
Fixpoint 3-valued semantics for autoepistemic logicMarc DeneckerDepartment of Computer ScienceK.U.LeuvenCelestijnenlaan 200A, B-3001 Heverlee, Belgiummarcd@cs.kuleuven.ac.be Victor Marek and Miros law Truszczy�nskiComputer Science DepartmentUniversity of KentuckyLexington, KY 40506-0046marek|mirek@cs.engr.uky.eduAbstractThe paper presents a constructive 3-valued se-mantics for autoepistemic logic (AEL). We in-troduce a derivation operator and de�ne the se-mantics as its least �xpoint. The semantics is3-valued in the sense that, for some formulas,the least �xpoint does not specify whether theyare believed or not. We show that complete �x-points of the derivation operator correspond toMoore's stable expansions. In the case of modalrepresentations of logic programs our least �x-point semantics expresses well-founded semanticsor 3-valued Fitting-Kunen semantics (dependingon the embedding used). We show that, compu-tationally, our semantics is simpler than the se-mantics proposed by Moore (assuming that thepolynomial hierarchy does not collapse).IntroductionWe describe a 3-valued semantics for modal theo-ries that approximates skeptical mode of reasoning inthe autoepistemic logic introduced in (Moore 1984;1985). We present results demonstrating that our ap-proach is, indeed, appropriate for modeling autoepis-temic reasoning. We discuss computational propertiesof our semantics and connections to logic program-ming.Autoepistemic logic is among the most extensivelystudied nonmonotonic formal systems. It is closelyrelated to default logic (Reiter 1980). It can handledefault reasonings under a simple and modular trans-lation in the case of prerequisite-free defaults (Marek& Truszczy�nski 1993). In the case of arbitrary de-fault theories, a somewhat more complex non-modulartranslation provides a one-to-one correspondence be-tween default extensions and stable (autoepistemic)expansions (Gottlob 1995). Further, under the socalled Gelfond translation, autoepistemic logic cap-tures the semantics of stable models for logic programs(Gelfond 1987). Under the Konolige encoding of logicprograms as modal theories, stable expansions gener-alize the concept of the supported model semantics

(Marek & Truszczy�nski 1993). Autoepistemic logic isalso known to be equivalent to several other modalnonmonotonic reasoning systems.The semantics for autoepistemic logic (Moore 1985)assigns to a modal theory T a collection of its stableexpansions. This collection may be empty, may consistof exactly one expansion or may consist of several dif-ferent expansions. Intuitively, expansions are designedto model belief states of agents with perfect introspec-tion powers: for every formula F , either the formulaKF (expressing a belief in F ) or the formula :KF(expressing that F is not believed) belongs to an ex-pansion. We will say that expansions contain no metaignorance.In many applications, the phenomenon of multipleexpansions is desirable. There are situations where weare not interested in answers to queries concerning asingle atom or formula, but in a collection of atoms orformulas that satisfy some constraints. Planning anddiagnosis in arti�cial intelligence, and a range of com-binatorial optimization problems, such as computinghamilton cycles or k-colorings in graphs, are of thistype. These problems may be solved by means of au-toepistemic logic precisely due to the fact that multi-ple expansions are possible. The idea is to represent aproblem as an autoepistemic theory so that solutionsto the problem are in one-to-one correspondence withstable expansions. While conceptually elegant, this ap-proach has its problems. Determining whether expan-sions exist is a �P2 -complete problem (Niemel�a 1992;Gottlob 1992), and all known algorithms for comput-ing expansions are highly ine�cient.In a more standard setting of knowledge representa-tion, the goal is to model the knowledge about a do-main as a theory in some formal system and, then,to use some inference mechanism to resolve queriesagainst the theory or, in other words, establish whetherparticular formulas are entailed by this theory. Au-toepistemic logic (as well as other nonmonotonic sys-tems) can be used in this mode, too. Namely, under



the so called skeptical model, a formula is entailed bya modal theory, if it belongs to all stable expansionsof this theory. The problem is, again, with the compu-tational complexity of determining whether a formulabelongs to all expansions.We propose an alternative semantics for autoepis-temic reasoning that allows us to approximate the skep-tical approach described above. Our semantics has theproperty that if it assigns to a formula the truth valuet, then this formula belongs to all stable expansionsand, dually, if it assigns to a formula the truth valuef, then this formula does not belong to any expan-sion. Our semantics is 3-valued and some formulas areassigned the truth value u (unknown). While only ap-proximating the skeptical mode of reasoning, it has oneimportant advantage. Its computational complexity islower (assuming that the polynomial hierarchy doesnot collapse on some low level). Namely, the problemto determine the truth value of a formula is in the class�P2 .Clearly, the semantics we propose can be appliedwhenever the situation requires that autoepistemiclogic be used in the skeptical mode. However, it hasalso another important application. It can be used asa pruning mechanism in algorithms that compute ex-pansions. The idea is to �rst compute our 3-valuedinterpretation for an autoepistemic theory (which iscomputationally simpler than the task of computingan expansion) and, in this way, �nd some formulaswhich are in all expansions and some that are in none.This restricts the search space for expansions and mayyield signi�cant speedups.Conceptually, our semantics plays the role similarto that played by the well-founded semantics in logicprogramming. Deciding whether an atom is in all sta-ble models is a co-NP-complete problem. However, thewell-founded semantics, which approximates the stablemodel semantics can be computed in polynomial time.Furthermore, well-founded semantics is used both asthe basis for top-down query answering implementa-tions of logic programming (Chen, Swift, & Warren1994), and as a search space pruning mechanism bysome implementations to compute stable model seman-tics (Niemel�a & Simons 1995).Our 3-valued semantics for autoepistemic logic isbased on the notion of a belief pair. These are pairs(P; S), where P and S are sets of 2-valued inter-pretations of the underlying �rst-order language, andS � P . The motivation to consider belief pairs comesfrom Moore's possible-world characterization of stableexpansions (Moore 1984). Moore characterized consis-tent expansions in terms of possible-world structures,that is, non-empty sets of 2-valued interpretations. A

belief pair (S; P ) can be viewed as an approximation toa possible-world structure W such that S � W � P :interpretations not in P are known not to be in W ,and those in S are known to be in W . Observe thatwhile expansions (or the corresponding possible-worldstructures) do not contain meta ignorance, belief pairs,in general, do.Our semantics is de�ned in terms of �xpoints of amonotone operator de�ned on the set of belief pairs.This operator, DT , is determined by an initial theoryT . Given a belief pair B = (P; S), DT establishes thatsome interpretations that are in P must, in fact, belongto S. In addition, some other interpretations in P areeliminated altogether, as inappropriate for describinga possible state of the world (given the agent's initialknowledge). The operator attempts to simulate a con-structive process rational agents might use to producean \elementary" improvement on their current set ofbeliefs and disbeliefs.We say that (P1; S1) \better approximates" theagent's beliefs and disbeliefs entailed by the agent'sinitial assumptions than (P; S) if S � S1 � P1 � P:The operator DT is monotone with respect to this or-dering and, thus, it has the least �xpoint. We proposethis �xpoint as a constructive approximation to the se-mantics of stable expansions.A fundamental property that makes the above con-struction meaningful is that complete belief pairs(those with P equal to S) that are �xpoints of Dare precisely Moore's S5-models characterizing expan-sions. Thus, by the general properties of �xpoints ofmonotone operators over partially ordered sets, theleast �xpoint described above indeed approximates theskeptical reasoning based on expansions. Moreover, asmentioned above, the problem of computing the least�xpoint of the operator D requires only polynomiallymany calls to the satis�ability testing engine, that is,it is in �P2 . Another property substantiating our ap-proach is that under some natural encodings of logicprograms as modal theories, our semantics yields bothwell-founded semantics (Van Gelder, Ross, & Schlipf1991) and the 3-valued Fitting-Kunen semantics (Fit-ting 1985; Kunen 1987).Autoepistemic logic | preliminariesThe language of autoepistemic logic is the standardlanguage of propositional modal logic over a set ofatoms � and with a single modal operator K. We willrefer to this language as LK . The �rst-order fragmentof LK will be denoted by L.The notion of a 2-valued interpretation of the alpha-bet � is de�ned as usual: it is a mapping from � toft; fg. The set of all interpretations of � is denotedA� (or A, if � is clear from the context).



A possible-world semantics for autoepistemic logicwas introduced by Moore (Moore 1984) and provenequivalent with the semantics of stable expansions. Apossible-world structureW (over �) is a set of 2-valuedinterpretations of �. Alternatively, it can be seen asa Kripke structure with a total accessibility relation.Given a pair (W; I), where W is a set of interpreta-tions and I is an interpretation, one de�nes a truthassignment function HW;I inductively as follows:(1) For an atom A, we de�ne HW;I(A) = I(A); (2)The boolean connectives are handled in the usual way;(3) For any formula F , we de�ne HW;I (KF ) = t iffor every J 2 W;HW;J (F ) = t, and HW;I (KF ) = f,otherwise.We write (W; I) j= F to denote that HW;I (F ) = t.Further, for a modal theory T , we will write (W; I) j= Tif HW;I(F ) = t for any F 2 T . Finally, for a possibleworld structure W we de�ne the theory of W , Th(W ),by: Th(W ) = fF : (W; I) j= F; for all I 2Wg:It is well known that for every formula F , either KF 2Th(W ) or :KF 2 Th(W ) (HW;I (KF ) is the same forall interpretations I 2 W ). Thus, possible-world struc-tures have no meta ignorance and, as such, are suitablefor modeling belief sets of agents with perfect intro-spection capabilities. It is precisely this property thatmade possible-world structures fundamental objects inthe study of modal nonmonotonic logics (Moore 1984;Marek & Truszczy�nski 1993).De�nition 1 An autoepistemic model of a modal the-ory T is a possible-world (S5) structure W which sat-is�es the following �xpoint equation:W = fI : (W; I) j= Tg:The following theorem, relating stable expansions of(Moore 1985) and autoepistemic models, was provedin (Levesque 1990) and was discussed in detail in(Schwarz 1992).Theorem 1 For any two modal theories T and E, Eis a consistent stable expansion of T if and only if E =Th(W ) for some nonempty autoepistemic model W ofT . A �xpoint 3-valued semantics forautoepistemic logicOur semantics for autoepistemic logic is de�ned interms of possible-world structures and �xpoint con-ditions. The key di�erence with the semantics pro-posed by Moore is that we consider approximationsof possible-world structures by pairs of possible-worldstructures. Recall from the previous section, that A

denotes the set of all interpretations of a �xed propo-sitional language L.De�nition 2 A belief pair is a pair (P; S) of sets ofinterpretations P and S such that P � S. WhenB = (P; S), S(B) denotes S and P (B) denotes P . Thebelief pair (A; ;) is denoted ?. The set f(P; S):P; S 2A and P � Sg of all belief pairs is denoted by B.The interpretations in S(B) can be viewed as statesof the world which are known to be possible (belongto W ). They form a lower approximation to W . Theinterpretations in P (B) can be viewed as an upper ap-proximation to W . In other words, interpretations notin P (B) are known not to be in W .We will extend now the concept of a interpreta-tion to the case of belief pairs and consider the ques-tion of meta ignorance and meta knowledge of beliefpairs. We will show that, being only approximationsto possible-world structures, belief pairs may containmeta ignorance. We will use three logical values, f, uand t. In the de�nition, we will use the truth ordering:f �tr u �tr t and de�ne f�1 = t; t�1 = f;u�1 = u.De�nition 3 Let B = (P; S) be a belief pair and letI be an interpretation. The truth function HB;I is de-�ned inductively:HB;I(A) = I(A) (A is an atom)HB;I(:F ) = HB;I(F )�1HB;I(F1 _ F2) = maxfHB;I(F1);HB;I(F2)gHB;I(F1 ^ F2) = minfHB;I(F1);HB;I(F2)gHB;I(F2 � F1) = maxfHB;I(F1);HB;I(F2)�1gThe formula K(F ) is evaluated as follows:HB;I(K(F )) =8<: t if 8J2PHB;J(F ) = tf if 9J2SHB;J(F ) = fu otherwiseThe truth value of a modal atom KF , HB;I(KF ),does not depend on the choice of I . Consequently, for amodal atom KF we will write HB(KF ) to denote this,common to all interpretations from A, truth value ofKF .Let us de�ne the meta knowledge of a belief pair Bas the set of formulas F 2 LK such that HB(KF ) = tor HB(KF ) = f. The meta ignorance is formed byall other formulas, that is, those formulas F 2 LK forwhich HB(KF ) = u.Clearly, a belief pair B = (W;W ) naturally corre-sponds to a possible-world structure W . Such a beliefpair is called complete. We will denote it by (W ). Thefollowing straightforward result indicates that HB;I isa generalization of HW;I to the case of belief pairs. Italso states that a complete belief pair contains no metaignorance.



Proposition 1 If B is a complete belief pair (W ),then HB;I is 2-valued. Moreover, for every formulaF , HB;I(F ) = HW;I (F ).In our approach to autoepistemic reasoning we willmodel the agent who, given an initial theory T , startswith the belief pair ? (with the smallest meta knowl-edge content) and, then, iteratively constructs a se-quence belief pairs with increasing meta knowledge(decreasing meta ignorance) until no more improve-ment is possible. To this end, we will introduce now apartial ordering on the set B of belief pairs. Giventwo belief pairs B1 and B2, we de�ne B1 �p B2if P (B1) � P (B2) and S(B1) � S(B2). This or-dering is consistent with the ordering de�ned by the\amount" of meta knowledge contained in a beliefpair: the "higher" a belief pair in the ordering �p,the more meta-knowledge it contains (and the lessmeta-ignorance). It is also consistent with the con-cept of the information ordering of the truth values:u �kn f;u �kn t.Proposition 2 Let B1 and B2 be belief pairs. IfB1 �p B2 then for every F 2 LK and for every in-terpretation I, HB1;I(F ) �kn HB2;I(F ).The ordered set (B;�p) is not a lattice. In fact, forevery W � A, (W ) is a maximal element in (B;�p).If W1 6= W2, then (W1) and (W2) have no least upperbound (l.u.b.) in (B;�p). The pair ? = (A; ;) is theleast element of (B;�p).The ordered set (B;�p) is chain-complete. That is,every set of pairwise comparable elements has the l.u.b.It is a well-known (Markowsky 1976) that a monotoneoperator de�ned on a chain-complete ordered set witha least element has a least �xpoint. This �xpoint isthe limit of the iterations of the operator starting atthe least element ?.We will now de�ne a monotone operator on theordered set (B;�p) and will use it to de�ne a step-wise process of constructing belief pairs with increasingmeta knowledge. To this end, we will de�ne two sat-isfaction relations: weak (denoted by j=w) and strong(denoted by j=):(B; I) j=w F if HB;I(F ) 6= f (i.e. HB;I(F ) �tr u)(B; I) j= F if HB;I(F ) = tDe�nition 4 Given B 2 B, the value of the deriva-tion operator DT is de�ned as follows:DT (B) = (fI j B; I j=w Tg; fI j B; I j= Tg):Thus, P (DT (B)) consists of the states which weaklysatisfy T , according to B, while S(DT (B)) are thestates which strongly satisfy T according to B. Thesubscript T is omitted when T is clear from the con-text.

Example 1 Consider T = fK(p) � qg. Then D(?) =(A; fpq; pqg). Indeed, H?(Kp) = u. Consequently,for every I , H?;I(Kp ! q) 6= f, that is, (?; I) j=wKp ! q. For the same reason, H?;I(Kp ! q)) = tif and only if I(q) = t. To compute D2(?), ob-serve that HD(?)(Kp) = f. Consequently, for every I ,HD(?);I(Kp! q) = t. It follows thatD2(?) = (A;A).It is also easy to see now that (A;A) is the �xpoint ofD. Notice that the belief pair (A), obtained by iterat-ing D, corresponds to the possible-world structure Athat de�nes the unique stable expansion of T (accord-ing to the de�nition by Moore).Basic properties of the operator D are gathered inthe following proposition.Proposition 3 Let T be a propositionally consistentmodal theory. Then, for every belief pair B:(1) DT (B) is a belief pair.(2) DT is monotone on B.(3) If B is complete, then DT (B) is complete.Since (B;�p) is a chain-complete ordered set withleast element ? and D is monotonic, D has a least �x-point. We will denote it by D ". We propose this �x-point as the semantics of modal theories re
ecting thereasoning process of the agent of gradually construct-ing belief pairs with increasing information content. Inthe remainder of the paper, we will study properties ofthis semantics and, more generally, of �xpoints of theoperator D. The next three results relate �xpoints ofD to Moore's semantics.Theorem 2 Let � LK . A possible-world structure Wis an autoepistemic model of T if and only if (W ) isa �xpoint of DT . If DT " is complete then it is theunique autoepistemic model of T .Using Propositions 1 and 2, we can extract a rela-tionship between stable expansions and �xpoints of thederivation operator DT .Corollary 1 For any pair T;E of modal theories, Eis a consistent stable expansion of T if and only if E =Th(S) for some complete �xpoint (S) of DT .If HDT "(F ) = t then F belongs to all expansions ofT . If HDT "(F ) = f then F does not belong to anyexpansion of T .Consistent strati�ed autoepistemic theories (Gel-fond 1987) have a unique autoepistemic model (stableexpansion). Our semantics coincides with the Moore'ssemantics on strati�ed theories.Theorem 3 If T is a consistent strati�ed autoepis-temic theory, then D " is complete. Hence, it is theunique autoepistemic model of T .



Thus, the semantics de�ned by the least �xpoint ofthe operator D has several attractive features. It is de-�ned for every consistent modal theory T . It coincideswith the semantics of autoepistemic logic on strati�edtheories and, in the general case, provides an approxi-mation to all stable expansions (or, in other words, toskeptical autoepistemic reasoning).An e�ective implementation of DThe approach proposed and discussed in the previoussection does not directly yield itself to fast implemen-tations. The de�nition of the operator D refers to allinterpretations of the language L. Thus, computingD(B) by following the de�nition is exponential, evenfor modal theories of a very simple syntactic form.Moreover, representing belief pairs is costly. Each ofthe sets P (B) and S(B) may contain exponentiallymany elements.In this section, we describe a characterization of theoperator D that is much more suitable for investiga-tions of algorithmic issues associated with our seman-tics. The strategy is to represent a belief set B as atheory Rep(B). Since the theory Rep(B) needs to rep-resent two sets of valuations, Rep(B) will be a theory inthe propositional language extended by three constantst, f and u. These constants will always be interpretedby the logical values t, f and u, respectively. We willcall such theories 3-FOL theories.Let F be a 3-FOL formula. By (F )wk we denotethe formula obtained by substituting t for all positiveoccurrences of u and f for all negative occurrences ofu. Similarly, by (F )str we denote the formula obtainedby substituting t for all negative occurrences of u and ffor all positive occurrences of u. Given a 3-FOL theoryY , we de�ne (Y )str and (Y )wk by standard setwiseextension.Clearly, (F )str and (F )wk do not contain u. Conse-quently, they can be regarded as formulas in the propo-sitional language extended by two constants t and fwith standard interpretations as truth and falsity, re-spectively. We will call this language 2-FOL. We willwrite ` and j= to denote provability and entailmentrelations in 2-FOL. An important observation here isthat if an interpretation satis�es the formula (F )strthen it also satis�es (F )wk . That is (F )str � (F )wk isa tautology of 2-FOL. For a 2-FOL theory U , we de�ne:Mod(U) = fI : for all F 2 U; I j= Fg: It follows thatfor a 3-FOL theory Y , Mod((Y )str ) � Mod((Y )wk ).Thus, (Mod((Y )wk );Mod((Y )str ) is a belief pair andY can be viewed as its representation.We show now how, similarly to belief pairs, 3-FOLtheories can be used to assign truth values to modalatoms (and, hence, to all modal formulas). Let Y be a3-FOL theory, and let F be a modal formula. De�ne

HY (K(F )) by induction of depth of formula F as fol-lows:(1) If F is objective, then de�ne:HY (K(F )) = 8<: t if (Y )wk ` (F )strf if (Y )str 6` (F )wku otherwise.(2) If F is not objective, then replace all modal atomsK(G) in F by HY (K(G)). This yields an objectiveformula F 0. De�ne HY (K(F )) = HY (K(F 0)).Let T be a modal theory and let Y be a 3-FOLtheory. By the Y -instance of T , TY , we mean a 3-FOL theory obtained by substituting all modal literalsK(F ) (not appearing under the scope of any other oc-currence ofK) byHY (K(F )). Observe that for a �nitemodal theory T and a �nite 3-FOL theory Y , TY canbe computed by means of polynomially many calls tothe propositional provability procedure.Let T be a modal theory. We will now de�ne a coun-terpart to the operator DT . Let Y be a 3-FOL theory.De�ne SDT (Y ) = TY :The key property of the operator SDT is that, for a�nite modal theory T and for a �nite 3-FOL theory Y ,SDT (Y ) can be computed by means of polynomiallymany calls to the propositional provability procedure.We will show that SDT can be used to compute DT .In particular, we will show that the least �xpoint of DTcan be computed by iterating the operator SDT . Tothis end, for every 3-FOL theory Y , de�ne Bel(Y ) =(Mod((T )wk );Mod((T )str )).First, the following theorem shows that the truthvalues of modal atoms evaluated according to a 3-FOLtheory T and according to the corresponding belief pairBel(T ) coincide.Theorem 4 Let Y be a 3-FOL theory. Then, for ev-ery modal formula F ,HBel(Y )(K(F )) = HY (K(F )):Next, let us observe that the operator D can be de-scribed in terms of the operator Bel. Let T be a modaltheory and let B be a belief pair. By the B-instanceof T , TB, we mean a 3-FOL theory obtained by sub-stituting all modal literals K(F ) (not appearing underthe scope of any other occurrence of K) byHB(K(F )).Theorem 5 Let T be a modal theory and let B be abelief pair. Then, DT (B) = Bel(TB)This theorem indicates that, given a modal theoryT , belief pairs that are in the range of the operator DTcan be represented by objects of size polynomial in thesize of T . Namely, every belief pair of the form DT (B)can be represented by a 3-FOL theory TB.



Theorems 4 and 5 imply the main result of this sec-tion.Theorem 6 Let T be a modal theory and let Y be a3-FOL theory.(1) Bel(SDT (Y )) = DT (Bel(Y )).(2) If a belief pair B is a �xpoint of DT , then TB is a�xpoint of SDT .(3) If Y is a �xpoint of SDT then Bel(Y ) is a �xpointof DT .Observe that Bel(fug) = ?. It follows directly fromTheorem 6 (by induction) that for every ordinal num-ber �, D�T (?) = Bel(SD�T (fug)):Clearly, if SD�T (?) = SD�+1T (?) then D�T (?) =D�+1T (?). Moreover, by Theorems 4, 5 and 6, and byinduction, it is easy to show that if D�T (?) = D�+1T (?)then SD�+1T (?) = SD�+2T (?).Consequently, the least �xpoint of DT (itspolynomial-size representation) can be computed byiterating the operator SDT . In the case when T is �-nite, the number of iterations is limited by the numberof top level (unnested) modal literals in T . Originally,they may all be evaluated to u. However, at each step,at least one u changes to either t or f and this valueis preserved in the subsequent evaluations. Thus, theproblem of computing a polynomial size representationof the least �xpoint of the operator D, the correspond-ing 3-FOL theory, is in the class �P2 .Relationship to Logic ProgrammingAutoepistemic logic is closely related to several seman-tics for logic programs with negation. It is well-knownthat both stable and supported models of logic pro-grams can be described as expansions of appropriatetranslations of programs into modal theories (see, forinstance, (Marek & Truszczy�nski 1993)). In this sec-tion, we brie
y discuss connections of the semanticsde�ned by the least point of the operator D to some3-valued semantics of logic programs. The details willbe provided in a forthcoming work.Given a clause r = a b1; : : : ; bk; c1; : : : ; cm, de�ne:ael1(r) = b1 ^ : : : ^ bk ^ :Kc1 ^ : : : ^ :Kcm � aandael2(r) = Kb1 ^ : : : ^Kbk ^ :Kc1 ^ : : : ^ :Kcm � aEmbeddings ael1() and ael2() can be extended to logicprograms P .Let B be a belief pair. De�ne the projection Proj(B)as the 3-valued interpretation I such that I(p) =HB(K(p)).It turns out that �xpoints of the operator Dael1(P )(Dael2(P ), respectively) precisely correspond to 3-valued supported (stable, respectively) models of

P (the projection function Proj(�) establishes thecorrespondence). Moreover, complete �xpoints ofDael1(P ) describe 2-valued supported (stable, respec-tively) models of P . Finally, the least �xpoint ofDael2(P ) captures the Fitting-Kunen 3-valued seman-tics of a program P , and the least �xpoint of Dael1(P )captures the well-founded semantics of P .ReferencesChen, W.; Swift, T.; and Warren, D. 1994. E�cienttop-down computation of queries under the well-foundedsemantics. Journal of Logic Programming.Fitting, M. C. 1985. Kripke-Kleene semantics for logicprograms. Journal of Logic Programming 2:295{312.Gelfond, M. 1987. On strati�ed autoepistemic theories. InProceedings of AAAI-87, 207{211. Los Altos, CA: Amer-ican Association for Arti�cial Intelligence.Gottlob, G. 1992. Complexity results for nonmonotoniclogics. Journal of Logic and Computation 2:397{425.Gottlob, G. 1995. Translating default logic into standardautoepistemic logic. Journal of the ACM 42:711{740.Kunen, K. 1987. Negation in Logic Programming. Journalof Logic Programming 4(3):289{308.Levesque, H. J. 1990. All I know: a study in autoepistemiclogic. Arti�cial Intelligence 42:263{309.Marek, W., and Truszczy�nski, M. 1993. Nonmonotoniclogics; context-dependent reasoning. Berlin: Springer-Verlag.Markowsky, G. 1976. Chain-complete posets and directedsets with applications. Algebra Universalis 6:53{68.Moore, R. 1984. Possible-world semantics for autoepis-temic logic. In Reiter, R., ed., Proceedings of the work-shop on non-monotonic reasoning, 344{354. (Reprintedin: M.Ginsberg, editor, Readings on nonmonotonic rea-soning. pages 137{142, 1990, Morgan Kaufmann.).Moore, R. 1985. Semantical considerations on non-monotonic logic. Arti�cial Intelligence 25:75{94.Niemel�a, I., and Simons, P. 1995. Evaluating an algorithmfor default reasoning. In Proceedings of the IJCAI-95Workshop on Applications and Implementations of Non-monotomic Reasonigs Systems.Niemel�a, I. 1992. On the decidability and complex-ity of autoepistemic reasoning. Fundamenta Informaticae17:117{155.Reiter, R. 1980. A logic for default reasoning. Arti�cialIntelligence 13:81{132.Schwarz, G. 1992. Minimal model semantics for nonmono-tonic modal logics. In Proceedings of LICS-92.Van Gelder, A.; Ross, K.; and Schlipf, J. 1991. Un-founded sets and well-founded semantics for general logicprograms. Journal of the ACM 38:620 { 650.


