
Revision programming = logic programming + constraints

Victor Marek, Inna Pivkina and Mirosław Truszczyński
Department of Computer Science

University of Kentucky
Lexington, KY 40506-0046

marek|inna|mirek@cs.engr.uky.edu

Abstract
We study revision programming, a logic-based mechanism for enforcing constraints on data-
bases. The central concept of this approach is that of a justified revision based on a revision
program. We show that revisions can be shifted, that is for any program P , for any pair of
initial databases I and I ′ we can shift the program P to program P ′ so that the size of the
resulting program does not increase and so that P -justified revisions of I are shifted to P ′-
justified revisions of I ′. Using this result we show that revision programming is closely related
to a subsystem of general logic programming of Lifschitz and Woo. This, in turn, allows us
to reduce revision programming to logic programming with stable model semantics extended
by the concept of a constraint. Finally, we use the connection between revision programming
and general logic programming to introduce disjunctive and nested versions of our formalism.

1 Introduction

Revision programming was introduced in [MT98] as a formalism to describe and study the pro-
cess of database updates. In this formalism, the user specifies updates by means of revision
rules, that is, expressions of the following two types:

in(a)← in(a1), . . . , in(am), out (b1), . . . , out (bn) (1)

or
out (a)← in(a1), . . . , in(am), out (b1), . . . , out (bn), (2)

where a, ai and bi are data items from some finite universe, say U. Rules of the first type are
called in-rules and rules of the second type are called out-rules.

Revision rules have a declarative interpretation as constraints on databases. For instance,
in-rule (1) imposes on a database the following condition: a is in the database, or at least one ai,
1 ≤ i ≤ m, is not in the database, or at least one bj , 1 ≤ j ≤ n, is in the database.

Revision rules also have a computational interpretation that expresses a preferred way to
enforce a constraint. Namely, assume that all data items ai, 1 ≤ i ≤ m, belong to the current
database, say I, and none of the data items bj , 1 ≤ j ≤ n, belongs to I. Then, to enforce the
constraint (1), the item a must be added to the database (removed from it, in the case of the
constraint (2)), rather then some item ai removed or some item bj added.

In [MT98], a precise semantics for revision programs (collections of revision rules) was de-
fined. Given a revision program P and a database I, this semantics specifies a family of data-
bases, each of which might be chosen as an update of I by means of the program P . These
revised databases are called P -justified revisions of I. In [MT98] (and in the earlier papers
[MT94] and [MT95a]), basic properties of justified revisions were established. Subsequently, re-
vision programming was studied in the context of situation calculus [Bar97] and reasoning about
actions [MT95b, Tur97].

1

Revision programming has also been investigated from the perspective of its close relation-
ship with logic programming. In [MT98], we argued that revision programming extends logic
programming with stable semantics. Namely, we argued that revision programs consisting of
in-rules only can be identified with logic programs. A converse embedding — an encoding of
revision programs as logic programs — was constructed in [PT97]. The techniques from this
paper are now being exploited in the study of the problem of updating logic programs [AP97] and
resulted in a new paradigm of dynamic logic programming [ALP+98]. Well-founded semantics
for a formalism closely related to revision programming was discussed in [BM96].

We have already mentioned the key property of revision programming — the duality of in and
out literals. The duality theorem from [MT98] demonstrated that every revision program P has
a counterpart, a dual revision program PD such that P -justified revisions of a database I are
precisely the complements of the PD-justified revisions of the complement of I.

The key result of this paper, the shifting theorem (Theorem 3.2), is a generalization of the
duality theorem from [MT98]. It states that P -justified revisions of a database I can be computed
by revising an arbitrarily chosen database I ′ by means of a certain “shifted” revision program
P ′. This program P ′ is obtained from P by uniformly replacing some literals in P by their duals.
Which literals to replace depends of I and I ′. In addition, I and I ′ determine also a method to
reconstruct P -justified revisions of I from P ′-justified revisions of I ′.

As a special case, the shifting theorem tells us that justified revisions of arbitrary databases
are determined by revisions, via shifted programs of the empty database. This implies two quite
surprising facts. First, it means that although a revision problem is defined as pair (P, I) (re-
vision program and a database), full information about any revision problem can be recovered
from revision problems of very special type that deal with the empty database. Moreover, the
reduction does not involve any growth in the size of the revision program. Second, the shifting
theorem implies the existence of a natural equivalence relation between the revision problems:
two revision problems are equivalent if one can be shifted onto another.

The first of these two observations (the possibility to project revision problems onto problems
with the empty database) allows us to establish a direct correspondence between revision pro-
gramming and a version of logic programming proposed by Lifschitz and Woo [LW92]. We will
refer to this latter system as general disjunctive logic programming or, simply, general logic pro-
gramming. In general logic programming both disjunction and negation as failure operators are
allowed in the heads of rules. In this paper we study the relationship between revision program-
ming and general logic programming. First, we show that revision programming is equivalent to
logic programming with stable model semantics extended by a concept of a constraint. Second,
we extend revision programming to the disjunctive case. This is presented in Section 4. Finally,
we use our understanding of the relationship to generalize Lifschitz’s construction of nested op-
erators [VLT97] to the context of revision programming. We will briefly outline our approach in
Section 5.

2 Preliminaries

In this section we will review main concepts and results concerning revision programming that
are relevant to the present paper. The reader is referred to [MT98] for more details.

Elements of some finite universe U are called atoms. Expressions of the form in(a) or out (a),
where a is an atom, are called literals. For a literal in(a), its dual is the literal out (a). Similarly,
the dual of out (a) is in(a). The dual of a literal α is denoted by αD.

2

A set of literals is coherent if it does not contain a pair of dual literals. Given a database I
and a coherent set of literals L, we define

I ⊕ L = (I ∪ {a: in(a) ∈ L}) \ {a: out (a) ∈ L}.

Let P be a revision program. The necessary change of P , NC(P), is the least model of P ,
when treated as a Horn program built of independent propositional atoms of the form in(a) and
out (b). The necessary change describes all insertions and deletions that are enforced by the
program, independently of the initial database.

In the transition from a database I to a database R, the status of some elements does not
change. A basic principle of revision programming is the rule of inertia according to which,
when specifying change by means of rules in a revision program, no explicit justification for not
changing the status is required. Explicit justifications are needed only when an atom must be
inserted or deleted. The collection of all literals describing the elements that do not change the
status in the transition from a database I to a database R is called the inertia set for I and R,
and is defined as follows:

I(I, R) = {in(a): a ∈ I ∩R} ∪ {out (a): a /∈ I ∪R}.

By the reduct of P with respect to a pair of databases (I, R), denoted by PI,R, we mean the
revision program obtained from P by eliminating from the body of each rule in P all literals in
I(I, R).

The necessary change of the program PI,R provides a justification for some insertions and
deletions. These are exactly the changes that are (a posteriori) justified by P in the context of the
initial database I and a (putative) revised database R. The database R is a P -justified revision
of I if the necessary change of PI,R is coherent and if R = I ⊕ NC(PI,R).

Two results from [MT98] are especially pertinent to the results of this paper. Given a revision
program P , let us define the dual of P (PD in symbols) to be the revision program obtained from
P by simultaneously replacing all occurrences of all literals by their duals. The first of the two
results we will quote here, the duality theorem, states that revision programs P and PD are, in a
sense, equivalent. Our main result of this paper (Theorem 3.2) is a generalization of the duality
theorem.

Theorem 2.1 (Duality Theorem [MT98]) Let P be a revision program and let I be a database.
Then, R is a P -justified revision of I if and only if R is a PD-justified revision of I.

The second result demonstrates that there is a straightforward relationship between revision
programs consisting of in-rules only and logic programs. Given a logic program clause c

p← q1, . . . , qm, not (s1), . . . , not (sn)

we define the revision rule rp(c) as

in(p)← in(q1), . . . , in(qm), out (s1), . . . , out (sn).

For a logic program P , we define the corresponding revision program rp(P) by: rp(P) = {rp(c): c ∈
P}.

Theorem 2.2 ([MT98]) A set of atoms M is a stable model of a logic program P if and only if M
is an rp(P)-justified revision of ∅.

3

It is also possible to represent revision programming in logic programming. This observation
is implied by complexity considerations (both the existence of a justified revision and the exis-
tence of a stable model problems are NP-complete). An explicit representation was discovered
in [PT97]. In addition to representing revision rules as logic program clauses, it encodes the ini-
tial database by means of new variables and encodes the inertia rule as logic program clauses.
As a consequence to our main result (Theorem 3.2), we obtain an alternative (and in some
respects, simpler) connection between revision programming and logic programming. Namely,
we establish a direct correspondence between revision programs and general logic programs of
[LW92].

3 Shifting initial databases and programs

In this section we will introduce a transformation of revision programs and databases that pre-
serves justified revisions. Our results can be viewed as a generalization of the results from
[MT98] on the duality between in and out in revision programming.

Let W be a subset of U . We define a W -transformation on the set of literals as follows (below,
α = in(a) or α = out (a)):

TW (α) =

{

αD, when a ∈W
α, when a /∈W .

Thus, TW replaces some literals (those, built of elements of W) by their duals and leaves other
literals unchanged.

The definition of TW naturally extends to sets of literals and sets of atoms. Namely, for a set
L of literals, we define TW (L) = {TW (α): α ∈ L}. Similarly, for a set A of atoms, we define

TW (A) = {a: in(a) ∈ TW (Ac)},

where Ac = {in(a): a ∈ A} ∪ {out (a): a /∈ A}.
The operator TW has several useful properties. In particular, for a suitable set W , TW allows

us to transform any database I1 into another database I2. Specifically, we have:

TI1÷I2(I1) = I2, (3)

where ÷ denotes the symmetric difference operator. Thus, it also follows that

TI(I) = ∅ and TU (I) = Ī , (4)

where Ī = U \ I.
Some other properties of the operator TW are gathered in the following lemma.

Lemma 3.1 Let S1 and S2 be sets of literals (or sets of atoms). Then:
1. TW (S1 ∪ S2) = TW (S1) ∪ TW (S2);
2. TW (S1 ∩ S2) = TW (S1) ∩ TW (S2);
3. TW (S1 \ S2) = TW (S1) \ TW (S2);
4. TW (S1) = TW (S2) if and only if S1 = S2;
5. TW (TW (S1)) = S1;

4

The operator W can also be extended to revision rules and programs. For a revision rule
r = α← α1, . . . , αm, we define

TW (r) = TW (α)← TW (α1), . . . , TW (αm).

For a revision program P , we define TW (P) = {TW (r): r ∈ P}.
The main result of our paper, the shifting theorem, states that revision programs P and TW (P)

are equivalent in the sense that they define essentially the same notion of change.

Theorem 3.2 (Shifting theorem) Let P be a revision program. For every two databases I1 and
I2, a database R is a P -justified revision of I1 if and only if TI1÷I2(R) is a TI1÷I2(P)-justified
revision of I2.

The duality theorem 2.1 is a special case of Theorem 3.2 for when I2 = U .
At first glance, a revision problem seems to have two independent parameters: a revision

program P that specifies constraints to satisfy, and an initial database I that needs to be re-
vised by P . The shifting theorem shows that there is a natural equivalence relation between
pairs (P, I) specifying the revision problem. Namely, a revision problem (P, I) is equivalent to a
revision problem (P ′, I ′) if P ′ = TI÷I′(P). This is clearly an equivalence relation. Moreover, by
shifting theorem, it follows that if (P, I) and (P ′, I ′) are equivalent then P -justified revisions of I
are in one-to-one correspondence with P ′-revisions of I ′. In particular, every revision problem
(P, I) can be “projected” onto an isomorphic revision problem (TI(P), ∅). Thus, the domain of all
revision problems can be fully described by the revision problems that involve the empty data-
base. There is an important point to make here. When shifting a revision program, its size does
not change (in other words, all revision programs associated with equivalent revision problems
have the same size).

Example 3.3 Let P be a revision program consisting of the following rules:

out (a)← in(b)
in(c)← out (b)
out (d)← in(c).

Consider a database I = {a, b}. The only P -justified revision of I is R = {b}. It is easy to see
that TI(P) consists of the rules:

in(a)← out (b)
in(c)← in(b)
out (d)← in(c).

This revision program has only one justified revision of TI(I) = ∅: {a}. Observe moreover that
{a} = TI({b}), which agrees with the assertion of Theorem 3.2. 2

There is a striking similarity between the syntax of revision programs and nondisjunctive (uni-
tary) general logic programs of Lifschitz and Woo [LW92]. Shifting theorem, which allows us to
effectively eliminate an initial database from the revision problem, suggests that both formalisms
may be intimately connected. In the next section we establish this relationship. This, in turn,
allows us to extend the formalism of revision programming by allowing disjunctions in the heads.

5

4 General disjunctive logic programs and revision programming

Lifschitz and Woo [LW92] introduced a formalism called general logic programming (see also
[Lif96] and [SI95]). General logic programming deals with clauses whose heads are disjunctions
of literals (from some first-order logic language; we will restrict here to the propositional case
only) and literals within the scope of the negation-as-failure operator. Specifically, Lifschitz and
Woo consider general program rules of the form:

L1| . . . |Lk|not Lk+1| . . . |not Ll ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln. (5)

A general logic program is defined as a collection of general program rules.
Given a set of literals M and a clause c of the form (5), M satisfies C if from the fact that

every Li, l + 1 ≤ i ≤ m, belongs to M and no Li, m + 1 ≤ i ≤ m, belongs to M , it follows that
one of Li, 1 ≤ i ≤ k, belongs to M or one of Li, k + 1 ≤ i ≤ l, does not belong to M .

Lifschitz and Woo introduce a semantics of general logic programs that is stronger than the
semantics described above. It is the semantics of answer sets. Answer sets are constructed in
stages. First, one defines answer sets for programs that do not involve negation as failure, that
is, consist of clauses

L1| . . . |Lk ← Lk+1, . . . , Lm (6)

Given a program P consisting of clauses of type (6), a set of literals M is an answer set for P if
M is a minimal set of literals satisfying all clauses in P and contains all literals that it entails.

Next, given a general logic program P (now possibly with negation as failure operator) and
a set of literals M , one defines the reduct of P with respect to M , denoted PM (this reduct is
a generalization of the familiar Gelfond-Lifschitz reduct, see [LW92] for details). The reduct PM

consists of clauses of type (6) only. A set of literals M is an answer set for P if M is an answer
set for PM .

4.1 Answer sets for general programs and justified revisions

We will now show that revision programming is closely connected with a special class of general
logic programs, namely those for which all rules have a single literal in the head. We will call
such rules unitary.

The encoding of revision rules as general logic program clauses is straightforward. Given a
revision program in-rule r:

in(p)← in(q1), . . . , in(qm), out(s1), . . . , out(sn)

we define the disjunctive rule dj(r) as:

p← q1, . . . , qm, not s1, . . . , not sn.

Similarly, given a revision program out-rule r:

out(p)← in(q1), . . . , in(qm), out(s1), . . . , out(sn)

we define the disjunctive rule dj(r) as:

not p← q1, . . . , qm, not s1, . . . , not sn.

6

Finally, for a revision program P , define dj(P) = {dj(r): r ∈ P}.
The following result states that revision problems where the initial database is empty can be

dealt with by means of general logic programs. This result can be viewed as a generalization of
Theorem 2.2.

Theorem 4.1 Let P be a revision program. Then R is a P -justified revision of ∅ if and only if R is
an answer set for dj(P).

It might appear that the scope of Theorem 4.1 is restricted to the special case of revision
programs that update the empty database. However, the shifting theorem allows us to extend
this result to the general case. Thus, revision programming turns out to be equivalent to the
unitary fragment of general logic programming. Indeed we have the following corollary.

Corollary 4.2 Let P be a revision program and I a database. Then a database J is a P -justified
revision of I if and only if I ÷ J is an answer set for the program dj(TI(P)).

Consider a revision program P and a database I. A rule r ∈ P is called a constraint (with
respect to I) if its head is of the form in(a), for some a ∈ I or out (a), for some a /∈ I.

Theorem 4.3 Let P be a revision program and let I be a database. Let P ′ consist of all rules in
P that are constraints with respect to I. Let P ′′ = P \ P ′. A database R is a P -justified revision
of I if and only if R is a P ′′-justified revision of I that satisfies all rules from P ′.

The reason for the term “constraint” is now clear. In computing P -justified revisions only “non-
constraints” are used. Then, the constraint part of P is used to weed out some of the computed
revisions.

Clearly, if I = ∅, the constraints are exactly the out-rules of a revision program. We can
extend the notion of a constraint to the case of unitary general logic programs. Namely, a unitary
program rule is a constraint if its head is of the form not a (note that this notion of constraint is
different from the one used in [Lif96]). Theorem 4.3 has the following corollary.

Corollary 4.4 Let P be a unitary general logic program without classical negation and let P ′

consists of all constraints in P . A set M is an answer set for P if and only if M is a stable model
for P \ P ′ that satisfies P ′.

It follows from the shifting theorem and from Theorem 4.1 that in order to describe updates
by means of revision programming, it is enough to consider logic programs with stable model
semantics and rules with not a in the heads that work as constraints.

Corollary 4.5 Let P be a revision program and let I be a database. Then, a database R is a
P -justified revision of I if and only if TI(R) is a stable model of the logic program TI(P) \ P ′ that
satisfies P ′, where P ′ consists of all constraints in TI(P).

4.2 Disjunctive revision programs

The results of Section 4.1 imply an approach to extend revision programming to include clauses
with disjunctions in the heads. Any such proposal must satisfy several natural postulates. First,

7

the semantics of disjunctive revision programming must reduce to the semantics of justified revi-
sions on disjunctive revision programs consisting of rules with a single literal in the head. Second,
the shifting theorem must generalize to the case of disjunctive revision programs. Finally, the re-
sults of Section 4.1 indicate that there is yet another desirable criterion. Namely, the semantics
of disjunctive revision programming over the empty initial database must reduce to the Lifschitz
and Woo semantics for general logic programs. The construction given below satisfies all these
three conditions.

First, let us introduce the syntax of disjunctive revision programs. By a disjunctive revision
rule we mean an expression of the following form:

α1| . . . |αm ← αm+1, . . . , αn , (7)

where αi, 1 ≤ i ≤ n are revision literals (that is, expressions of the form in(a) or out (a)). A
disjunctive revision program is a collection of disjunctive revision rules.

In order to specify semantics of disjunctive revision programs we first define closure of a set
of revision literals under a disjunctive rule. A set L of literals is closed under a rule (7) if at least
one αi, 1 ≤ i ≤ m, belongs to M or if at least one αi, m+1 ≤ i ≤ n, does not belong to M . A set
of literals L is closed under a disjunctive revision program P if it is closed under all rules of P .

The next step involves the generalization of the notion of necessary change. Let P be a
disjunctive revision program. A necessary change entailed by P is any minimal set of revision
literals that is closed under P . Notice that in the context of disjunctive programs the necessary
change may not be unique.

We will now introduce the notion of a reduct of a disjunctive revision program P with respect
to two databases I (initial database) and R (a putative revision of I). The reduct, denoted by
P I,R, is constructed in the following four steps.

Step 1: Eliminate from the body of each rule in P all literals in I(I, R).

Step 2: Remove all rules r, such that head(r) ∩ I(I, R) 6= ∅.

Step 3: Eliminate from the remaining rules every rule whose body is not satisfied by R.

Step 4: Remove from the heads of the rules all literals that contradict R.

We are ready now to define the notion a P -justified revision of a database I for the case
of disjunctive revision programs. Let P be a disjunctive revision program. A database R is a
P -justified revision of a database I if for some coherent necessary change L of P I,R, R = I ⊕L.
Let us observe that only steps (1) and (2) in the definition of reduct are important. Steps (3) and
(4) do not change the defined notion of revision but lead to a simpler program.

The next example illustrates a possible use of disjunctive revision programming.

Example 4.6 Consider a manager whose office staff consists of Ann and Chen. The office
does not work well and the manager wants to do some changes. She is aware of the following
constraints. She needs Ann or Bob. She must select David or fire Chen. If David is selected then
Ann must be transferred. Finally, if Bob is selected, David must be transferred. These constraints
can be captured by a disjunctive program P :

in(Ann) | in(Bob) ←

out(Chen) | in(David) ←

out(Ann) ← in(David)

out(David) ← in(Bob)

8

Moreover, we have I = {Ann, Chen} (initial database). Consider R = {Ann}. Then inertia
I(I, R) = {in(Ann), out(Bob), out(David)}. The reduct P I,R = {out(Chen) ←}. The only
necessary change of P I,R is L = {out(Chen)}. Since L is coherent and R = I ⊕ L, R is a
P -justified revision of I (in fact, unique). 2

The following three theorems show that the semantics for disjunctive revision programs de-
scribed here satisfies the three criteria described above.

Theorem 4.7 Let P be a revision program (without disjunctions). Then R is a P -justified revision
of I if and only if R is a P -justified revision of I when P is treated as a disjunctive revision
program.

The definition of TW naturally extends to the case of disjunctive revision programs.

Theorem 4.8 (Shifting theorem) Let I1 and I2 be databases, P - disjunctive revision program.
Let W = I1 ÷ I2. Then, R1 is P -justified revision of I1 if and only if TW (R1) is TW (P)-justified
revision of I2.

The embedding of (unitary) revision programs extends to the case of disjunctive revision
programs. As before, each literal in(a) is replaced by the corresponding atom a and each literal
out (a) is replaced by not a. The general logic program obtained in this way from a disjunctive
revision program P is denoted by dj(P).

Theorem 4.9 Let P be a disjunctive revision program. Then R is a P -justified revision of ∅ if and
only if R is an answer set for dj(P).

We conclude this section with a simple observation related to the computational complexity
of a problem of existence of justified revisions in the case of disjunctive revision programming.
Disjunctive revision programming is an essential extension of the unitary revision programming.
In [MT98] we proved that the existence of P -justified revision problem is NP-complete. Using
the results of Eiter and Gottlob [EG95] and our correspondence between disjunctive revision
programs and general logic programs we obtain the following result.

Theorem 4.10 The following problem is ΣP
2 -complete: Given a finite disjunctive revision program

and a database I, decide whether I has a P -justified revision.

It follows that disjunctive revision programming is an essential extension of the unitary revision
programming (unless the polynomial hierarchy collapses).

5 Nested expressions in logic programs and revision programs

Lifschitz, Tang and Turner [VLT97] extended the answer set semantics to a class of logic pro-
grams with nested expressions permitted in the bodies and heads of rules. In the previous
section we extended revision programming to the disjunctive case so that the correspondence
with general logic programming be preserved. In this section we will extend the semantics of jus-
tified revisions to programs admitting nested occurrences of the connectives. Thus, for instance,
expressions of the form in(out (p)|in(q)) will now be allowed as building blocks of program rules.

9

Our generalization must satisfy criteria similar to those we imposed in Section 4. Specifically,
the semantics for programs with nested expressions must coincide with the semantics of justified
revisions from Section 4.2 for disjunctive revision programs. Moreover, we want to preserve the
shifting property. Finally, we want to make sure that revisions of the empty database coincide
with Lifschitz, Tang and Turner semantics for logic programs with nested expressions (via an
appropriate translation that does not increase the number of rules). We will now describe a
construction that satisfies all these three criteria.

First, we need to define precisely the syntax of nested expressions in revision programming.
Elementary formulas are revision literals and the symbols ⊥ (“false”) and ⊤ (“true”). Recall
that a revision literal is an expression of the form in(a) or out (a), where a is an atom from U .
Formulas are built from elementary formulas using the unary connectives in and out and binary
connectives “,” (conjunction) and “|” (disjunction).

Unary connectives in and out are applied to formulas and should not be confused with in and
out appearing in literals. In particular, the atoms from U are not nested expressions.

A nested revision rule is an expression of the form H ← B, where H and B are formulas,
called the head and the body of the rule. A nested revision program is a set of nested revision
rules.

The formulas, rules and programs that do not contain unary operators in and out are called
basic. We will first define the notion of a model of a basic formula. A set X of literals satisfies (is
a model of) a basic formula F (denoted X |= F) if

1. F = ⊤, or

2. F is a literal and F ∈ X, or

3. F = (A, B) for some formulas A and B, X |= A and X |= B, or

4. F = (A|B) for some formulas A and B, X |= A or X |= B

Let P be a basic revision program. A set of literals X ⊆ Lit is closed under P , if for every
rule H ← B in P , X |= H whenever X |= B. Next, we define the necessary change entailed
by a basic program. Let P be a basic revision program. A set of literals X ⊆ Lit is a necessary
change of P (NC(P)) if it is a minimal (relative to set inclusion) set of revision literals that is
closed under P .

Now, we come to the next component of the definition of justified revisions, namely that of the
reduct. We will need to reduce both formulas and rules and we will describe reducts with respect
to a single database and a pair of databases.

The reduct of a formula, rule or program F relative to a set X of atoms (denoted FX) is
defined recursively, as follows (recall that given a set of atoms X, Xc = {in(a) : a ∈ X}∪{out (b) :
b /∈ X}):

1. for an elementary F , FX = F .

2. (F, G)X = (FX , GX).

3. (F |G)X = (FX |GX).

4. (out F)X =

{

⊥, if Xc |= FX

⊤, otherwise

10

5. (in F)X =

{

⊥, if Xc 6|= FX

⊤, otherwise

6. (F ← G)X = FX ← GX

7. PX = {(F ← G)X : F ← G ∈ P}

Notice that here X is a set of atoms, not of literals.
We are now ready to define the reduct with respect a pair of databases. Let I and R be two

databases. Let F be a formula, rule or program. A reduct of F with respect to I, R (denoted
F (I,R)) is obtained from FR by replacing each occurrence of literals from I(I, R) by ⊤, and
replacing each occurrence of literals from {αD: α ∈ I(I, R)} by ⊥.

Definition 5.1 Let P be a nested revision program. A database R is a P -justified revision of a
database I if for some necessary change L of P (I,R), L is coherent and R = I ⊕ L.

The construction outlined above satisfies the three “benchmarks” that we described above.

Theorem 5.2 Let P be a disjunctive revision program. Then R is a P -justified revision of I if and
only if R is a P -justified revision of I when P is treated as a nested revision program.

The operator TW can be extended to rules with nested expressions. Namely, as before, all
revision literals in(a) and out (a), where a ∈ W , that appear in nested expressions H and B
forming a revision rule, are replaced by their duals. All other revision literals are left unchanged.

Theorem 5.3 (Shift theorem) Let I1 and I2 be databases (subsets of U), Let P be a nested
revision program. Let W = I1 ÷ I2. Then, R1 is P -justified revision of I1 if and only if TW (R1) is
TW (P)-justified revision of I2.

Given a nested revision program P we define a nested logic program nlp(P) (of the type
considered by Lifschitz, Tang and Turner) to be a program obtained from P by replacing each
literal l = in(a) (l = out (a)) by a (not a), replacing each unary connective out by not, and
replacing each unary connective in by not not.

Theorem 5.4 Let P be a nested revision program. Then R is a P -justified revision of ∅ if and
only if R is an answer set for nlp(P).

6 Future work

The connections between revision programming and logic programming, presented in this work,
imply a straightforward approach to compute justified revisions. Namely, a revision problem(P, I)
must first be compiled into a general logic program (by applying the transformation TI to P).
Then, answer sets to TI(P) must be computed and “shifted” back by means TI .

To compute the answer sets of the general logic program TI(P), one might use any of the
existing systems computing stable models of logic programs (for instance s-models [NS96] or
DeReS [CMMT95]). Some care needs to be taken to model rules with negation as failure opera-
tor in the heads as standard logic program clauses or defaults.

In our future work, we will investigate the efficiency of this approach to compute justified
revisions and we will develop related techniques tailored specifically for the case of revision
programming.

11

References

[ALP+98] J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przymusinski. Dynamic logic
programming. Unpublished manuscript, 1998.

[AP97] J.J. Alferes and L.M. Pereira. Update-programs can update programs. In Proceedings of
the JICSLP-96 Workshop on Non-Monotonic Extensions of Logic Programming: Theory, Ap-
plications and Implementations, pages 110–131. Springer-Verlag, 1997. Lecture Notes in
Computer Science 1216.

[Bar97] C. Baral. Embedding revision programs in logic programming situation calculus. Journal of
Logic Programming, 30:83–97, 1997.

[BM96] N. Bidoit and S. Maabout. Update rule programs related to revision programs. In Proceedings
of the JICSLP-96 Workshop on Non-Monotonic Extensions of Logic Programming: Theory,
Applications and Implementations, 1996.

[CMMT95] P. Cholewiński, W. Marek, A. Mikitiuk, and M. Truszczyński. Experimenting with nonmonotonic
reasoning. In Proceedings of the 12th International Conference on Logic Programming, pages
267–281. MIT Press, 1995.

[EG95] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming: proposi-
tional case. Annals of Mathematics and Artificial Intelligence, 15:289–324, 1995.

[Lif96] V. Lifschitz. Foundations of logic programming. In Principles of Knowledge Representation,
pages 69–127. CSLI Publications, 1996.

[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic reasoning. In Proceedings
of the 3rd international conference on principles of knowledge representation and reasoning,
KR ’92, pages 603–614, San Mateo, CA, 1992. Morgan Kaufmann.

[MT94] W. Marek and M. Truszczyński. Revision specifications by means of revision programs. In
Logics in AI. Proceedings of JELIA ’94. Lecture Notes in Artificial Intelligence. Springer-Verlag,
1994.

[MT95a] W. Marek and M. Truszczyński. Revision programming, database updates and integrity con-
straints. In Proceedings of the 5th International Conference on Database Theory — ICDT 95,
pages 368–382. Berlin: Springer-Verlag, 1995. Lecture Notes in Computer Science 893.

[MT98] W. Marek and M. Truszczyński. Revision programming. Theoretical Computer Science,
190:241–277, 1998.

[MT95b] N. McCain and H. Turner. A causal theory of ramifications and qualifications. In Proceedings
of AAAI-95, pages 1978–1984, 1995.

[NS96] I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable model
semantics. In Proceedings of JICSLP-96. MIT Press, 1996.

[PT97] Teodor C. Przymusinski and Hudson Turner. Update by means of inference rules. Journal of
Logic Programming, 30(2):125–143, 1997.

[SI95] C. Sakama and K. Inoue. Embedding Circumscriptive Theories in General Disjunctive Pro-
grams. In Proceedings of LPNMR’95, pages 344–357. Berlin: Springer-Verlag, 1995. Lecture
Notes in Computer Science, 928.

[Tur97] H. Turner. Representing actions in logic programs and default theories: A situation calculus
approach. Journal of Logic Programming, 31:245–298, 1997.

[VLT97] L. R. Tang V. Lifschitz and H. Turner. Nested expressions in logic programs. unpublished draft,
1997.

12

