Ap, 0) = {I: H{a, gy (-KpVp) =t} =T,
Thus, Dy, (Ap,0) = (Ap,Z,). We already showed earlier that Dy, (A,,Z,) = (Ap,Ip) (see
Tables 4 and 5). Thus, (A,,Z,) is the least fixpoint (Kripke-Kleene fixpoint) of Dy, . O

We now summarize basic properties of the fixpoint KK (T') as a corollary to Propositions
3.5, 3.6, and 3.9.

Corollary 3.10 Let T be a modal theory.
1. The fizpoint KK (T) is consistent.
2. For every partial expansion B of T, KK (T') <, B.

3. For every partial expansion B of T,

kn(KK(T)) C kn(B) and ig(KK(T)) C ig(B).

4. If KK(T) is a complete belief pair, then it is the unique consistent partial expansion of
T. Moreover the possible-world structure P such that KK(T) = (P, P) is the unique
expansion of T.

Corollary 3.10 has important epistemological consequences. It states that the Kripke-
Kleene fixpoint is a consistent belief pair that approximates belief sets that are formalized as
fixpoints of the operator D;. In other words, the iterative approximation process is sound.
Next, it demonstrates how the knowledge and ignorance of the Kripke-Kleene fixpoint approx-
imates that of all other partial expansions of T'. Lastly, it implies that the Kripke-Kleene
semantics provides sufficient conditions for the uniqueness of an expansion of T'. Corollary
3.10 has also computational implications. We discuss them later in Section 7.

4 Autoepistemic logic — extensions and the well-founded se-
mantics

In this section we show that the theory of belief pairs allows us to introduce new semantics for

autoepistemic logic. Given a modal theory T', we use the operator Dt to define two additional

operators: the operator D3! defined on the lattice W, and the operator D! defined on the lattice
B. They give rise to semantics for autoepistemic logic that are closely related to the semantics
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of extensions for default logic. One of them, the semantics obtained by means of fixpoints of
the operator D!, is a perfect match to Reiter’s semantics of extensions for default logic, an
object long sought after in the autoepistemic logic. The operator D3 is <,,- monotone, and
its least fixpoint gives rise to the well-founded semantics for autoepistemic logic.
Let S be a possible-world structure, that is, S € W. For a possible-world structure P € W
we define
Dsr(P) = Di(P, S).

The operator Dg 7 is a monotone operator on the lattice (W, C). Indeed, if P, C P, then
(P1,S) =pr (P2,S). By the <,,-monotonicity of Dy, Dy (P, S) <pr Dr(P,S). Thus,

Dsr(Py) = Di(Py,S) C D (P, S) = Dsr(Py).
By the theorem of Tarski and Knaster, the operator Dg 7 has a least fixpoint. We define

DN(S) = Ifp(Ds.r) = Ufp(Dh (-, 9)).

Intuitively, D5(S) can be viewed as a preferred conservative estimate of what is believed given
a fixed S (that is, given a fixed liberal estimate on beliefs)3.

In a similar way as for Ifp(DY.(-,S)), we argue that Ifp(D}(P,-)) can be regarded as a
preferred liberal estimate of what is believed, given a fixed conservative point of view. Let us
notice that by the symmetry of the operator Dr,

DY(P, S) = Dy (S, P).

Thus,
Ifp(D}(P,)) = Ufp(D (-, P)) = DF#(P).

Having defined the operator D! on possible world structures, we now define an operator
D3t on belief pairs as follows:

Dy (P, 8) = (Dy(S), D (P)).

From our earlier discussion it follows that the operator D! provides yet another way of revising
belief pairs: A belief pair (P, S) is replaced by the belief pair D5 (P, S) = (P', S'), where P’ is
a conservative estimate of what is believed given an old liberal estimate S, and S’ is a liberal
estimate on what is believed given an old conservative estimate P.

Clearly, D3! is an operator on the lattice (W, C). We refer to possible-world structures
that are fixpoints of the operator D! (and also to their theories) as extensions. The choice
of the term is not arbitrary. We show in Section 6 that extensions of modal theories can be
regarded as generalizations of extensions of default theories. We call fixpoints of the operator
D3t defined on the lattice (B, <,,) of belief pairs, partial extensions, as they can be viewed as
“belief-pair” versions of extensions. Indeed, we have the following property relating fixpoints
of the operators D3! and Di'.

Theorem 4.1 For every modal theory T, a possible-world structure P is a fizpoint of D3t if
and only if a belief pair (P, P) is a fizpoint of Dit.

3 A similar construction, in the context of logic programming, was introduced by Przymusinski [Prz90].
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Proof: The statement follows immediately from the definition of the operator D3t. O

Example 2.1 (cont’d). We will determine the operator D%tp. Let us first observe that for
every S € W, and each I:

His, a,)0(—Kp) = —~Hix o) 1(Kp) =t

and hence,
MHiga,.1(Kp=p) =t
Consequently, for each S, it holds that

DI, (A, S) = {I: i 4, 1 (Kp = p) = t} = A,

It follows that for every S € W, DZTP (Ap,S) = A,. Thus, A, is the least fixpoint of the
operator DlTp(-, S) (let us recall that A, is the least element of the lattice (W,, C) on which
the operator DZTP(-, S) is defined). That is,

D (S) = Ay,

for every S € W,.

It follows that the theory T} has exactly one extension, A, (operator D%i has exactly one
fixpoint). It is also easy to see that (A,,A,) is the only partial extension of T, (the only
fixpoint of the operator Dr}i) O

The circular dependence allowing the agent to accept p to the belief set just on the basis of
this agent believing in p, allowed under the semantics of expansions, is eliminated in the case
of extensions. For instance, as we observed before, the theory {Kp = p} has two expansions.
One of them is determined by the possible-world structure consisting of all interpretations,
the other one by the possible-world structure consisting of all interpretations in which p is
true. It is this second expansion that suffers from the circular-argument problem: the belief
in p is the only justification for having p in this expansion. At the same time, the theory
{Kp = p} has exactly one extension, the one given by the possible-world structure consisting
of all interpretations. The atom p is not known in it and, hence, circular arguments are not
used in the construction of this expansion.

The following result collects most important properties of the operators D3! and DS'.

Theorem 4.2 Let T' be a modal theory. The operator D! is C-antimonotone. The operator
D3t is <,,-monotone and symmetric. Moreover, for every consistent belief pair B, Di(B) is
also consistent.

Proof: We will use the following additional basic property of operators on lattices. An element
x of a lattice L is a prefizpoint of an operator O : L — L if O(z) < z. A proof of the theorem
by Tarski and Knaster shows that on a complete lattice L the least prefixpoint of a monotonic
operator O exists and, in fact, is equal to the least fixpoint of O. Thus for each prefixpoint z
of O, Ifp(0) < =z.

Let us consider two possible-world structures P, S € W such that P C S. We set P’ =
Di{(P) and S' = D$(S). We have that P' = D3{(P) = Ifp(D)(-, P)). Therefore, P' =
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DL(P', P). Since (P',S) =, (P, P), by <,,-monotonicity of Dy we obtain that DL(P’,S)
DL (P', P) = P'. Consequently, P’ is a prefixpoint of D4 (-, S). By our earlier remarks, S’
DI(S) = Ufp(D(-, S)) C P.

The <,,-monotonicity of the operator D5’ is an immediate consequence of the C-antimonoto-
nicity of D5!. The symmetry of the operator D3! follows directly from its definition.

The last part of the assertion follows from Proposition 3.5. O

Theorem 4.2 implies, in particular, that the operator D5 has a least fixpoint with respect to
the ordering <,,. We will refer to this fixpoint as the well-founded fizpoint of T' or well-founded
partial extension of T. We will denote this fixpoint by WF(T'). Our choice of the term again is
not accidental. The semantics specified by the well-founded fixpoint WF(T') is closely related
to the well-founded semantics for default logic [BS91] and logic programming [VRS91].

The well-founded partial extension for a modal theory can be used to approximate all
partial extensions of T'. It also provides a sufficient condition for the uniqueness of an extension.
We have the following result, analogous to Corollary 3.10. It follows from Theorem 4.2 and
Propositions 3.5 and 3.6.

Il 1M

Corollary 4.3 LetT' be a modal theory.
1. The fizpoint WF(T) is consistent.
2. For every partial extension B of T, WF(T) <, B.

3. For every partial extension B of T,

kEn(WF(T)) C kn(B) and ig(WF(T)) C ig(B).

4. If WF(T) is a complete belief pair, then it is the unique partial extension of T. Moreover
the possible-world structure P such that WF(T') = (P, P) is the unique extension of T.

Well-founded semantics has a constructive flavor. It can be obtained by iterating the
operator D5t over the belief pair (A, (). We will discuss an algorithm for computing WF(T) in
Section 7. We will also show there that the problem of computing the well-founded semantics
is in the class A%.

The next result connects expansions and the Kripke-Kleene semantics with extensions and
the well-founded semantics. It shows that the well-founded semantics is stronger than the
Kripke-Kleene semantics and that (partial) extensions of T are (partial) expansions of T
Moreover extensions satisfy an additional minimality condition with respect to the ordering C
in B.

This minimality condition is expressed in terms of the following order on belief pairs: we
define (P, S) C (P',S")if PC P'and S C S’. We briefly mentioned it in Section 3 and referred
to it as the knowledge ordering.

Theorem 4.4 Let T be a modal theory. Then:
1. KK(T) =,y WF(T).

2. Bvery extension of T is a C-minimal expansion of T'.
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Figure 4: Operators associated with autoepistemic logic

3. Every partial extension (P,S) of T is a T-minimal partial expansion of T: for every
partial expansion (P',S"), if PP T P and 8'C S, then P=P' and S = S'".

Proof: (1) Since KK (T) is the <,,-least fixpoint of Dy, it suffices to show that each fixpoint
of D&t is a fixpoint of Dy. Let (P, S) be a fixpoint of Dif. Then P = D(S) = Ifp(D4(-, S))
and consequently, D4.(P,S) = P. Similarly, S = Ifp(DL.(-, P)) and, hence, S = DL.(S, P) =
D%(P,S). It follows that Dp(P,S) = (P, S).

Since (2) is a special case of (3), it suffices to prove (3). Let (P, S) be a partial extension
of T. Let us assume that (P',S") is a fixpoint of Dy such that (P, S") C (P, S). Since P' C P,
it follows that (S',P) =, (S',P'). The =< -monotonicity of Dy implies that DL(S', P) C
DL(S',P') = S'. Thus, S’ is a prefixpoint of the operator D4.(-, P). Since S is the least
fixpoint of D.(-, P), it follows that S C S’ (we refer the reader to the comment we made in the
proof of Theorem 4.2). Now, however, due to the assumption that (P’,S’) C (P, S), it follows
that S’ C S. Consequently, S and S’ are identical. By a similar argument, we prove that P
and P’ are identical. Thus, (P’,S") = (P, S) which, in turn, implies that (P, S) is a C-minimal
fixpoint of Dyp. O

Example 2.1 (cont’d). In the case of the theory T),, KK (T,) = (Ay,Z,) and WF(T),) =
(Ap, Ap). Thus, we indeed have KK (T),) <, WF(T),) (see Figure 2). Let us also note that
the partial extension (Ay, A,) is indeed a C-minimal partial expansion of 7T),. O

We can give now a schematic illustration of the panorama of semantics for autoepistemic
logic (Figure 4). The central position is occupied by the operator Dp. Its fixpoints yield
the semantics of partial expansions and its least fixpoint yields the Kripke-Kleene semantics.
Restriction of the operator Dy to complete belief pairs leads to the operator Dy, originally
introduced by Moore, and results in the semantics of expansions. The operator Dr also
gives rise to the operators D' and Di! that yield new semantics for autoepistemic logic: the
semantics of extensions, the semantics of partial extensions and the well-founded semantics.
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5 Default logic

While possible-world semantics played a prominent role in the study of autoepistemic logics
[Moo84, Lev90, DMT99] it has not, up to now, had a similar impact on default logic. In
this section we will introduce a comprehensive semantic treatment of default logic in terms of
possible-world structures and belief pairs. Our approach will follow closely that used in the
preceding sections.

We observed earlier that autoepistemic logic can be viewed as the logic of the operator Dy.
Its fixpoints, and fixpoints of the operators that can be derived from Dy, determine all major
semantics for autoepistemic logic. We will now develop a similar treatment of default logic.

We start by recalling basic concepts in default logic. For more details we refer the reader
to [MT93]. A default is an expression of the form

o 617 s 7/Bk

’y )
where «, (1,...,0r and « are propositional formulas from the language £. The formula «
is called the prerequisite of the default. The formulas (y,..., 0, are called its justifications.

Finally, the formula -y is called the consequent of the default.

A default theory is a pair (D, W), where D is a set of defaults and W is a set of formulas
from L. To define a semantics for a default theory A = (D, W), Reiter introduced an operator
['a on sets of propositional formulas [Rei80]. Given a set of formulas X, we say that a default d
is X -applicable if for every justification 8 of d, X I/ =3 (intuitively, a default is X-applicable if
none of its justifications is outright contradicted by X). For a set X of propositional formulas,
Reiter defined I'A(X) to be a least set of formulas Y such that:

1. Y is closed under propositional provability.
2. WCY.

3. For every X-applicable default d € D, if the prerequisite of d is in Y then so is the
consequent of d.

It is easy to see that the least set of formulas satisfying conditions (1) - (3) exists. Thus,
the operator I'a is well defined. A set of formulas F is an eztension of a default theory A if
E =TA(FE) [Rei80].

While the notion of an extension received most attention, over the years several other
classes of theories were proposed as alternative semantics of default theories. One of them,
the semantics of weak extensions [MT89b], is especially relevant to our considerations. Let us
define I'{ (X)) to be a least set of formulas Y such that:

1. Y is closed under propositional provability.
2. WCY.

3. For every X-applicable default d € D, if the prerequisite of d is in X then the consequent
ofdisinY.
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As before, it is easy to see that the operator I'} is well defined. A set of formulas F is a weak
extension of a default theory A if E =T'{(E). The concepts of extension and weak extension
are closely related (not surprisingly, given that their definitions are so similar, differing only in
the third condition). We refer the reader to [MT93] for a detailed discussion of default logic
and properties of extensions and weak extensions.

We will introduce now an approach to default logic based on the semantic notions of a
possible-world structure and of a belief pair. As before, we start with a two-valued truth
function that gives a conservative estimate of the logical value of a formula or a default with
respect to a belief pair (P, S) and an interpretation I.

For a propositional formula ¢, we define

HEZIZD,S),I(‘:D) = I(¢p).

For a default d = Ml’f’ﬂ’“, we set
H((ill{s),l(d) =t

if at least one of the following conditions holds:
1. There is J € S such that J(«a) = f.
2. There is i, 1 <14 < k, such that for every J € P, J(;) =f.
3. I(y) =t.

We set H‘(ill;’s)’l(d) = f, otherwise. Clearly, the definition of H?}D’S)J(d) agrees with the intuitive
reading of a default d: it is true (according to a conservative point of view) if its prerequisite
is false (even with respect to a liberal view captured by S) or if at least one of its justifications
is perceived as impossible (it is false according to a conservative point of view captured by P)
or if its consequent is true (with respect to I). As before, we can also argue that ’H‘(%’P)J(d)
provides a liberal estimate for a truth value of d with respect to (P, S) (the roles of P and S
are reversed).

This truth function H%D, )1 satisfies a monotonicity property analogous to that satisfied

by the truth function H%P s) in the case of autoepistemic logic (see Proposition 3.2).

J

Proposition 5.1 Let (P,S) and (P',S") be belief pairs from B such that (P,S) <, (P',S').
Then, for each default d, for each propositional formula ¢ and for each interpretation I € A,
H‘(ifﬂ,s),l(d) < /H((i;J’,S’),I(d) and H%ﬂ,s),l(@) = H?le,s'),l(@)'

Proof: To prove the first part of the assertion let us consider a default d = M and let
us assume that H?;D,S),I(d) =t (the case when H?;D,S),I(d) = f is trivial). By the definition of

H‘(ill; ) ,(d), there are three cases to consider.
1. There is J € S such that J(a) = f. Since S C §’, it follows that H‘(ill;,’s,)’[(d) =t.

2. Thereisi, 1 < i <k, such that for every J € P, J(3;) = f. Since P' C P, it again follows
that H{p ¢ ,(d) = t.

3. We have I(y) = t. In this case, clearly, ’H?}D, s7) ,(d) = t, as well.
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The second part of the assertion is straightforward as ’H?}D,S)’,(go) =1I(p) = ’H?fg,’sl),,(@). O

Let A = (D,W) be a default theory. We use the truth function ’H?}D g),1 to define an
operator Ea on the lattice B of belief pairs:

EA(Pa S) = (glA(Pa S)aEZ(Pa S))a

where

EN(P, 8) = {T: H{s p) ;(A) = t} and EA(P,S) = {I: H{pg) ;(A) = t}

(’HdBl’ ;(A) = t stands for the statement that ’HdBl’ ;(d) =t for every element (formula or default)
d € DUW). This definition can be justified similarly as that of the operator Dy in Section 4.
We now have the following key property of the operator Ea.

Proposition 5.2 The operator Ea is =,.-monotone and symmetric.

Proof: By the definition, we have £4 (P, S) = £4%(S, P). Thus, £x is a symmetric operator.
To prove the <,,-monotonicity of the operator £, let us consider two belief pairs (P, .S) and
(P',S') such that (P,S) <, (P',S"). We need to prove that

EN(P',S") CEN(P,S) and EX(P,S) C EL(P,S").

Let I € EA(P',S'). Then, Hl py ((A) = t. Since (P,S) =y (P',S), it follows that

(8", P'") <, (S, P). Thus, by Proposition 5.1, H?é’P)’I(A) = t and, consequently, I € £4 (P, S).

The second inclusion can be proved in the same manner. O
Let @ be a possible-world structure. We define

EA(Q) = EA(Q, Q)
(or, equivalently, EA(Q) = £X(Q, Q)). Clearly,

Ea(Q,Q) = (Ea(Q), Ea(Q))-

As we will show later, fixpoints of the operators Ea and £a correspond to fixpoints of
the operators Dy and Dyp. Thus, we will call them ezpansions and partial expansions of A,
respectively. It is clear that

Q@ = Ea(Q) if and only if (Q,Q) = €a(Q, Q).

Thus, those partial expansions of A that are complete correspond precisely to expansions of
A.

To the best of our knowledge, the operator Ea has not appeared explicitly in the literature
before. Its fixpoints, however, did. It turns out that they correspond to weak extensions
[MT89a]. Hence, the semantics given by the operator Ea (by its fixpoints, to be precise) is
the semantics of weak extensions.

Theorem 5.3 Let A be a default theory. If a possible-world structure Q) is an expansion of A
then {p € L:1(p) =t, for every I € Q} is a weak extension of A. Conversely, if E is a weak
extension of A then Q ={I € A:I(p) =t, for every ¢ € E} is an expansion of A.
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Proof: Let us assume that A is of the form (D, W). Let @ be an expansion of A. Directly
from the definition of an expansion it follows that

Q={I € AU g (D) =t} (1)

Let us set

Yo ={p € L:1(p) =t, forevery I € Q}.
We will show that Yy is a weak extension of (D, W). To this end, we will show that Yy =
IR (YQ).

First, it follows from the definition of Y that it is closed under propositional provability.
Further, from (1) it follows that for every I € @ and for every ¢ € W, I(p) = t. Hence,
W C Yg.

Next, let us consider a Yg-applicable default

a:ﬂlu"'uﬁk
Y

d:

and let us assume that o € Y. Let I € (). The equation (1) implies that H?&Q)J(d) = t.
Since a € Yy, there is no J € Yy such that J(a) = f. By Yg-applicability of d, for every i,
1 <1<k, Ygl/ =B Since Yy is closed under propositional provability, we have that —=3; ¢ Y.
Thus, for every i, 1 <i <k, there is a valuation J € @ such that J(5;) = t. Consequently, it
follows that /() = t. Since I is an arbitrary valuation from @, we find that v € Yg.

To summarize, we proved that Yg satisfies all three conditions on a set Y in the definition
of I'Y(X), with X = Yg. Since I'Y(Yp) is the least of all sets satisfying these conditions, it
follows that I'{ (Yg) C Y.

To prove the converse inclusion, let us consider a valuation I € A such that for every
p € TR(Yg), I(¢) = t. We will show that I € Q. By (1), it will suffice to show that
HE (A) = t. Since W C I'{(Yy), it follows that for every ¢ € W, H% (o) = I(p) = t.

(Q,Q),1 . (@.Q).1
Thus, let us consider a default

a:ﬂlu"'uﬁk
Y

d =
from D. Let us assume that
(i) for every J € Q, J(a) =t, and
(ii) for every i, 1 < i <k, there is J; € @ such that J;(5;) =t

(if any of these two assumptions does not hold, we obtain right away H% Q) ,(d) = t). From
(i), it follows that o € Y. Furthermore, (ii) and the definition of Yy imply that for every i,
1 <i<k, Yot/ Bi. Consequently, d is Yg-applicable and, by the definition of I'{ (Yg), we get
that v € I'{(Yy). Hence, I(y) =t and H% (d) =t.

(Q.Q)1
We proved that I € (). That is, we have that

{I € A:I(p) =t, for every p € 'R (Yg)} C Q.

By the definition of Yy, we have that for every I € @ and for every ¢ € Yy, I(p) = t.
Consequently,
QC{IeA:l(p) =t, forevery p € Y.}
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Thus,
{I e Ail(p) =t, forevery p e I'R(Yp)} C{I € A:I(p) =t for every ¢ € Y}

or, equivalently, Yo C I'{(Yy) (this last step depends on the fact that Yy and I'{ (Yyp) are
closed under propositional provability).

The second part of the assertion can be proved by means of a similar argument and so we
omit it. O

The key property of the operator £a is its <,,-monotonicity. In particular, €A has a least
fixpoint. We call it the Kripke-Kleene fixpoint or Kripke-Kleene expansion of A. We denote it
by KK (A). We refer to the corresponding semantics as the Kripke-Kleene semantics for A.

As in the case of the autoepistemic logic, the Kripke-Kleene semantics approximates the
skeptical reasoning with partial expansions and provides a test for uniqueness of a partial
expansion. Indeed, we have the following corollary? to Propositions 5.2, 3.5 and 3.6. This
result is a counterpart to Corollary 3.10.

Corollary 5.4 Let A be a default theory.
1. The fizpoint KK (A) is consistent.

2. For every partial expansion B of A, KK(A) <, B.

3. For every partial expansion B of A,
kn(KK(A)) C kn(B) and ig(KK(A)) C ig(B).

4. If KK(A) is a complete belief pair, then it is a unique consistent partial expansion of
A. Moreover the possible-world structure P such that KK(A) = (P, P) is the unique
expansion of A.

So far we have not yet reconstructed the concept of an extension. In order to do so, we will
now derive from A two other operators related to default logic. Let us consider a belief pair
(P,S). We want to revise it to a belief pair (P, S"). We might do it by fixing S and taking
for P' a preferred revision of P, and by fixing P and taking for S’ a preferred revision of S.

It is easy to see that <,,-monotonicity of £ implies that the operator ElA(-,S) is C-
monotone operator on W. Consequently, it has a least fixpoint. This fixpoint can be taken as
the preferred way to revise P given S. Thus, we define

EX(S) = fp(EA (- 9)).

As in the case of autoepistemic logic, one can see that E% also specifies the preferred way to
revise S given P. Combining these two revisions, we define the operator on B as follows:

EX(P,S) = (EX(S), EX(P)).

The operator £& describes a way to revise belief pairs.
We start our discussion of the properties of the operators E% and £ with the following
straightforward result relating their fixpoints.

*As a matter of fact, the proof of part (3) requires additional arguments. However, it is easy to derive this
claim from Corollary 3.10 and Theorem 6.3, proved in the next section. Thus, we omit the direct argument
here.
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Proposition 5.5 Let A be a default theory. For every possible-world structure P, P is a
fizpoint of E3L if and only if (P, P) is a fizxpoint of EXL.

The operator E¥ allows us to reconstruct the notion of an extension as defined by Reiter.
Namely, we have the following theorem.

Theorem 5.6 Let A be a default theory. If a possible-world structure Q is a fizpoint of E%
then the theory E = {p € L:I(p) =t, for every I € Q} is an extension of A. Conversely, if
a theory E is an extension of A then Q = {I € A:I(p) =t, for every ¢ € E} is a fixpoint of
Esl.

Proof: The proof is very similar to that of Theorem 5.3. Let us recall that we proved there
the first assertion (a counterpart of the first assertion of the present theorem) and omitted the
proof of the second statement. Here we proceed the other way around. We omit the proof of
the first assertion and provide an argument for the second assertion only.

In the proof, we will use the concept of a generating default [Rei80, MT93]. Let E be a
theory closed under propositional consequence. A default d = M is generating for E if
a € E and for every i, 1 < i < k, =(3; ¢ E. Extensions can be characterized by means of
generating defaults. Namely, we have the following result [Rei80]: if E is an extension of a
default theory (D, W) then

E = Cn(W UCGDy), (2)

where CG Dy is the set of the consequents of all those defaults in D that are generating for E.

Let us consider an extension E of a default theory A (we will assume that A = (D, W)).
We define Q = {I € A:I(p) = t, for every ¢ € E} (in other words, @ is the set of all models of
E). Since FE is closed under propositional provability, £ = {p € L: I(¢) = t, for every I € Q}.
Therefore, to prove the second assertion it suffices to show that @ = E%(Q). To this end we
will prove that @ is the least fixpoint of the operator £4 (-, Q). We will do so by showing that
Q is a pre-fixpoint of €4 (-, Q) (that is, satisfies €4 (Q, Q) C Q) and that for any fixpoint Q' of
the operator €A (-, Q), Q C Q'

We will first prove that £4 (Q, Q) C Q. Let usrecall that £, (Q, Q) = {I € A: H‘(ié’Q)J(A) =
t}. Let us consider a valuation I € (). Since E is an extension of (D,W), W C E. Thus,
for every ¢ € W, H‘(ié’Q)J(cp) = I(p) = t. Next, let us consider a default d = M from

D. If d is a generating default for E, then v € E and I(y) = t. Thus, H% Q) ,d) =t Ifd
is not a generating default or E, then either we have (1) a ¢ E, or (2) there is i, 1 <1i < k,

such that J(8;) = £, for every J € Q. In either case, it follows that ’H% Q) ,(d) = t, as well.
Consequently, ’HE% Q) [(A)=tand I € EAN(Q, Q). Thus, we get Q C EL(Q, Q), or equivalently
EAQ.Q) C Q.

Let us now consider a fixpoint Q' of £\(-,Q) and let us define E' = {¢p € L:I(p) =
t, for every I € Q'}. Clearly, E’ is closed under propositional provability. Since Q' is a fixpoint

of glA(u Q)7
Q' =EAQ, Q) = {I € AU gy (D) = t}.

Thus, for every ¢ € W and for every I € @', I(¢) = t. In other words, W C E'. Next, let
us consider a default d = M from D. Let us assume that a € E’ and that for every 1,
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1 <i<k, EWf—p;. It follows that for every J € @', J(a) = t and, since E is closed under
propositional provability, that for every i, 1 <i < k, there is J; € @ such that J;(5;) = t. Let
I € Q. Since ,HE%,Q’),I(d) = t, it follows that I(y) =t. Thus, v € E'.

We have just proved that E’ satisfies the three requirements from the definition of T (E).
Thus, E =TA(E) C E'. Consequently, Q' C @ or, equivalently, @ C Q'. We proved that Q is
a pre-fixpoint of £4 (-, Q) and that Q C Q' for any fixpoint Q' of £\ (-, Q). It follows that @ is
the least fixpoint of £4 (-, Q) O

In view of Theorem 5.6, we refer to the fixpoints of the operator E% as extensions of A.
Further, in view of Proposition 5.5, we call fixpoints of the operator £¥, partial extensions of
A. One can show that consistent partial extensions of a default theory A are in one-to-one
correspondence with stationary extensions of A defined in [PP94].

We also note that the operator E% coincides with the operator Y2 defined on sets of
interpretations and proposed by Guerreiro and Casanova [GC90, Lif90, MT93]. Guerreiro and
Casanova simply rephrased the original definition of the operator I'n (which works on theories
and can be restricted, without the loss of generality, to theories closed under propositional
provability) in terms of sets of interpretations (possible-world structures) that are models of
such theories. One of our contributions is that we derive this operator in a systematic and
purely algebraic (thus, not relying on any particular properties of defaults) fashion from an
operator £a defined on the lattice of belief pairs.

Our next result describes monotonicity properties of the operators E¥ and . It is
analogous to Theorem 4.2 and can be proved in the same way.

Theorem 5.7 Let A be a default theory. Then, the operator ES is C-antimonotone and the
operator Egt is =pr-monotone and symmetric.

Theorem 5.7 implies that the operator £5 has a least fixpoint. We will denote it by WF(A)
and refer to it as the well-founded fixpoint (or the well-founded extension) of A. We will call
the semantics it implies the well-founded semantics of A. One can show that the well-founded
semantics of A, as we introduced it here, coincides with the well-founded semantics of default
logic introduced in [BS91].

The well-founded semantics allows us to approximate skeptical reasoning with extensions
and yields a sufficient condition for the uniqueness of an extension. As before, the following
result is a simple corollary to the fact that £ is symmetric and <,,-monotone (Theorem 5.7),
and to Propositions 3.5 and 3.6. We also note that, as in the case of Corollary 5.4, part (3) of
the assertion requires additional arguments and can be derived, for instance, from Corollary
4.3 and Theorem 6.3.

Corollary 5.8 Let A be a default theory.
1. The fizpoint WF(A) is consistent.
2. For every partial extension B of A, WF(A) <, B.

3. For every partial extension B of A,

kn(WF(T)) C kn(B) and ig(WF(T)) C ig(B).
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4. If WF(T) is a complete belief pair, then it is the unique consistent partial extension of
A. Moreover the possible-world structure P such that WF(T) = (P, P) is the unique
extension of A.

Finally, let us note connections between (partial) expansions and (partial) extensions, and
between the Kripke-Kleene and well-founded semantics for default logic. The proof of this
result follows closely the lines of the proof of Theorem 4.4.

Theorem 5.9 Let A be a default theory. Then:
1. KK(A) =, WF(A).
2. Bvery extension of A is a E-minimal expansion of A.

3. Ewvery partial extension (P,S) of A is a C-minimal partial expansions of A: for every
partial expansions (P',S"), if PPC P and S'C S, then P =P’ and S = S5'.

In summary, default logic can be viewed as the logic of the operator £o. That is, the
fixpoints of Ea define the semantics of partial expansions. The least fixpoint of £a defines
the Kripke-Kleene fixpoint. The operator Ea gives rise to the operator Ea, whose fixpoints
are expansions (also referred to as weak extensions). Kripke-Kleene semantics provides an
approximation for the skeptical reasoning under the semantics of expansions. The operator
En also leads to the operator £&'. Consistent fixpoints of this operator yield partial extensions
(stationary extensions in the terminology of [PP94]). Fixpoints of the related operator E%
correspond to extensions by Reiter. The least fixpoint of the operator £ results in the
well-founded semantics for default logic and approximates the skeptical reasoning under the
semantics of extensions. The relationships between the operators of default logic are illustrated
in Figure 5. They are parallel to those for the autoepistemic logic (Figure 4).

6 Default logic versus autoepistemic logic

The results of this paper shed new light on the relationship between default and autoepistemic
logics. The nature of this relationship was the subject of extensive investigations since the
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time both systems were introduced in the early 80s. Konolige [Kon88] proposed to encode a
default d = M by the modal formula

m(d) = KaAN-K=0; \...mK=0 = 7,
and to represent a default theory A = (D, W) by a modal theory
m(A) =W U{m(d):d € D}.

Despite the fact that the encoding is intuitive it does not provide a correspondence between
default logic as defined by Reiter and autoepistemic logic as defined by Moore. Let us consider
a default theory A with W = () and D = {E1}, where p and g are two different atoms. Then A
has exactly one extension, Cn()). Applying the translation of Konolige to A yields the theory
m(A) = {Kp A —-K-q = p}. The theory m(A) has two expansions. One of them is generated
by the theory Cn(()) (equivalently, it is the possible-world structure A) and corresponds to the
only extension of A. The other expansion is generated by the theory Cn({p}) (equivalently, it
is the possible-world structure that consists of just one valuation of {p, ¢}, the one in which p is
true and ¢ is false). Thus, the Konolige’s translation does not give a one-to-one correspondence
between extensions of default theories and expansions of their modal encodings. Another
example can be obtained from the default theory A = (D, W) where W = (), and D = {’"7}
(yielding the modal theory {Kp = p} that we used as a running example). Our concept of
extension of an autoepistemic theory eliminated the unwanted expansion of A, leaving only
the desired modal theory that corresponds to Reiter’s extension.

This mismatch can now be explained within the semantic framework introduced in this
paper. Konolige’s translation does not establish a correspondence between extensions and
expansions because they are associated with different operators. Expansions are associated
with fixpoints of the operator Dr. Its counterpart on the side of default logic is the operator
EA. Fixpoints of this operator are not extensions but expansions (weak extensions, in the
terminology of [MT89a]) of A. Extensions of A are associated with the operator E%. Its
counterpart on the side of autoepistemic logic is the operator D5, introduced in Section 4.
This operator, to the best of our knowledge, has not appeared in the literature.

In this section, we show that once we properly align concepts from default logic with those
from autoepistemic logic, Konolige’s translation works! This alignment is illustrated in Figure
6 and is formally described by Theorem 6.3. To prove it, we will need the following lemma.

Lemma 6.1 Let (P, S) be a belief pair. For every interpretation I € A and every default d
we have

,H%D,S),[(d) = ,H%P,S),I(m(d))'

Proof: Let us assume that
a /617 e 7/Bk
v

The modal translation m(d) of d can be equivalently written as

d =

-KaV K-p1V...VK=0 V7.

We now show the desired equality.

H?}D ) ,)(d) = f if and only if the following three conditions hold:
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1. For every J € S, J(a) # f.
2. For every i, 1 < i <k, there exists J € P, J(f;) # f.

3. I(y) #t.

These three conditions are equivalent to the conjunction of the following three conditions:
2 _
1. H(P,S),I(_‘Ka) =f

2. For every i, 1 <1 <k, ’H?P,S)J(Kﬁﬁi) =f

3- H(QP,S),[(V) — f.

This latter set of conditions is equivalent to H%P,S),[(m(d)) = f. Thus, ’H?IZD’S),,)(CZ) = fif and

only if H%P,S),[(m(d)) = f, and the argument is complete. O
Corollary 6.2 Let A = (D, W) be a default theory. Then, for every belief pair (P, S),
{1 H{p gy (D) =t} = {1 : Hipg) ;(m(A)) = t}.
We are now ready to prove the main result of this section.

Theorem 6.3 Let A be a default theory and let T = m(A). Then the following pairs of
operators coincide and, thus, have the same fixpoints:

1. En = Dy (partial expansions for A and T, including Kripke-Kleene fixpoints, coincide).
2. Ean = Dy (expansions for A and T coincide).
3. B3l = D3t (extensions for A and T coincide).

4. E3L = Dt (partial extensions for A and T, including the well-founded fizpoints, coincide).

Proof: (1) By Corollary 6.2, En = Dpya)-

(2) We recall that Ex(P) = Q if and only if EA(P, P) = (Q, Q). By (1), this is equivalent to
Dm(A) (Pa P) = (Qa Q)a that is, Dm(A) (P) = Q. Thus, Ep = Dm(A)

(3) Since Ea = D,y,(a), we have, for every possible-world structure S,

EX(+S) = Dpya) (- 5)-

Therefore, for each S,
Up(EA(~9)) = Ufp(Dpya) (-, 9)).
But this just means that B = D%(A).

(4) This assertion follows immediately from (3) as D3t (P, S) = (D5(S), D3 (P)) and, likewise,
EX(P, §) = (BX(S), EX(P)). O
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Figure 6: Embedding default logic into autoepistemic logic

7 Computing the well-founded semantics

In this section we discuss methods to compute Kripke-Kleene and well-founded fixpoints. We
will focus on the case of autoepistemic logic. Since, as we demonstrated in the previous section,
default logic can be viewed as a fragment of autoepistemic logic, our methods and results will
apply to default logic, as well.

To compute Dk(P,S) we need to compute all interpretations I such that H(QRS)J(@) =t
for every ¢ € T. The number of such interpretations may be exponential in the number of
atoms in 7. The key to our approach is a simple observation that these interpretations are
determined by some propositional theory of much smaller size. Indeed, the logical values of
modal atoms (formulas of the form K1) occurring in ¢ do not depend on I. In particular,
the logical values of mazimal modal atoms (modal atoms not within the scope of any other
occurrence of the modal operator) are determined by the belief pair (P, S). Once these values
are established, we substitute them for the corresponding modal atoms. In this way, we obtain
a formula, say ¢(ps), in the propositional language with two special symbols t and f that
represent truth and falsity, respectively. These special symbols are interpreted in a standard
way (in fact, we use the same notation for these two special elements of the language as for the
corresponding truth values). We denote this language by L. The key property of the formula
¢(p,s) is that H%P,S),I((p) = t if and only if I(ppg)) = t. Thus, the set of interpretations
DL.(P, S) is represented by the set of formulas {o(p,s):p € T}. A similar representation can
be obtained for the set Df (P, S). This leads to two questions: (1) how to compute these
representations, and (2) how to use them instead of belief pairs in the process of computing
the operator D and other related operators. The rest of this section is devoted to these issues.

For every interpretation I € A, we define an interpretation I¢ of L£¢ by setting I¢(t) = t,
I¢(f) = £, I°(p) = I(p) for every atom p in L, and by extending it to the whole language L€ in
the standard way. For a theory X C L€, we define

Mod(X) ={I € A:I°(p) = t, for every ¢ € X }.

Let W be a possible-world structure. We call each propositional theory X C L¢ such that
Mod(X) = W, a representation of W. Similarly, given a belief pair (P, S), a pair of theories
(X,Y) such that Mod(X) = P and Mod(Y') = S is called a representation of (P, S). We extend
the notation Mod to pairs of theories and define Mod(X,Y) = (Mod(X), Mod(Y)).

Let X and Y be two theories in the language L£°. For every modal formula ¢ € Lx we
define a formula ¢ x y) € £° by induction as follows:
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L. If ¢ is modal-free, p(x y) = ¢.

2. If o = 29, px,y) = Py, x) (one should note that X and Y are reversed on the right
hand side).

3. =o' v, Pxy) = ¢EX,Y) v zpE’X,Y)'

4. If o = 1/)' A ¢l,= PXYy) = szX’Y) A T,bE’X’y)-
5. If o = K, pxy) =t if X - ¢xy). Otherwise, p(xy) =1

Next, for a modal theory T we define

Tixyv)y=1{pxy) e €T}

It is easy to see that the inductive definition given above yields an algorithm to compute
@(x,y)- If we count each call to the propositional provability oracle as one step (the input
for each such call is given by X or Y and a subformula of ¢), then this algorithm runs in
polynomial time in the size of . Since the input for each call to the oracle is formed by one of
X or Y and a subformula of ¢, it follows that the problem to compute ¢(x y), given a modal
formula ¢ and a pair of theories (X,Y), is in the class A%.

Our algorithm to compute the Kripke-Kleene and well-founded semantics for autoepistemic
and default logics is based on the following result.

Theorem 7.1 For every belief pair (P,S) and every propositional theories X and Y in the
extended language, if Mod(X,Y) = (P, S), then

Dy (P, S) = Mod(Ty,x), T(x,v))-

Proof: We will first show that for every belief pair (P, S), every two propositional theories X
and Y (in the extended language), every modal formula ¢ and every interpretation I € A,

H%P,S),I(‘P) =I(p(x,v))- (3)

We proceed by induction on the length of ¢. The claim is evident in the case when ¢ € L
(this case establishes, in particular, the basis for the induction). Let us assume that ¢ = —1).
Then,

H(QP,S),I(W) = _',H%S,P),I(z/)) = ﬁle(zp(y,x)) = Ie(_'z/)(Y,X)) = Ie(@(x,y))

(the second equality is implied by the induction hypothesis, the last one follows from the
inductive definition of ¢(x y)). A similar reasoning establishes the inductive step for the cases
when the main connective in ¢ is the disjunction or the conjunction.

The last case to consider is that of ¢ = K. Let us assume that H(QRS)J(@) = t. Then,
H(QP,S),J(z'b) =t for every J € P. By the induction hypothesis we obtain that J¢((x y)) =t
for every J € P. Since Mod(X) = P, it follows that X F t(xy). Thus, pxy) = t and
I°(¢p(x,y)) = t. Conversely, let us assume that I°(¢(xy)) = t. Since ¢ = K¢, o(xy) =t
or f. The latter case is impossible as Ie(cp(x,y)) = t. Thus, px,y) = t. It follows that
X F 4xy). Since Mod(X) = P, for every interpretation J € P, J°(3(x,y)) = t. By the
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induction hypothesis, for every interpretation .J € P, ’H?P’S)’J(zp) = t. Thus, by the definition
of the function H(QP’S)J, 'H(QP’S)’I((,D) = t. This completes our inductive argument.
We will use (3) to prove the assertion of the theorem. We have

DY (P,S) = {I: Hig py 1(T) = t} = {I: I(Tyy, ) = t} = Mod(T}yx)).
Similarly,
Dy(P,S) = {I H(QP,S),[(T) =t} ={I Ie(T(X,Y)) =t} = MOd(T(X,Y))'

Thus, the assertion follows. O
Let us define an operator on pairs of theories from L® by

Sr(X,Y) = (Tiy,x), Tix,y))-

Directly from Theorem 7.1, it follows that for every pair (X,Y) of propositional theories in
the extended language we have:

Dr(Mod(X,Y)) = Mod(Sp(X,Y)). (4)

Before we state the next corollary, which is the key to our complexity results, we introduce
additional notation. Let L be a set, and let O : L, — L be an operator in L. The iterations of
the operator O, (O1"),en are defined inductively as follows. O1' is the identity operator in
L. When O1" is defined, O1"*! is defined by the condition:

01" (2) = O(O1" ().
We now have the following corollary.
Corollary 7.2 LetT' be a modal theory. For every n > 0,
Drt" (A, 0) = Mod (Sp1" ({t},{f})).

Proof: Clearly, A = Mod(t) and () = Mod(f). Thus, the assertion holds for n = 0. Let us
consider an integer n > 0 and assume that the assertion holds for n. We have

D" (A, 0) = Dp(Dr1" (A, 0)) = Dr(Mod (Sr1* ({t}. {f}))
(the second equality follows by the induction hypothesis). Now, by (4),

Do (Mod(Sr1" ({6}, {£}))) = Mod(Sr (S ({t}, {£}))) = Mod(Sr1"*' ({t}, {£})).

Thus, the assertion follows by induction. O

Corollary 7.2 implies an algorithm to compute the Kripke-Kleene expansion (fixpoint) for
a modal theory T. Since the operator Dr is <,,-monotone, this fixpoint (which is the least
fixpoint of Dy) can be computed by iterating Dy over the belief pair (A, #). By Corollary
7.2, this fixpoint (or, more precisely, a pair of theories that represents it) can be computed by
iterating the operator Sy over the pair of theories ({t}, {f}).
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The number of iterations necessary to compute the least fixpoint of Dy (or, equivalently,
Sr) is polynomial in the size of T'. Indeed, by the monotonicity of Dy, the sequence of sets
B; = Drt(A, ) is ascending, that is,

BU jpr Bl jpr BQ jpr I

Moreover, by Proposition 3.5, all B;s are consistent. Thus, by Proposition 3.2, for every modal
atom K1) of T' we have

Hby (K1) Zpr Ml (K1) Zpr Hig, (K1) Zpr ...

After no more that 2k iterations, where k is the number of maximal modal atoms in T, this
latter sequence stabilizes (reaches its limit). Indeed, each modal atom can change its value at
most twice (from f to u or i and, then, one more time to t). By Proposition 3.8 it follows
that if no modal atoms change their values when moving from B; to B;;i, then B; 1 = Bjya.
ThllS, ng+1 = ng+2.

We have already argued before that the task to compute a single iteration of the operator
Sy is in the class A%. Thus, we obtain the following result.

Theorem 7.3 The problem of computing the Kripke-Kleene fixpoint for a given finite modal
theory T is in the class A%.

This result was first proved in [DMT99]. The method we presented here is a simplification
of the approach from [DMT99]. Moreover, we will now extend it to the case of computing the
well-founded fixpoint of a modal theory T

In order to compute the well-founded fixpoint of 7" we need to design techniques to compute
the stable operator D5!. Let us recall that D5H(P,S) = (D(S), D5 (P)), where D5(S) =
Ifp(Dgs,) (we recall that Dg 7 = Dr(-,S)). Thus, we will first focus on computing the operator
Dal.

Let Y be a theory in the language L£¢. For every theory X C L€ we define

Syr(X) =Ty, x)-

Theorem 7.1 has the following corollary concerning the connection between the operators Dg 7
and Sy, (the proof is straightforward and we omit it).

Corollary 7.4 Let T be a modal theory, let P and S be possible-world structures and let X
and Y be theories in L. If P = Mod(X) and S = Mod(Y'), then Dgr(P) = Mod(Sy,r(X)).

It follows from Corollary 7.4 that the possible-world structure D5!(S) (or, to be precise, its
representation) can be computed by iterating the operator Sy 7, where Y is a representation

of S.

Corollary 7.5 Let T be a modal theory. For every possible-world structure S and every theory
Y C L% if S = Mod(Y), then for every n >0,

Ds 1" (A) = Mod(Sy,r1" ({t}))-
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Proof: We proceed by induction. Since
Ds 1% (A) = A = Mod({t}) = Mod(Syr1°({t})),

the case n = 0 is settled. Let us assume that the assertion holds for all integers smaller than
or equal to some integer n > (0. We will show that the assertion holds for n + 1. Indeed,

Dst™(A) = Dsr(Dsr1"(A)) = Dsr(Mod(Sy 1" ({t})))
= Mod(Syr(Sy;rt" ({t}))) = Mod(Sy,11" "' ({t})).

The second equality follows by the induction hypothesis, the third one is implied by Corollary
7.4. 0

The sequence Dg 71" (A) is ascending and it stabilizes after no more than 2k +1 iterations,
where £ is the number of maximal modal atoms occurring in T' (a similar argument as the one
we used for Dy1" (A, 0) works in this case, as well). Thus, the sequence Sy ;1" ({t}) stabilizes
after no more than 2k + 1 iterations, too. Let us denote this limit by S5/ (Y).

The problem of computing the value Sy, (X) is in the class A% (it follows from our earlier
remarks on the complexity of computing Sr). Thus, it follows from Corollary 7.5 that we
can compute S5 (Y) (which is a representation of the possible-world structure D*!(S)) by
iterating the operator Sy, (where Y is a representation of S). Since the number of iterations
is polynomial in the size of T and Y, the task of computing (a representation of) D*!(S) is in
A%, (assuming that S is given in terms of its representation Y).

For a pair of theories (X,Y’) in the language L°, we define

Si(X,Y) = (S7(Y), S7'(X)).

Let us consider possible-world structures P and S and theories X and Y in £¢ such that
P = Mod(X) and S = Mod(Y'). Then, by Corollary 7.4,

D*(P,S) = (DF(S), Di (P)) = (Mod(S7(Y), Mod (S7(X))) = Mod(S7'(X,Y)).

It follows, that the problem of computing a representation of D' (P, S) (that is, S§(X,Y)),
given representations X and Y of P and S, respectively, is in the class A%.

The well-founded fixpoint of D% can be computed by iterating the operator D*! starting
with the belief pair (A,(). Our discussion implies that its representation can be computed
by iterating the operator S*' and starting with the pair of theories ({t}, {f}). The number of
iterations is bounded by 2k + 1, where k£ is the number of maximal modal atoms occurring
in T' (the same argument as in the case of the Kripke-Kleene fixpoint computations applies).
Thus, we obtain the following theorem.

Theorem 7.6 The problem of computing the well-founded fixzpoint for a given finite modal
theory T is in the class A%.

We proved in the previous section that default theories can be translated into equivalent
modal theories (Theorem 6.3). Thus, Theorems 7.3 and 7.6 have the following corollary.

Corollary 7.7 The problem to compute the Kripke-Kleene fixpoint (respectively, the well-
founded fizpoint) for a given default theory A is in the class A%.
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Figure 7: Operators associated with logic programming

The problem to decide whether a default theory A has an expansion (respectively, exten-
sion) is complete for the class Z%. The problem to compute an expansion (extension) for A
is X4-hard. These results were obtained by Gottlob [Got92] and, independently, by Stillman
[Sti90]. The corresponding problems concerning expansions and extensions of autoepistemic
theories have the same complexity [Got92]. Theorems 7.3 and 7.6 and Corollary 7.7 indicate
that the complexity of the problems to compute Kripke-Kleene and well-founded fixpoints of
autoepistemic and default theories have lower complexity (assuming the polynomial hierarchy
does not collapse). Thus, these approximation semantics are computationally more attractive
than the semantics of (two-valued) expansions and extensions.

8 Discussion and future work

We presented results uncovering the semantic properties of default and autoepistemic logics.
For each logic, we introduced an operator describing how to revise belief pairs when con-
structing belief sets, and derived from this operator a whole family of semantics. We obtained
these semantics by purely algebraic transformations reflecting basic principles of approximat-
ing belief sets. Some of these semantics (Kripke-Kleene and well-founded semantics) have a
constructive flavor and are more amenable to computational treatment.

We also demonstrated that the modal interpretation of defaults proposed by Konolige
establishes a perfect correspondence between the families of semantics of default and autoepis-
temic logics. This elegant picture can be further extended to the case of logic programming
with negation. Based on the work of Fitting[Fit02], it was shown in [DMTO00b] that all key
semantics for logic programs can be similarly obtained from the four-valued operator Tp gen-
eralizing the original van Emden-Kowalski one-step provability operator Tp [vVEKT76]. The
resulting structure of main semantics of logic programs is shown in Figure 7.

The operator Tp is a counterpart to the operators Dy and £a. Indeed, the translation of
logic program clauses into default rules proposed in [BF91, MT89b] establishes an embedding of
logic programming into default logic that precisely aligns the corresponding semantics (Figure
8).

Let us further note that the approach to semantics of nonmonotonic logics based on the
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Figure 8: Embedding logic programming in default logic

concept of a belief pair can also be extended to the case of reflexive autoepistemic logic intro-
duced by Schwarz [Sch91]. As in all other cases discussed in this paper, all major semantics for
the reflexive autoepistemic logic can be obtained from a single operator on the lattice B (the
definition of the operator remains essentially the same as in the case of autoepistemic logic
what changes is the definition of the truth function H?RS)J).

As pointed in the Section 1, in early 80s, McDermott and Doyle proposed a general approach
to define modal nonmonotonic logics [MD80, McD82]. It is known that autoepistemic logic
can be obtained within the framework of McDermott and Doyle from the modal logic KD45
[Shv90, MT93]. In [Sch91] Schwarz proved that reflexive autoepistemic logic can similarly be
obtained from modal logic SW5. Our results show that both logics can be given an algebraic
treatment based on the concept of a belief pair. An interesting question is whether other modal
nonmonotonic logics in the McDermott and Doyle’s scheme are amenable to such an approach.

Another question concerning the McDermott and Doyle’s scheme is whether the semantics
of extensions for autoepistemic logic can be reconstructed within it as a modal nonmonotonic
logic corresponding to some appropriately chosen underlying modal logic. The answer to this
question is negative. The modal theory T', where

T ={-Kp=p, Kp=p},

has no extensions. The easiest way to see it is to observe that 7' = m(A), where
A= (@7{&7'_1"}) _
p p

Since A has no extensions, Theorem 6.3 implies that m(7T") has no extensions either. However,
for every modal logic S, T has at least one S-expansion (in the sense of McDermott and Doyle).
In particular, the set of consequences of {p} in the logic S5 is such an expansion [MT93].

Finally, let us mention that it is possible to develop an abstract, purely algebraic treatment
of the concept of an approximation of an operator. It generalizes the approach presented here
and the work of Fitting on logic programming semantics. An account of this abstract treatment
of approximations can be found in [DMT00a].
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