
Spatial Logic Programming

Howard A. Blair1, Victor Marek2, Jeffrey Remmel3

Abstract

We show that the mechanism underlying Logic Pro-
gramming can be extended to handle the situation
when the atoms are interpreted as subsets of various
spaces. In such situation, the atoms of the underlying
language are interpreted as subsets of the correspond-
ing space. The models of the program are interpreted
as subsets of that space. It turns out that the opera-
tor approach to Logic Programming can be lifted to
such situation, and that when the Horn fragment of
such logic is considered, the corresponding operators
are monotone and reach the fixpoint in at most ω

steps. The concepts of supported and stable mod-
els of programs can equally be generalized. We show
how a classic PERT/CPM optimization problem can
be represented in such circumstances.

1. Introduction

The motivation for this paper is to develop a logic
programming paradigm which is capable to directly
reason about regions in space as might be required
for applications in graphics or image compression or
to reason about time intervals as might be required in
various job scheduling tasks. Thus instead having the
intended underlying universe be the Herbrand base
of the program, we would like to have the underlying
universe by some fixed space X and have the atoms
of the program specify subsets of X, i.e. elements of
the sets of all subsets of X which we denote by 2X .

If we reflect for a moment on the basic aspects of
logic programming with an Herbrand model interpre-
tation [Ap90, Lloyd87], a slight change in our point
of view shows that interpreting atoms as subsets of
the Herbrand base is a natural thing to do. That is,
in normal logic programming, we determine the truth
value of an atom p in an Herbrand interpretation I

by declaring I |= p if and only if p ∈ I. However, this
is equivalent to declaring that the sense, σ(p), of a

1EECS Department, Syracuse University, Syracuse, NY

13244: e-mail blair@ecs.syr.eduI
2CS Department, University of Kentucky, Lexington, KY

40506: e-mail marek@cs.uky.edu
3Mathematics Department, University of California at San

Diego, La Jolla, CA 92903: e-mail jremmel@ucsd.edu

ground atom p is the set {p} and I |= p iff σ(p) ⊆ I.
By this simple move, we have permitted ourselves to
see the sense of an atom as a subset of the Herbrand
base.

This given, it is a natural step to take the sense σ(p)
of ground atom p to be a fixed assigned subset of
some nonempty set X, and regard an X-model of p

as any set I ⊆ X such that σ(p) ⊆ I. As a basis for a
model theoretic semantics this set-up makes available
in a natural way, multiple truth values, intensional
constructs, and interpreted relationships among the
elements and subsets of X. Observe that the assign-
ment σ of a sense to ground atoms is intrinsically
intensional. Interpreted relationships among the el-
ements and subsets of X allow the programs that
use this approach, called spatial logic programs, to
serve as front-ends to existing systems and still have
a seamless model-theoretic semantics for the system
as a whole.

In this paper we (1) present a formalism, spatial logic
programs in accord with the above ideas, (2) present
a a model-theoretic semantics of the formalism, (3)
identify the stable-model semantics of spatial pro-
grams, and (4) and to illustrate the utility of spatial
programs, apply them to a portion of the operations
research problem of project scheduling in the context
of PERT/CPM.

2. Spatial Logic Programs: syntax and
semantics

The syntax of spatial logic programs is based on the
syntax of the formulas of what we define as spa-
tially augmented first-order predicate logic. Spatial
augmentation is an intensional notion. The syntax
of spatial programs will essentially be the syntax of
DATALOG programs with negation, but augmented
by certain intensional connectives such as union and
intersection which are designed to make programming
in a spatial logic programming setting easier.

The use of intensional connectives allows for oper-
ations on what we call the senses of ground atoms
described in the next section to materially contribute
to determining the models of programs. The expres-

p. 1

sive power of intensional connectives allows us to cap-
ture external functions and relations intrinsic to the
domain of a spatial logic program. It is this fea-
ture that permits spatial logic programs to seamlessly
serve as front-ends to other systems. Intensional con-
nectives correspond to back-end procedures and func-
tions. However, it turns out that intensional connec-
tives can be eliminated from programs by extending
the set of ground atoms and suitably extending the
sense assignment.

Definition 2.1 A spatially augmented first-
order language (spatial language, for short) L
is a quadruple (L,X, σ, I), where
1) L is a language for first-order predicate logic (with-
out function symbols other than constants),
2) X is a nonempty (possibly infinite) set, called the
interpretation space,
3) σ is a mapping from the ground atoms of L to the
power set of X, and
4) I is a possibly infinite alphabet of symbols called
intensional connectives. The collection is required
to contain four logical intensional connectives, corre-
sponding to the union, intersection, and complement
operators on 2X as well as the constant unary oper-
ator that returns X. Each intensional connective is
equipped with a fixed interpretation as an operator of
some finite arity on 2X .

Although Lmay have infinitely many intensional con-
nectives, in any spatial logic program only finitely
many of them will occur.

The mapping σ, the interpretation space X, and the
interpretations of the intensional connectives might
seem to properly belong in the semantics of spatially
augmented languages. However, these languages are
to be thought of as having a fixed partial interpreta-
tion, and hence the interpretation space, sense assign-
ment, and the interpretations of the intensional con-
nectives should be fixed by the language analogously
to fixing the interpretation of the equality symbol in
ordinary first-order languages as the identity relation.

We now define the extensional atoms of L in the usual
inductive manner. That is,
1) an atomic formula A of L, the underlying first-
order language component of L, is an extensional
atom. The predicate symbol of A is the principal
functor of A and
2) if ϕ1, . . . , ϕn are extensional atoms and η is an n-
ary intensional connective, then η(ϕ1, . . . , ϕn) is an
extensional atom, whose principal functor is η.

The remaining extensional formulas of L are built up
from extensional atoms in the usual way. It should

be noted that intersection is not representable as fa-
miliar Boolean connectives. This will become clear in
the next section on semantics.

We can then extend the notion of sense to arbi-
trary intensional ground atoms inductively by declar-
ing that an intensional ground atom A of the form
η(ϕ1, . . . , ϕn) and let the interpretation of η be a func-
tion f : (2X)n −→ 2X . Then the sense of A, denoted
by σ(A), is recursively given by f(σ(ϕ1), . . . , σ(ϕn)).

We now define the class of spatial logic programs of
the spatial language L.

Definition 2.2 A spatial logic program has three
components.
1) The language L which includes the interpretation
space and the sense assignment.
2) The IDB (Internal Database): A finite set of
program clauses, each of the form A← L1, . . . , Ln

where each Li is a literal, i.e. an extensional atom
or the negation of an extensional atom, and A is an
atomic formula of L whose principal functor does not
occur as the principal functor of any ground exten-
sional atom in the EDB.
3) The EDB (External Database): A finite set of
extensional ground atoms.

For the rest of this paper, we shall assume that the
classes of spatial logic programs that we consider al-
ways are over a language for first-order logic L with-
out nonconstant function symbols, a fixed set X and
a set of intensional connectives.

Informally, we think of the Herbrand universe ΛL of
the underlying language L, i.e. the set of constant
symbols of L, as being a set of indices which we may
employ to suit whatever purpose is at hand. HBL

is the Herbrand base of L, i.e. set of ground atoms
of L. We omit the subscript L when the context is
clear. Let X be a nonempty set, 2X the powerset of
X, and let σ : HB −→ 2X . The subset of X, σ(p), is
called the sense of the ground atom p (with respect to
X). An interpretation of the spatial language L =
(L,X, σ, I) is a subset of X. A ground extensional
atom p is satisfied by interpretation I, with respect to
sense assignment σ (denoted by I |=σ p) iff σ(p) ⊆ I.

The sense assignment σ can be given to partition the
ground atoms into multiple sorts. For example, Let
X be the disjoint union of X1 and X2. Let HB be
the disjoint union of A1 and A2, and choose σ such
that σ(p) ⊆ Xi for p ∈ Ai, i = 1, 2. In particular,
we may want to have some atoms reserved for having
singleton senses.

The preceding definition allows us to extend the sat-

p. 2

isfaction relation to all extensional formulas with re-
spect to 2-valued logic in the usual way. We could
similarly define truth-valuations from subsets of X

together with ground atoms into larger sets of truth
values.

We next extend the the satisfaction relation to arbi-
trary formulas. Note that a ground atom p picks out
a set of subsets of X as its model class, namely the
set of all supersets in X of the sense of p. Thus the
model class of p is a member of the Boolean algebra
determined by the power set of the power set of X

with respect to union, intersection, and complement

in 22X

.
1) If ϕ is a non ground formula, then I |= ϕ iff I |= ϕ′ for every ground

instance ϕ′ of ϕ.

2) If ϕ is an extensional atom, then I |= ϕ iff σ(ϕ) ⊆ I.

3) I |= ϕ1 ∨ ϕ2 iff I |= ϕ1 or I |= ϕ2.

4) I |= ϕ1 ∧ ϕ2 iff I |= ϕ1 and I |= ϕ2.

5) I |= ¬ϕ iff I 6|= ϕ.

6) I |= ϕ1 ← ϕ2 iff I |= ϕ1 ∨ ¬ϕ2.

7) The remaining Boolean connectives are handled similarly.

8) I |= ∃xϕ(x) iff I |= ϕ(e) for some constant symbol e of L.

9) I |= ∀xϕ(x) iff I |= ϕ(e) for all constant symbols e of L.

We say that I models a set of of formulas Γ iff I |= A

for all A ∈ Γ.

An ordinary model of a spatial program is a model
of the set of all formulas in the EDB and IDB. Thus,
in particular, a model of a program must contain the
sense of every ground instance of each extensional
atom in the EDB.

Note in particular that if ∩ is the intensional connec-
tive corresponding to the intersection operator on 2X

and A ∩ B is a ground atom, then for I ⊆ X, there
is no Boolean combination of the assertions I |= A

and I |= B that holds if, and only if, I |= A ∩ B for
all choices of the senses of A and B. Contrast this
observation with: I |= A ∪B iff I |= A and I |= B.

3. The consequence operator and stable
models

The following operator generalizes the one-step
consequence-operator of ordinary logic programs with
respect to 2-valued logic to spatial logic programs:
Given a spatial program P with IDB P , let P ′ be the
set of ground instances of a clauses in P and let

TP (I) = I1 ∪ I2 ∪ I3

where
I1 =

⋃
{σ(A) | A ← L1, . . . , Ln ∈ P ′, I |= Li, i = 1, . . . , n}.

I2 =

⋃
{σ(A) | A ←∈ P ′ and A is a ground external atom}.

I3 =

⋃
{σ(A) | A is a ground atom in the EDB of P}.

A supported model of P a model of P that is a fixed
point of TP .

A spatial logic program is Horn if the EDB is Horn.
Our definitions generalize the familiar characteriza-
tion of the least model of ordinary Horn programs.
However, if the Herbrand universe of a spatial pro-
gram is infinite (contains infinitely many constants)
then, unlike the situation with ordinary Horn pro-
grams, TP will not in general be upward continuous.

We iterate TP according the following.

TP ↑
0 (I) = I

TP ↑
α+1 (I) = TP (Tα

P (I))

TP ↑
λ (I) =

⋃

α<λ

TP ↑ α(I)}, λ limit

Example 3.1 To specify a spatial program we must
specify the language, EDB and IDB. Let L =
(L,X, σ, I) where L has four unary predicate sym-
bols: p, q, r and s, and countably many constants
e0, e1, . . . , . X is the set N

⋃
{N} where N is the

set of natural numbers, {0, 1, 2, . . . }. σ is specified
by σ(q(en)) = {0, . . . , n}, σ(p(en)) = σ(q(en+1)),
σ(r(en)) = N, σ(s(en)) = {N}.

The EDB is empty and the IDB is

q(e0) ←
p(X) ← q(X)
s(e0) ← r(e0)

Now, after ω iterations upward from the empty in-
terpretation, r(e0) becomes satisfied. One more iter-
ation is required to reach an interpretation that satis-
fies s(e0), where the least fixed point is attained. This
completes the current example.

It is clear that TP is monotonic is clear so that the
following result follows from Tarski’s theorem on fix
points of monotonic operators [Tarski55].

Theorem 3.1 The least model of spatial Horn pro-
gram P exists, is supported, and is given by
TP ↑

α (∅) for some ordinal α.

What is different about the ascending iteration of TP

from the ordinary situation in logic programming is
that in the spatial case, the senses of ground body
atoms can be satisfied by the union of the senses of
infinitely many ground clause heads without any fi-
nite collection of of these clause heads uniting to sat-
isfy the body atom. But, if there are only finitely
many non-external atoms, i.e. the Herbrand universe
of the program is finite, then this source of upward

p. 3

discontinuity vanishes. The proof of upward continu-
ity is essentially the same then as the case for ordinary
Horn programs.

Theorem 3.2 The least model of spatial Horn pro-
gram P exists, is supported, and is given by
TP ↑

α (∅) for the least ordinal α at which a fixed
point is obtained.

In spatial logic programs, we allow clauses whose
ground instances are of the following form:

A← B1, . . . , Bn,¬C1, . . . ,¬Cm. (1)

We can the define the stable model semantics for such
programs as follows. For any given set J ⊆ X, we de-
fine Gelfond-Lifschitz transform [gl88] of a program
P , GL(P), in two steps. First we consider all ground
instances of classes C in P as in (1). If J |= Ci for
some i, then the we eliminate clause C. If not, then
we replace C by the Horn clause

A← B1, . . . , Bn. (2)

The GL(P) consists of IDB(P) plus the sets of all
Horn clauses produced by this two step process. Thus
GL(P) is just Horn program so that TGL(P) is de-
fined. The we say that J is stable model of P if
and only if J equals the least model of GL(P).

Theorem 3.3 1. I ⊆ X is a model of P iff
TP (I) ⊆ I.

2. I is stable with respect to P implies that I is
supported with respect to P.

Proof: The proofs of the two parts of the above
proposition proceed exactly as they do for ordinary
programs after noting that for any I ⊆ X, an element
x of TP (I) is an element of the sense of at least one
of the clause heads in P whose body is satisfied by I.

4. An application: PERT/CPM

In this section we illustrate spatial logic program-
ming with a small but realistic application. We make
no claims that spatial programming is the best ap-
proach to this application. Our purpose in present-
ing the example is to illustrate how spatial programs
serve as a natural front-end to organize a a collection
of perfectly well-understood pre-existing algorithms.
Here PERT stands Project/program Evaluation and
Review Technique and CPM stands for Critical Path
Method) is a classical operations research planning
activity [HL95].

The basic planning problem is: One is given a number
of tasks, each assumed to have a minimum required
execution time. One is also given an immediate pre-
decessor relation among the tasks. The problem is to
determine the earliest and latest starting and comple-
tion times relative to the overall starting time so as
to complete the entire project in the minimum time.)
In the standard presentation of the CPM technique
there are three phases.

(1) In the first phase, one is to construct a net-
work diagram to model the project. The network
diagram is a directed acyclic graph. The network
diagram’s edges are the tasks of the project, together
with certain other so-called dummy tasks that require
no time to complete. The network diagram’s nodes
are thought of as moments when tasks are started and
completed. These are called events. Since one can
complete several tasks simultaneously in the model
and then go on to start several other tasks that de-
pended on these, the in-degree and out-degree of the
events in the diagram have no a priori bounds. It
is further assumed that for two events E1 and E2

there is at most one task that starts at E1 and com-
pletes at E2. The immediate predecessor relation is
taken to mean that if task A immediately precedes
B, then there is no task C that depended on A and
upon which B depended. Furthermore, the transitive
closure of the immediate successor relation (the con-
verse of the given immediate predecessor relation) is
assumed to be an irreflexive partial ordering. In or-
der to maintain these requirements it is, in general,
necessary to insert dummy tasks in to the network
that require no time to complete.

(2) In the second phase there are two passes: one
computes the earliest time to completion of the en-
tire project by calculating the earliest time each event
can occur. Then, working backwards from the earli-
est time to complete the project relative to the start
time, one calculates the latest time at which any event
can occur. An task in the project is critical if the lat-
est time of occurrence and earliest time of occurrence
coincide for both its starting and completing events,
and the difference between these times is precisely the
minimum time to complete the task. A critical path
in the project is a path through the network diagram
from the starting event for the entire project to the
terminating event for the entire project along which
every task is critical. A simple induction argument
shows that at least one critical path always exists.

(3) In the third phase one identifies the critical paths
and calculates the time intervals, i.e. float times,
within which the various tasks may start while still
completing the entire project in the minimum time.

p. 4

The PERT technique differs from the CPM technique
only in that it obtains a simple probabilistic estimate
of critical paths and float times in contrast to the
deterministic analysis of CPM. Our task is to craft
a spatial program that, by varying the EDB com-
ponent, we declaratively express each PERT/CPM
project in a clear manner.

The first realization about PERT/CPM is that the
first phase is altogether unnecessary. Activities actu-
ally undertaken are simply nonempty open intervals
of time (assuming that the real tasks of the project
require some nonzero minimum time to complete. It
might also be that several tasks of the same dura-
tion occur simultaneously, but are not identical. We
can model the situation with a multi-dimensional Eu-
clidean space. Earliest and latest times of occurrence
of events are just attributes of the tasks. Attributes
of the tasks will be associated with their tasks by in-
tensional connectives. The transitive closure of the
converse of the immediate predecessor relation yields
a directed acyclic graph in which the tasks occur as
nodes, not edges, and the start and completion earli-
est and latest times can be computed just as straight-
forwardly as in the standard CPM presentation.

As we proceed we will identify the senses of ground
atoms and identify the intensional connectives along
with their interpretations. We will introduce the
clauses of the IDB independently of any specific prob-
lem instance, and an EDB corresponding to a project
with seven tasks.

The underlying first-order language: The lan-
guage determined by the constants and predicate
symbols occurring in the definitions, IDB and EDB.
The predicate symbols, constants, and intensional
connectives of the underlying first-order language will
be introduced as we present the clauses. The inter-
pretation space X is the disjoint union of the sets N,
Nat, N×N, N×R, N×R, N×R, R, R, and R×R.
We will use elements, as singletons, of N×N to be the
senses of the ground atoms that represent dependen-
cies between tasks. Senses of ground atoms represent-
ing the sets of stopping times of a set of tasks will be
subsets of a R component. The senses of the atoms
representing the starting and stopping times of partic-
ular tasks will be singleton subsets of the N ×R com-
ponents in the manner described in the sequel. Atoms
representing the time intervals over which tasks are
performed will have their senses be singleton subsets
of of real numbers representing starting and stopping
times. Certain instances of the atoms initial(X) and
notInitial(X) will have their senses be singleton subsets
of the respective N components.

Computation space: The set R+ defined by of non-
negative real numbers.

In our example we will represent the dependencies
between seven given tasks and their durations with
the following EDB:

task0 � task2 duration(task0, t0)
task1 � task2 duration(task1, t1)
task1 � task3 duration(task2, t2)
task2 � task5 duration(task3, t3)
task3 � task4 duration(task4, t4)
task3 � task6 duration(task5, t5)

task4 � task5 duration(task6, t6)

The sense of a ground atom of the form taskm � taskn

is the pair of integers (m,n), and the sense of any
other ground instance of X � Y is X.

The following clauses identify initial tasks.
initial(T) ← ¬notInitial(T)

notInitial(T) ← K � T

The sense of an atom of the form initial(taskn) is {n}
in the first N component of X , and the sense of an
atom of the form notInitial(taskm) is is {m} in the sec-
ond N component. The sense of any other instance
of either initial(X) or notInitial(X) is X.

The next clause says that the starting time of an ini-
tial job is time 0.
start(J, 0)← initial(J)

The sense of start(taskm,tm) and stop(taskn,tn) are
{(m, tm)} and {(n, tn)} in the two N× R compo-
nents, respectively. X is the sense of any other in-
stances of these predicates.

The next clause defines the stopping times of tasks in
terms of starting times and durations.
stop(J, A) ←

start(J, B), duration(J, C), real(A) + real(B) = real(C)

The sense of an atom real(r) is the singleton {r} for a
constant r that we assign to represent the real number
r, for each real number r. All other instances of the
predicate real have X as their sense. The interpreta-
tion of the intensional connective + is the essentially
the addition operation on the reals, but lifted to sin-
gleton sets of reals in the obvious way. The attempt
to “add” X to a singleton set of reals results in X.
The intensional connective interpretation denoted by
= returns the empty set if the two sets compared are
equal, and otherwise returns X.

The following clauses recursively define the earliest
starting time of a task T in terms of the maximum
stopping time in the set of stopping times of tasks
upon which T depends.

enablingTimes(J, empty) ←

p. 5

enablingTimes(J, singleton0) ← initial(J)

enablingTimes(J, S)← enablingTimes(J, S′), K � J, stop(K, P),

. enablingTimes(J, S′) ∪ real(P) = enablingTimes(J, S)

start(J, T) ← max enablingTimes(J, S) = real(T),¬startOK(J, S)

startOK(J, T) ← ¬enablingTimes(J, S′), T < max(enablingTimes(J, S′))

The sense of
ground atoms of the form enablingT imes(taskn,sn) is
a subset {n}×Sn of N×R, where Sn is a subset of R,
where sn is a constant denoting a subset of R, and
the sense of any other instance of the enablingTimes

predicate is X. The sense of ground instances of star-

tOK is like that of ground instances of start, but using
the remaining N× R component of X. It is at this
point crucial to note that in any particular instance
of a PERT/CPM problem, only finitely many of the
constants denoting various real numbers and sets of
reals will arise. Finally, the intensional connective <

returns the emptyset if the two sets compared are sin-
gleton sets of reals and the real number in the first
argument is less than the real number in the second
argument. Otherwise < returns X.

5. Conclusions and Further Work

In this paper, we defined a variant of logic program-
ming, called spatial logic programming, where the
atoms are associated with sense (which is a subset
of a given space) and have illustrated how such pro-
gram can be used to naturally express problems in
the PERT/CPM domain. We envision many other
applications of our spatial logic programming formal-
ism such areas as graphics, image compression, and
other domains where there are natural representation
of processes that accept subsets of spaces as inputs
and compute outputs, subsets of those spaces.

This paper is the first of a series of papers that will ex-
plore the spatial logic programming paradigm. There
are a number of areas and questions that could not
be covered in this paper due to space considerations.
For example there are a number of concepts from logic
programming such as , well-founded model [VGRS91],
stratified programs, etc. that can be lifted to the
present context almost verbatim. Thus one can de-
velop a rich theory of spatial logic programs. Our
spatial logic programs share certain features with
Constraint Logic Programming [JM94] and the ex-
act connections need to be explored. Third, one can
think about the senses of atoms as annotations of
the kind discussed in [KS92]. While there are various
differences beteween our approach and [JM94], for
instance our use of negation as means to enforce con-
straints as in [Niemelä99], the relationship between
these two approaches should be explored. Fourth,

spatial logic programming can be studied in the more
general setting of non-monotone inductive definitions
[Denecker00] (e.g. iterated inductive definitions of
Feferman [Feferman70]).

References
[Ap90] Apt, K. R. “Logic Programming” in Hand-
book of Theoretical Computer Science, J. van
Leeuwen, ed., Elsevier, pp. 494-574, 1990.

[ABW88] Apt, K., Blair, H., and Walker, A.

Towards a theory of Declarative Knowledge. In Foun-
dations of Deductive Databases and Logic Program-
ming, J. Minker, Ed. Morgan Kaufmann, 89–148,
1988.

[Denecker00] Denecker, M. Extending classical
logic with inductive definitions. In First Interna-
tional Conference on Computational Logic (CL2000).
Lecture Notes in Artificial Intelligence, vol. 1861.
Springer, 703–717, 2000.

[Feferman70] Feferman, S. Formal theories for
transfinite iterations of generalized inductive defini-
tions and some subsystems of analysis. In Intuition-
ism and Proof theory, A. Kino, J. Myhill, and R. Ves-
ley, Eds. North Holland, 303–326, 1970.

[gl88] Gelfond, M. and Lifschitz, V. The stable
model semantics for logic programming. In Proc. of
the International Joint Conference and Symposium
on Logic Programming. MIT Press, 1070–1080, 1988.

[HL95] Hillier, F.S. and Lieberman, G.L. Intro-
duction to Operations Research 6th ed, McGraw-Hill,
1995.

[Lloyd87] Lloyd, J. Foundations of Logic Program-
ming. Springer-Verlag, 1987.

[JM94] J. Jaffar and M. Maher. Constraint logic
programming: A survey. Journal of Logic Program-
ming, 19-20:503–581, 1994.

[KS92] Kifer, M. and Subrahmanian, V.S. The-
ory of generalized annotated logic programming
and its applications. Journal of Logic Programming
12:335–367, 1992.

[Niemelä99] Niemelä, I. Logic programs with sta-
ble model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial In-
telligence 25, 3,4, 241–273, 1999

[Tarski55] Tarski, A. Lattice-theoretic fixpoint the-
orem and its applications. Pacific journal of Mathe-
matics 5, 285–309, 1955

[VGRS91] Van Gelder, A., Ross, K., and

Schlipf, J. The Well-Founded Semantics for Gen-
eral Logic Programs. Journal of the ACM 38, 3, 620–
650, 1991.

p. 6

