Logic programs with abstract constraint atoms

Content areas: Knowledge representation, logic programnmg, nonmonotonic reasoning

Abstract

We propose and study extensions of logic programming
with constraints represented as generalized atoms of the
form C'(X), whereX is a finite set of atoms and' is

an abstract constraint (formally, a collection of sets of
atoms). Atomg”'(X) are satisfied by an interpretation
(set of atoms)V/, if M N X € C. We focus here on
monotone constraints, that is, those collectiGhshat

are closed under the superset. They include, in particu-
lar, weight (or pseudo-boolean) constraints studied both
by the logic programming and SAT communities. We
show that key concepts of the theory of nhormal logic
programs such as the one-step provability operator, the
semantics of supported and stable models, as well as
several of their properties including complexity results,

Leone 2002) provide a detailed discussion of the formalism
and its applications.

In the last few years, researchers proposed extensions of
the language of normal logic programming with means to
model constraints involvingiggregateoperations on sets.
(Simons, Niemél, & Soininen 2002) proposed a formal-
ism integrating logic programming witleight constraints
generalized the concept of stable models to this extended
setting, and developed fast algorithms to compute them.
(Denecker, Pelov, & Bruynooghe 2001; Pelov, Denecker,
& Bruynooghe 2004), introduced a formalism allowing for
more general aggregates. They extended to this new setting
several semantics of normal logic programs, including the
stable-model semantics and the well-founded semantics. A
related recent work (Dell’Armet al. 2003), incorporated

be lifted t h
can be fiited fo stch case aggregates into the formalism disjunctivelogic programs

with the answer-set semanticSuch extensions are impor-

Introduction tant as they simplify the task of modeling problem specifi-
, . cations, typically result in more direct and more concise en
In this paper, we study logic programs whose clauses are codings, and often significantly improve the computational
built of generalized atoms expressing constraints on sets. effectiveness of the formalism as a problem-solvingool
We show that under the assumptiomafnotonicityof con- However, arguably, all these approaches are subject to
straints, and with an appropriate handling of nondetermin- |imjtations. The formalism of (Simons, Nienggl& Soini-
ism inherent in deriving ways to satisfy constraints, basic en2002) admits only weight constraints and focuses almost
concepts, methods, semantics and results studied in nor-entirely on the semantics of stable models. Furthermoee, th
mal logic programming generalize to the extended setting. ¢onnections to normal logic programming are indirect and
Our work provides a theoretical framework for recent ex- gomewhat obscure. There is a correspondence to logic pro-
tensions of logic programming with weight constraints (Si- grams withnestedexpressions (Ferraris & Lifschitz 2004),
mons, Niemdi, & Soininen 2002) but applies to a much \yhich helped establish some interesting results on pragram
broader class of programs. ~ with weight constraints (for instance, characterizatiohs

In the 1990s researchers demonstrated that normal logic their strong equivalence (Turner 2003)). However, theatlire
programming with the stable-model semantics is an effec- encodings of programs with weight constraints as programs
tive knowledge representation formalism. It provides solu jth nested expressions have large size and, more impor-
tions to problems arising in such contexts as planning, rea- tantly, it is not clear whether that connection applies ia th
soning about action, diagnosis and abduction, product con- proader context of other types of constraints. The other two
figuration, and modeling and reasoning about preferences. approaches consider broader classes of constraints and are
Moreover, due to the emergence of fast methods to compute more firmly grounded in the core formalism of normal (dis-
stable models (Niem&l& Simons 1997; Leonet al. 2003;
Babovich & Lifschitz 2002; Lin & Zhao 2002), the impor- These are constraints on the total weight of elements in sets.
tance of the formalism increased significantly as it became Inthe SAT community, they are also referred tqpasudo-boolean
possible to use it not only as a modeling language but also as constraints.

a practical computational tool. (Baral 2003) and (Gelfond & ?For similar reasons, extending propositional logic with ag-
gregates (most notably, weight constraints) has recently been
gaining attention (Aloulet al. 2002; Dixon & Ginsberg 2002;
Prestwich 2002).

Copyright © 2006, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

junctive) programs, but are limited in that they do not allow (its weigh), a weight constrainWE’v imposes a restriction
aggregate constructs to appear in the heads of the clanses. | that “a total weight of atoms in aallowedsubset ofAt be
addition, all approaches discussed above focus on concreteat leastv”. We represemWiU as an abstract constraint

constraints, and so, they are restricted in their applicgbi Wz, ={AC At:v < ¥, w(a)} (comparison rela-
Our goal is to address these limitations. We develop a tions<, >, > give rise to other types of weight constraints).
formalism of logic programs with clauses built of general- \olume constraints. They differ from weight constraints in

ized atoms that express constraints on sets. To this end, that they restrict the product of individual weights of atom

we propose the notion of aabstract constraintand its in allowed sets, depending on the type of the comparison re-
linguistic counterpart — ambstract constraint atom We lation used. Selecting the relatishand assuming the same
then use abstract constraint atoms as building blocks ef pro notation as before, we express volume constraints as abstra
gram clauses. We restrict our attentionntmnotonecon- constraints of the fOVWwS,y = {AC At: v < uew(a)}.

straints, as monotonicity is essential for preserving & pro Maximum constraints. Given a weight functionw on
cedural reading of a logic program as a computational de- the set of atoms and a real boundthe maximum con-
vice. We show that basic concepts, techniques and results straint restricts allowed sets of atoms to those with the-max
of normal logic programming have direct generalizations to imum weight at least. Formally, we express them as ab-
the class of programs built of monotone constraints. In par- giract constraints of the formfazs , = {A C At:v <

ticular, we extend to that setting tlsipported-modehnd . . - ' -)

thestable-modesemantics. We also establish some relevant i)n;)iis{(;l;l(crglta?ioer\)fl}} (or it variants, depending on the com

§o1r_r1plexny,re§uzlgsdfu1r_xvotrk |s|:e:]ated to (l\f/larek,(lj\lleT]eI Even- and odd-cardinality constraints. They impose a
rUSZCZynsK). Thatwork, however, focused only on parity requirement on the cardinality of allowed sets. For-

one specific class of constraints — cardinality constraints mally, we express them as abstract constraiits: {A C
The key tool in our work is theondeterministic one-step 4. ‘1’4| is ever} andO = {A C At: |A| is odd) -

provability operator. It generalizes the one-step provabil- - cqntainment constraints. Such constraints require that al-
ity operator of (van Emden & Kowalski 1976). Thanks 0 |oyeq sets contain some prespecified configurations (sub-

close parallels betwet()an ”:jesﬁ two concepts, v¥e are able t0gq1q) e capture them by abstract constraintgthat con-
reconstruct operator-based characterizations of moslefs, et of 4l subsets afl¢ that contain at least one element from
ported models and stable models, presented in (Apt 1990; 5 1 oqhecified collectiod of finite subsets ofl 7.
Fitting 2002). We also distinguish and discuss the class of ~'g.p of these constraints determines associated abstract
deterministigprograms (programs with clauses whose heads constraint atoms. Letl{ = {py,ps, ...} and let us con-
can be satisfied only in one way). For these programs the gqar a weight f'unctionw such’ th,a.t.u.;(p,-) — i q =
one-step provability operator becomes deterministic bhad t 19 Th o< v, ' |
theory of normal logic programming extends to determinis- ;2 - - -- T€ €xpressionl’,, ¢ (p1, pa, ps., po) is an example

of an abstract constraint atom. A skt of atoms satisfies

tic programs withougny significant change. Wf,ﬁ(phpmps,ps) it and only if the total weight of atoms
Basic concepts, motivation, examples in MN{p1,p2, ps, e} is atleass (that is, wheneveM con-
! ! tainspg, or p5 together with at least one other atom). Simi-
We limit our considerations to the propositional case. As larly, the abstract constraint atabfiaz > (p2, p1, Pe, ps) €N-
we interpret programs with variables by means of Herbrand o ces the restriction that allowed sets contajror ps. An
models, th<=T first-order case reduce_s to the pro_posmorml ON apstract constraint atoi(p,, pr) (E stands for the even-

We consider a language determined by a fixed countable c5(dinality constraint) forces allowed sets of atoms to-con
sehAtt_of %O%Osg'&‘g' a't;)msbA:\ atistractthnftr?ln’_[s a tain none or both of; andp;. All these constraint atoms are
cofiecionC & /(Ar). An abstract constraint atons a consistent. An atoniV.=.(py, p2, p3) is an example of an

C) ; w,7 7. 9
:mtea;:rt:ggfg raer? zggtgctthceo;c;rtg(iﬁ?, whereX C At is inconsistent atom. No selection of atoms frém , p2, p3}

We interpret abstract constraint atoms by means of propo- Safisfies it and, consequently, it has no models. .
sitional interpretations (truth assignments), represbrts Thesg—: examples demonstrate that abstract constraints and
subsets ofd#®. An interpretationV/ C At satisfiesan ab- constraint atoms can express a broad range of constraints.
stract constraint atore¥(X) (M = O(_X)) fMAX cC In the paper, we show that abstract constraint atoms can be

' combined into logic program clauses to represent even more

(that is, if the set of atoms iX that are true inV/ belongs >
to, or satisfies, the constraifit). Otherwise,M does not complex constraints, and that much of the theory of normal

satisfyC(X), (M [~ C(X)). In that case, we also say that logic programs generalizes to the extended setting.

o : . Let F be a class of abstract constraints ovi#r By an
M satisfies thditeral not(C(X)). An abstract constraint
atomC'(X) is consistentf there is an interpretatiod/ such F-atomwe mean an abstract atos(.X) such thatd € 7

thatM = C(X). We will now illustrate these concepts with andX C At. By anF-clausewe mean an expression
several examples of common constraints. A(X) < Bi(X1), ..., Bn(Xm),
Weight constraints. Given a real number and a weight not(C1(Y1)),...,not(Cy,(Y,)) 1)

function w, assigning to each atom id¢ a real number where A(X), B;(X;) andC;(Y;) areconsistentF-atomg.
3We recall that for an interpretatiall C At, an atomp € At —By anF-programwe mean a collection of -clauses.
istruein M if p € M; otherwisep is falsein M. “The case when inconsistent atoms are allowed is not essen-

If r is a clause of the form (1)A(X) is the head of monotone. The followingnonotonicityproperty of abstract
r, denoted byhd(r), and X is the head setof r, de- monotone atoms is a direct consequence of these definitions.

%Ot(e)? ?yhse%r)'(XWE; alss(gal(l;h)e) conjunctt(%n 8ﬁ I)lt)erals Proposition 1 Let C' be an abstract monotone constraint
1AL - Bmidm), NOUE1LL)), - - -, MOV Emidn)), over At, X C At, and letM, M’ C At be two interpre-

the body of r. Finally, for an F-program P, we define ; ; y
hset(P) to be the union of setsset(r), forr € P. tations. IfM = C(X) and M C M, thenM" = C(X).

Our goals are to extend concepts, techniques and results We note that if all the individual weights used by the
of normal logic programming to the class &tprograms, weight functionw are non-negative, the weight constraint
to provide a uniform theoretical framework for current ex- W, which we discussed earlier, is monotone. The maxi-
tensions of logic programs with aggregates, and to identify mum constrainf\/[azfu » IS monotone for every weight func-
basic assumptions under which such extensions are possi-tion w. We also note that the constraiiit;;, which we used
ble. To this end, we note that normal logic programs can to interpret normal logic programs as programs with abstrac
be viewed as programs with abstract constraint atoms. Let constraints, is monotone as well, which further justifies a
Uar = {X C At: X # 0}. Clearly,U,; is an abstract con- central role of monotone constraints. On the other hand, we
straint and, for every atom € At and every interpretation note that some common constraints, for instance, even- and
M, M = aifand only if M = Ug¢(a). That is, propo- odd-cardinality constraint& andO, are not monotone.
sitional atoms areequivalentto abstract constraint atoms From now on, unless explicitly stated otherwise, we re-
U a¢(a). Under this equivalence, a normal logic program strict our attention to constraints that am®notone Under
can be viewed as flU 4, }-program, by regarding each atom this assumption, the concept of a Horn program has an obvi-

a as a shorthand for the constraint atéi; (a). Formally, ous direct generalization. Namely, for any cl&sf mono-
for a normal logic programP, we define its correspond- tone constraints, arF-program is aHorn F-programif it
ing {U 4+ }-programP*¢ (the superscript stands fabstract contains no occurrences of the operaiot.

constraint3 to consist of all{U,; }-clauses obtained from

clauses inP by replacing atoms with abstract constraint Nondeterministic one-step provability

atomsUy4.(a). As a verification of the soundness of our operator
approach, we will show in the paper that several properties , . ,) ,
of programs with abstract constraints, when applied to pro- A basic tool in the studies of normal logic programs is that
grams of the formP?¢, reduce to well known properties of of _the one-step pro_vab|||ty operatgvan Em(_llen & I_(owal-
normal logic programs. $k| 1976). It de_scnbes the results of updating an integpret
Clauses of normal logic programs are typically regarded tOn Py computing the heads of applicable program clauses.
as computational deviceassuming that preconditions of a 1€ difficulty with extending that operator to the caserof
clause have been established, the clause provides a jastific Programs is that once a clause *fires”, there may be many
tion to establish (compute) its hea@rucial concepts behind ~ SEtS Of atoms that can be derived on that basis, as there may
formal accounts of that intuition are those of a Horn pro- P& Many ways to “satisfy” the abstract atom in the head of

gram, the correspondirizpttom-upcomputation, and a least e clause. In this section, we address thatissue.
Herbrand model, which defines thesult of the computa- A nondeterministic operatoon a setD is any function
tion. Computations and their results are well defined due to /: D0 — P(D) \ 0 (that is, for everyd € D, f(d) # 0).
themonotonéehavior of Hor programs. To extend normal ~ ON€ can view the sef(d) as the collection of all possible
logic programming to the class of programs with abstract ©Utcomes of applying tod, one of which (by the definition,
constraint atoms, one needs a generalization of the class of &t /€@stone is available) can be selected nondetermaigtic
Horn programs supporting an appropriate notion of a com- as theactualoutcome off.

putation, with the results of computations playing the same Definition 1 LetF be a class of monotone constraints. Let
role as that played by the least Herbrand model. P be anF-program and letM C At.

In order to accomplish that, it is not enough simply to dis- (1) A clauser € P is M-applicable if M satisfies all lit-
allow the negation operator in the bodies/®fclauses. It is erals in the body of. We denote byP(M) the set of all
also necessary to restrict the class of constraints to thase M-applicable clauses .
aremonotone(that is, intuitively, once true in an interpreta- (2) A setM’ is nondeterministically one-step provatiiem
tion, they remain true in its every superset). Without that M by means oP, if M’ C hset(P(M)) and M’ | hd(r),
assumption, the “monotonicity” of normal Horn programs for every clause in P(M).
does not generalize and there is no straightforward way to (3) Thenondeterministic one-step provability operafi,

define the concept of a computation. is a function fromP(At) to P(P(At)) such that for every
Formally, we say that an abstract constraihts mono- M C At, TR(M) consists of all setd/’ that are nonde-

toneif for every A, A’ C At,if A ¢ CandA C A terministically one-step provable frod by means of.

thenA’ € C (in other words, monotone constraints are pre- Our use of the terrmondeterministic operatoin refer-

cisely upward-closed families of subsetsA). An abstract ence tol'’2? is justified. We have the following property.

constraint atomC(X) is monotone if its constrain€' is - _
Proposition 2 Let F be a class of monotone constraints

tially different and can be reduced to the one we focus on here. We over a setdt and letP be anF-program. For everyM C

do not discuss that issue in detail due to space restrictions. At, hset(P(M)) € TR4(M). In particular, TR (M) # 0.

We use the operatdf? to introduce and characterize
several semantics foF-programs, and to relate the formal-
ism of F-programming to normal logic programming. We
will often rely on the intuition that elements @f:¢ (M) can
be viewed as possiblgpdatesof M on the basis of clauses
in P, none of them distinguished and each available for a
nondeterministic selection as antualupdate.

We conclude this section with a characterization of mod-
els of F-programs. It is a generalization of the familiar de-
scription of models of normal logic programs as prefixpoints
of the van Emden-Kowalski operator (the conditions in the
theorem are commonly used as a definitiorprefixpoints
of a nondeterministic operator).

Theorem 1 Let F be a class of monotone constraints over
a setAt. Let P be anF-program and letdd C At. The
setM is a model ofP if and only if there isM’ € TR¢(M)
such thatM’ C M.

Supported models ofF-programs

For a setM of atoms, we say that/-applicable clauses in an
F-programP providesupportto atoms in the heads of these
clauses. FoM to be a model of?, M must satisfy the heads
of all applicable clauses. To this endi{ needs to contain

concept of a bottom-up computation which, in the case of
Horn F-programs is inherently non-deterministic.

Let 7 be a class of monotone constraints and ket
be a HornF-program. A P-computationis a sequence
(X1n)n=0,1,... such thatX, = () and, for every non-negative
integern:

1. X, € X,41,and

2. Xp1 € TRY(X,).

Given a computation = (X,,)n=o,1,..., we callJ,—, X,
theresultof the computationt and denote it byR,.

The following proposition shows that the results of com-
putations contain only atoms with support and that they
are supported models (and, thus, also models) of Horn
programs.

Proposition 3 LetF be a class of monotone constraints and
let P be a HornF-program. For everyP-computatiort:

1. R, C hS@t(P(Rt)), and

2. R;, is a supported model d?.

Let M be a model ofP. We definex/™ = ¢ and, for
everyn > 0, we setX, "} = hset(P(X[M)) N M.
Theorem 4 Let F be a class of monotone constraints and
let P be a HornF-program. For every model/ of P, the

some of the atoms appearing in the heads of these clausessequence™" is a P-computation.

(atoms with support in/ and P) and, possibly, also some
atoms that do not have such support. Models that contain
only atoms with support form an important class of models
generalizing the class of supported models for normal logic
programs (Clark 1978; Apt 1990).

Definition 2 Let F be a class of monotone constraints and
let P be anF-program. A set of atom8/ is a supported
modelof P if M is a model ofP and M C hset(P(M)).

Supported models have the following characterization
generalizing a characterization of supported models of nor
mal logic programs as fixpoints of the the van Emden-
Kowalski operator (the characterizing condition is com-
monly used as a definition offxpointof a nondeterministic
operator).

Theorem 2 Let F be a class of monotone constraints. Let
P be anF-program. A sef\l C At is a supported model of
Pifand only if M € T24(M).

Our concept of a supported model generalizes that consid-
ered in normal logic programming. Specifically, supported
models of a normal logic program coincide with supported
models of this same program viewed aS &y, }-program.

Theorem 3 For every normal logic programP, a set of
atomsM is a supported model aP if and only if M is a
supported model of thflJ 4, } -program P<*

Horn F-programs

The concepts of a model and supported model extetfe to
programs directly. To find a proper generalization of sta-
ble models is less straightforward. We will address it in the
next two sections. In this section, we will stuéhorn F-
programs. The key issues is that of generalization of the

We call the P-computationt”™ , where M is a model
of P, the canonical P-computation forM. Since every
F-program P has models, every HorfF-program has at
least one computation. In general, a Hdfsprogram may
have multiple computations with, possibly, different fésu
Indeed, when deriving{,,,; from what was computed so
far, we can pick forX,,.; anyelement form the collection
Tr4(X,,) which, typically, contains more than one element.

We use computations to distinguish an important class of
models of HornF-programs, which generalizes the concept
of a least Herbrand model of a normal Horn program.

Definition 3 Let F be a class of monotone constraints and
let P be a HornF-program. We say that a set of atoris

is a derivable modebf P if there exists aP-computationt
such thath = R;.

It follows from Proposition 3(2) that derivable models of
a Horn F-programP are supported models (and therefore
models) of P. The following theorem shows they are the
results of their own canonical computations.

Theorem 5 Let F be a class of monotone constraints. For
every derivable model/ of a Horn F-program P, we have
M - RtP,M .

Proposition 3(2) and Theorems 4 and 5 entail additional
properties of derivable models of Hoff+programs.

Corollary 1 Let F be a class of monotone constraints and
let P be a HornF-program. Then:

1. P has at least one derivable model

2. Every model of’ contains a derivable model @f

3. Every minimal model P is derivable.

These properties generalize their counterparts holding fo
normal Horn programs. Indeed, tHé{4;}-program P<®,

where P is a normal Horn program, has exactly oR&*-
computation coinciding with the bottom-up computation for
P, and exactly one derivable model that coincides with the
least Herbrand model @?.

Stable models ofF-programs

We will now define stable models ¢f-programs. To this
end, we will generalize the concept of theduct(Gelfond
& Lifschitz 1988) to the case ofF-programs and exploit
results on HorrF-programs from the previous section.

Definition 4 LetF be a class of monotone constraints and
let P be anF-program. For a set of atoma8/ C At we
define thereductof P with respect toM, P in symbols,
as a Horn F-program obtained fromP by (1) removing
from P every clause containing in the body a literabt (A)
such thatM = A, and (2) removing all literals of the form
not(A) from all remaining clauses i .

It is clear that the redud?™ is a HornF-program. Thus,
the following definition is sound, as the concept of a deriv-
able model is well defined for the reduct.

Definition 5 Let F be a class of monotone constraints and
let P be anF-program. A set of atoma/ is a stablemodel
of P if M is a derivable model of the redugt™

This definition does not make it explicit that a stable
model of anF-program is a model. It is however so and the
use of the ternmodelis indeed justified. In fact, a stronger
property holds: stable models &tprograms are supported.

Proposition 4 LetF be a class of monotone constraints and
P be anF-program. If M C At is a stable model oP then
M is a supported model a?.

The notion of a stable model allows us to strengthen
Proposition 3(2).
Proposition 5 LetF be a class of monotone constraints and

P be a HornF-program. A set of atoma/ C At is a deri-
vable model of if and only if M is a stable model oP.

We conclude this section by noting that this concept of
a stable model of atF-program extends the concept of a
stable model of a normal logic program.

Theorem 6 Let P be a normal logic program and et/ be
a set of atoms. Thei{ is a stable model oP if and only if
M is a stable model of théU 4, }-program P<*.

Deterministic F-programs

A monotone constraint atoifi(X) is deterministicif X is
a minimal element ir. Deterministic monotone constraint
atoms have the following properties.

Proposition 6 Let C(X) be a deterministic constraint
atom. ThenC(X) is consistent and, for every/ C At,
M= C(X)ifandonly ifX C M.

An F-program P is deterministi¢ if the head of every
clause inP is a deterministic constraint atom. For deter-
ministic logic programs there is only one way to derive a set
of atoms to satisfy the head of an applicable clause. Thus,
computing with deterministi¢--programs does not involve
nondeterminism. Indeed, we have the following result.

Proposition 7 LetF be a class of monotone constraints and
let P be a deterministicF-program. Then, for every set of
atomsM, |TR4(M)| = 1.

Consequently, for a deterministiE-programP, the op-
eratorTi? is deterministic and, so, can be regarded as an
operator with both the domain and codomé&At). We
write T, to denote the unique operator such that for ev-
ery M C At, Tp4(M) = {T&(M)}. Models, sup-
ported models and stable models of a determinigfic
program can be introduced in terms of the oper&tgrin
exactly the same way as the corresponding concepts are de-
fined in normal logic programming in terms of the opera-
tor Tp. In particular, the algebraic treatment of logic pro-
gramming developed in (Fitting 2002; Przymusinski 1990;
Denecker, Marek, & Truszchgki 2000) applies literally to
deterministicF-programs. We note that this comment ex-
tends to 3- and 4-valued semantics of partial models, sup-
ported models and stable models (including the Kripke-
Kleene semantics and the well-founded semaritic3hat
is important as we do not have yet a convincing generaliza-
tion of some of these semantics (most notably, multivalued
stable-model semantics and the well-founded semantics) to
the case of arbitrary--programs.

Complexity

In this section we will briefly discuss the complexity of
deciding whether arfF-program has a supported (stable)
model. For the complexity considerations we restridine
tary abstract constraints, that is, constraints that consist of
finite sets of atoms only.

We note that a finitary abstract constraintgives rise to
a decision problenD¢: given a finite setX C At, decide
whetherX € C. For many common constraints that deci-
sion problem belongs to the class P. Itis so for all conssain
considered earlier (in the case of a containment constraint
under the assumption that sets4rthat define the constraint
are given by lists of their elements).

Theorem 7 Let F be a nonempty class of finitary abstract
monotone constraints such that for every constréairg F,
the decision probler®¢ is in P and at least one constraint
in F is nonempty. Then the problem to decide whetheFan
program has a supported (stable) model is NP-complete.

The proof of the upper bound is simple. Once we guess
a candidaté\/ for a stable model foP, we first verify that
M is a model ofP. Next, we compute the redué& and,
finally, we verify thatM is a derivable model o by
constructing the canonical derivation féf. The last task
is well defined as it is applied after we first verify that is
a model (we recall that canonical derivations are defined for
models only). Moreover, all tasks can be accomplished in
polynomial time (by our assumption on the cleBs

The proof of NP-completeness is harder. Due to the lack
of space, we only note that to prove the claim we reduce to
our problem the problem of the existence of stable models

SResults in (Denecker, Pelov, & Bruynooghe 2001) are related
to this observation. They deal with programs (with aggregates),
whose clauses have heads consistingjtogleatoms.

for normal logic programs (known to be NP-complete). The
reduction is possible due to the fact tifatcontains at least
one constraintC' and this constraint contains at least one
finite minimal model.

The arguments in the case of supported models are sim-
ilar. We also note that Theorem 7 can be generalized so
that to give the complexity of the problem of the existence
of supported (stable) models &f-programs in terms of the
complexity of the decision problen3., for C € F.

Discussion

In this paper, we discussed a generalization of normal logic
programming, in which clauses consist albstract con-
straint atoms that is, expressions modeling constraints on
sets. We showed that for a broad class of abstract con-
straints, called in the paparonotonebasic concepts, meth-
ods and results from normal logic programming generalize.

The results of the paper provide a formal tool to study
properties of current extensions of logic programming sys-
tems with weight constraints such as those proposed in (Si-
mons, Niemél, & Soininen 2002). However, they apply
equally well to extensions with much broader classes of con-
straints; the only requirement is their monotonicity. Sagh
tended formalisms have clear modeling and computational
advantages. Our work offers for them a solid theoretical ba-
sis.

The paper opens several interesting research directions.
First, our complexity results indicate that the complexity
automated reasoning tasks for programs with constraints re
mains NP-complete as long as programs are built on the ba-
sis of constraints, for which the membership problem is in
P. That indicates that an extension of algorithmic methods t
compute stable models of programs with weight constraints
in (Simons, Niemd, & Soininen 2002) to programs with
more general constraints might be possible. Second, due to
close analogies between our approach and normal logic pro-
gramming, we believe several other properties and results
(splitting theorems, the concept of strong equivalenceatand
characterizations, Fages lemma, etc.) can be extendee to th
setting of programs with constraints. Finally, an impottan
problem is to establish under what conditions the assump-
tion of monotonicity can be dropped. Our formalism can
easily be extended to the case allowing clauses with incon-
sistent heads and in such clauses, atoms bui#trbitrary
constraints can occur. Whether that result can be general-
ized in any significant fashion is an open question.

References

Aloul, F.; Ramani, A.; Markov, |.; and Sakallah, K. 2002.
PBS: a backtrack-search pseudo-boolean solver and opti-
mizer. SAT02, 346 — 353.

Apt, K. 1990. Logic programmingHandbook of theoreti-
cal computer sciencet93-574.

Babovich, Y., and Lifschitz, V. 2002.Cmodels pack-
age http://ww. cs. utexas. edu/ users/tag/
cnodel s. htnl .

Baral, C. 2003 Knowledge representation, reasoning and
declarative problem solving

Clark, K. 1978. Negation as failuréogic and data bases
293-322.

Dell’Armi, T.; Faber, W.; lelpa, G.; Leone, N.; and Pfeifer,
G. 2003. Aggregate functions in disjunctive logic program-
ming: semantics, complexity, and implementation in DLV.
IJCAI 2003.

Denecker, M.; Marek, V.; and Truszdzski, M. 2000. Ap-
proximations, stable operators, well-founded fixpointd an
applications in nonmonotonic reasonirigpgic-Based Ar-
tificial Intelligence 127-144.

Denecker, M.; Pelov, N.; and Bruynooghe, M. 2001. Ulti-
mate well-founded and stable semantics for logic programs
with aggregatesiCLP 2001 212-226.

Dixon, H., and Ginsberg, M. 2002. Inference methods for a
pseudo-boolean satisfiability solvaAAI-2002 635-641.

Ferraris, P., and Lifschitz, V. 2004. Weight constraints
ans nested expressiorEheory and Practice of Logic Pro-
gramming, (forthcoming)

Fitting, M. C. 2002. Fixpoint semantics for logic program-
ming — a surveyTheoretical Computer Scien2&8:25-51.

Gelfond, M., and Leone, N. 2002. Logic programming
and knowledge representation — the A-prolog perspective.
Artificial Intelligence138:3-38.

Gelfond, M., and Lifschitz, V. 1988. The stable semantics
for logic programsICLP 1988 1070-1080.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2003. The dlv system for
knowledge representation and reasoningt p: / / xxx.

I anl . gov/ abs/ cs. Al /0211004.

Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solver8AAI-2002 112—-
117.

Marek, V.; Niemed, |.; and Truszczyski, M. 2004. Char-
acterizing stable models of logic programs with cardigalit
constraintsLPNMR7 154-166.

Niemeh, I., and Simons, P. 1997. Smodels — an imple-
mentation of the stable model and well-founded semantics
for normal logic programs. 1hPNMR4 420-429.

Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Par-
tial stable models for logic programs with aggregatds-
NMR7 207-219.

Prestwich, S. 2002. Randomised backtracking for linear
pseudo-boolean constraint probler@®AIOR-02 7-20.

Przymusinski, T. 1990. The well-founded semantics coin-
cides with the three-valued stable semantiesndamenta
Informaticael3(4):445—-464.

Simons, P.; Niemd|, |.; and Soininen, T. 2002. Extending
and implementing the stable model semantidstificial
Intelligencel38:181-234.

Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraintBheory and Practice

of Logic Programming, (4&5):609-622.

van Emden, M., and Kowalski, R. 1976. The semantics of
predicate logic as a programming languadeurnal of the
ACM 23(4):733-742.

