
Revision programming

Victor W. Marek
Miros law Truszczyński

Department of Computer Science
University of Kentucky

Lexington, KY 40506-0027

Abstract

In this paper we introduce revision programming — a logic-based framework for de-
scribing constraints on databases and providing a computational mechanism to enforce
them. Revision programming captures those constraints that can be stated in terms
of the membership (presence or absence) of items (records) in a database. Each such
constraint is represented by a revision rule α← α1, . . . , αk, where α and all αi are of the
form in(a) and out(b). Collections of revision rules form revision programs. Similarly as
logic programs, revision programs admit both declarative and imperative (procedural)
interpretations. In our paper, we introduce a semantics that reflects both interpreta-
tions. Given a revision program, this semantics assigns to any database B a collection
(possibly empty) of P -justified revisions of B. The paper contains a thorough study of
revision programming. We exhibit several fundamental properties of revision program-
ming. We study the relationship of revision programming to logic programming. We
investigate complexity of reasoning with revision programs as well as algorithms to com-
pute P -justified revisions. Most importantly from the practical database perspective, we
identify two classes of revision programs, safe and stratified, with a desirable property
that they determine for each initial database a unique revision.

1

1 Introduction

In this paper we propose a framework for studying the process of database revision.
Revisions that we have in mind are specified by means of revision programs — sets of
revision rules expressing constraints on presence or absence of data items (records) in
databases. The rules or constraints are of two forms:

in(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn) (1)

and
out(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn). (2)

Such rules have several possible interpretations. For instance, under a declarative inter-
pretation, the meaning of rule (1) is that

1. a belongs to the database B under consideration, or

2. ak /∈ B, for some k, 1 ≤ k ≤ m, or

3. bk ∈ B, for some k, 1 ≤ k ≤ n.

A similar declarative interpretation can be offered for the rule of type (2).
But there is also an imperative, or computational, interpretation of rules (1) and (2).

Namely, assume that all data items ak, 1 ≤ k ≤ m, belong to the current database and
none of the data items bl, 1 ≤ l ≤ n belongs to the current database. Then, in the case
of rule (1), the item a should be added to the database (if it is not there already), and
in the case of rule (2), a should be eliminated from the database (if it is there).

This simultaneously declarative and imperative character of revision rules makes the
assignment of semantics to revision programs quite difficult. The imperative interpreta-
tion implies that the rules of the program should be used in the process of computing
a revision of a database. The declarative interpretation requires that, after we termi-
nate the computation of a revision, the revised database should satisfy the constraints
specified by the program.

This declarative/imperative nature of revision rules is not unique to revision pro-
gramming. For instance, logic programs [Llo84, Apt90] can be assigned similar interpre-
tations. Namely, the clauses of the program can be regarded as describing constraints
that need to be satisfied and, in the same time, as a computational tool needed to com-
pute appropriate models. For Horn programs, the computation uses clauses as inference
rules. That is, when the premises of a clause have all been already computed, the
head of the clause becomes computed, too [vEK76]. Similar concepts of computation
are available for DATALOG programs [Ull88]. In the case of the stable semantics of
logic programs [GL88] the computational mechanism is that of default logic [Rei80], see
[BF91, MT89] for more details.

In this paper, we propose a semantics for revision programs, called the justified
revision semantics. This semantics is motivated by the stable model semantics of logic

2

programs and provides a computational mechanism that uses a revision program to
produce revisions of input databases. In addition, once the revisions are computed, they
satisfy all the constraints described by the program.

We will now briefly describe the process of computing a revised database R from an
initial database I using the rules of a revision program P . The computation involves a
fixpoint construction. That is, a candidate for a revised database is first proposed. Next,
a decision is made whether the transition from I to R is justified under the program P .
If so, R is regarded as a revision of I (and called a P -justified revision of I). Otherwise,
another candidate for a revised database is considered.

The key question is: how to decide whether a transition from I to R is justified
under P . To answer it, observe that to every candidate R for a P -justified revision of
I we can assign the set of these elements which do not change status as we pass from
I to R. This set is, of course, given by the complement of the symmetric difference of
I and R. Assuming that U is the set of all data items under consideration, this set is
(I ∩ R) ∪ (U \ (I ∪ R)). Observe now that there is an important distinction between
the elements of (I ∩R) and the elements of U \ (I ∪R). Namely, the elements of I ∩R
stay in, whereas the elements of U \ (I ∪ R) stay out. Consequently, we will define the
inertia for I and R as:

{in(a) : a ∈ I ∩R} ∪ {out(b) : b /∈ (I ∪ R)}.

We will assume that we need no justification for not changing the status of an element.
Hence, we will use the inertia set as input to the program P . Specifically, we will
eliminate the elements of the inertia from the rules in P (as they can be regarded as
true). The modified program is then treated as a Horn program and is used to compute
its least model. The resulting set of updates of the form in(a) and out(b) is then
executed on I. The order in which we execute these updates should be immaterial.
Since the constraints need to be true after the revision, we will require that there is no
a such that both in(a) and out(a) are computed. If the result of the process coincides
with R, we accept R as a P -justified revision of I.

There are clearly similarities between P -justified revisions and stable models of logic
programs. For instance, we will show that logic programs can be identified with revision
programs consisting of rules with heads of the form in(a). On the other hand, revision
programs can be encoded as logic programs [PT95]. So, in a sense, the converse holds
as well. That is, revision programs are special logic programs. However, there are
important differences. First, revision programs are explicitly designed as input-output
devices. For input I they produce as the output a collection of P -justified revisions of I.
Secondly, and perhaps more importantly, in revision programming there is a desirable
symmetry between literals in(a) and out(a) (Theorem 3.8) that is not present in logic
programming, where positive and negative literals are treated differently. These and
other aspects of the nature of the relationship between logic and revision programs will
be discussed in detail in Section 4.

Similarly, there are differences between revision programming and DATALOG. While
DATALOG programs can be viewed as input-output devices, they only add elements and

3

never delete. This issue was, to some extent, pursued in [AV91]. However, the semantics
that we assign to revision programs is different. Secondly, in revision programming we
do not distinguish between the extensional and intentional databases. In particular, the
constraints may be imposed on the extensional part as well. In the case of DATALOG
programs without negation this can be easily handled by means of the least cumulative
fixpoint construction. With negation in the bodies allowed, the solution is no longer
straightforward and other kinds of fixpoints have been used.

There are also differences between revision programming and popular formalisms
that describe change by means of postulates on the effects of change, either coming from
philosophy (AGM postulates, see [AGM85]) or from database theory (KM postulates,
see [KM91]). In our framework, programs specify change and change is not subject to
any postulates beyond those specified by the program.

In this paper we formally introduce and study revision programming. In the next
section we introduce the syntax of revision programming as well as the semantics of
justified revisions. We consider two equivalent definitions for P -justified revisions. One
of them formalizes the ideas described above and the other one uses a modified version
of Gelfond-Lifschitz approach to stable semantics of logic programs. We also introduce
the necessary terminology and technical apparatus for investigating revisions.

In Section 3, we prove a number of properties of justified revisions. For instance
we show that every P -justified revision of any database I satisfies P . We prove that
P -justified revisions of I differ from I as little as possible to satisfy P . That is the
symmetric difference between I and any P -justified revision R is minimal in the set of
symmetric differences of I and models of P . We show that if I satisfies the constraints
specified by P then I is its only P -justified revision. This shows that our process has
the desired property that once a revision succeeds, no further change is justified. The
symmetric character of in and out is highlighted in a duality result. Namely, if R is
a P -justified revision of I then the complement of R is a P ′-justified revision of the
complement of I for a suitably constructed program P ′. Moreover, the translation from
P to P ′ is modular. We also briefly study another proposal for a semantics of revision
programs given by the notion of supported revisions.

In Section 4 we show that the concept of P -justified revision generalizes that of
stable model of logic program. Specifically, we show that there is a translation of logic
programs to revision programs so that stable models of logic programs become precisely
justified revisions of an empty database.

In Section 5 we discuss serializability of the process of P -justified revision. We show
that every P -justified revision can be obtained by processing rules of P in a sequential
manner. In Section 6 we discuss two classes of programs P with a property that every
initial database I possesses a unique P -justified revision. The first of these classes,
consisting of the so called safe programs, has also the property that any serialization
leads to the same result, namely the unique P -justified revision. The second class,
stratified programs, also produces unique revisions, but the serializations are no more
arbitrary, only those that agree with stratification can be used. We conclude this section
with a brief discussion of expressibility issues for safe revision programs and relate our

4

results to classic results by Smullyan [Smu68] and Apt and Blair [AB90] on expressibility
of stratified logic programs.

In Section 7 we study the complexity issues of revision programming. We show
that the existence problem for P -justified revisions is NP-complete. A number of other
complexity results, as well as algorithms for various problems is also introduced.

The material covered in this paper has been presented in two extended abstracts:
[MT94] and [MT95].

2 Preliminaries

The language of revision programming is similar to the language of logic programming.
In this paper we will discuss only the propositional case. As with logic programming,
the restriction to the propositional case is not essential. Our definitions and results can
be lifted to the predicate case.

Let U be a denumerable set of atoms (a universe). Revision programming is a for-
malism to describe constraints on the subsets of U (databases) and provide a mechanism
to enforce them. The constraints are concerned with the membership status of atoms in
a database. An example of a simple constraint is: a must be present in a database. In
revision programming, it is expressed by a rule

in(a)← .

Enforcing such a constraint means inserting a to the database (if a is not there already).
Another example of a constraint is: a must be absent from a database. We describe it
by a rule

out(a)← .

To enforce this constraint, a must be deleted from the database (if it is there).
The expressive power of revision programming goes much beyond these simple con-

straints. It allows the user to formulate complex constraints such as: a must not be in
a database whenever b is in it and c is not. In revision programming, it is described by
the rule

out(a)← in(b),out(c).

To enforce collections of such constraints on a database, one has to change it by inserting
some atoms and removing some others. The critical question, in fact the main question
studied in this paper, is: which atoms need to be inserted and which to be removed.

Formally, by a literal we mean an expression of the form in(a) or out(a), where a
is an atom from U . The set of all literals will be denoted by Lit. A revision rule or,
simply, a rule, is any expression of the form

α← α1, . . . , αm, (3)

where α and αi, 1 ≤ i ≤ m, are literals. The literal α is called the head of the rule, and
the set of literals αi, 1 ≤ i ≤ m, its body. The head of a rule c and its body are denoted

5

by head(c) and body(c), respectively. If the head of a rule is of the form in(a), the rule
is called an in-rule. Otherwise, it is called an out-rule.

A collection of rules is called a revision program or, simply, a program. The set of
all literals appearing in a program P is denoted by var(P). The set of the heads of all
rules in P is denoted by head(P).

The basic notion for revision programming is that of a model of a literal or a con-
straint. We say that a set of atoms B ⊆ U is a model of (or satisfies) a literal in(a), if
a ∈ B. Similarly, B is a model of (or satisfies) a literal out(b), if b /∈ B. A set of atoms B
is a model of (or satisfies) a rule of the form (3) if either B is not a model of at least one
literal αi, or B is a model of α. Finally, B is a model of (or, satisfies) a revision program
P if B is a model of every rule in P . The set of all models of a revision program P is
denoted by MOD(P). We will write B |= α, B |= c and B |= P to denote that B is a
model of a literal α, rule c and program P , respectively.

For instance, a rule

in(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn) (4)

is satisfied by a set of atoms B exactly when at least one of the following conditions
holds:

1. a ∈ B,

2. ak /∈ B, for some k, 1 ≤ k ≤ m,

3. bk ∈ B, for some k, 1 ≤ k ≤ n.

Similarly, an out-rule

out(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn) (5)

is satisfied by B exactly when a /∈ B, or when at least one of the conditions (2) and (3)
above holds.

The main goal of this paper is to propose a semantics for revision programming.
Revision programs can be viewed as operators that assign to a database a collection of
its possible revisions each of which, at the very least, must be a model of P . Following
this intuition, by a semantics for revision programming we mean any function SEM ,
which assigns, to every revision program P , an operator SEMP : P(U) → P(P(U))
such that for every B ⊆ U , SEMP (B) ⊆MOD(P).

An obvious example of a semantics is the operator SEM defined by

SEMP (B) = MOD(P).

However, it is much too weak. First, revisions of a database B by a program P should
depend on both P and B, and not on P only. Hence, in general, SEMP (B) must be a
proper subset of the set of models of P . For instance, if a current database B satisfies

6

all the constraints in P , SEMP (B) should consist of B only (and not of all models of
P) as, intuitively, there is no need for any revisions in such case.

A solution might be to define SEMP (B) to consist of all those models B′ of P that
differ from B by as little as possible, that is, for which the symmetric difference with B
is minimal (recall that the symmetric difference is given by: B′÷B = (B′ \B)∪ (B\B′)).
Formally, we define

MODmin(P,B) = {B′ ∈MOD(P) : B′ ÷ B is minimal}.

Clearly, the operator MODmin defines a semantics for revision programming. We will
call it the minimal revision semantics. It is a counterpart of the minimal model semantics
for logic programs and it suffers from a similar problem. In revision programming, by
writing constraints as rules we not only express a constraint but, also, a preferred way
to impose it. If a database B does not satisfy a rule (3), then all premises of the rule are
satisfied but the head is not. There are two ways to guarantee that a revised version of
B satisfies rule (3):

1. change B so that α is satisfied after the revision (if α = in(a), insert a, if α =
out(a), remove a)

2. change B so that at least one αk is not satisfied after the revision (if αk = in(a),
remove a, if αk = out(a), insert a).

In addition to describing constraints, revision programming views rules as mechanism
to infer new facts. Assuming that the premises of a rule are satisfied, the rule is used
to derive its head. Consequently, it is the first way of enforcing a constraint that is
preferred.

Example 2.1 Consider a database B = {a, b} and a program P = {out(b) ← in(a)}.
Clearly, B is not a model of P . In order to satisfy P , we have two possibilities: (1) remove
b from B, and (2) remove a from B. Each of these possibilities leads to a model of P
minimally differing from B. However, the first one is preferred, as it reflects the intuition
of a rule as an inference mechanism. Hence, we should require that SEMP (B) = {{a}}.

The analogies with logic programming are quite obvious. We will study the corre-
spondence in more detail in Section 4.

We will now introduce our proposal for the semantics of revision programs. We will
start with more terminology. Let B ⊆ U be a set of atoms. We define

Bc = {in(a): a ∈ B} ∪ {out(a): a /∈ B}.

For any set of literals L, we define

L+ = {a ∈ U : in(a) ∈ L}

7

and
L− = {a ∈ U :out(a) ∈ L}.

We call a set L of literals coherent if L− ∩ L+ = ∅. Clearly, a coherent set of literals
determines a revision of a database B as it specifies necessary insertions and deletions
to be performed. Namely, the result of the revisions determined by L is the database
(B \ L−) ∪ L+. We will denote it by B ⊕ L. That is,

B ⊕ L = (B \ L−) ∪ L+.

Notice that if a set L of literals is coherent, then (B \ L−) ∪ L+ = (B ∪ L+) \ L−.
More generally, the order in which insertions and deletions specified by L are executed
is immaterial. However, if L is incoherent, then (B \ L−) ∪ L+ 6= (B ∪ L+) \ L−. Thus,
the order in which the changes are made becomes crucial. Consequently, in such case,
the revision by a set of literals becomes ill-defined. This is the reason why we do not
consider revisions specified by incoherent sets of literals.

The following lemma summarizes basic properties of the notion of model and the
operator ⊕.

Lemma 2.2 Let L be a set of literals and let B be a database.

1. If B |= L, then L is coherent and B ⊕ L = B.

2. Let L be a coherent set of literals. If L ⊆ L′ and B⊕L |= L′, then B⊕L = B⊕L′.

3. Let L be coherent. If α ∈ L, then B ⊕ L |= α. If B ⊕ L |= α and B 6|= α, then
α ∈ L. 2

Our proposal for a semantics for revision programming is based on two key concepts:
necessary change and inertia set. We will now introduce these notions and study their
properties.

Example 2.3 Consider the program P = {in(c) ← ,out(b) ← in(c)} and the initial
database B = {a, b}. Since c must be inserted unconditionally, b — whose removal is
conditioned only upon believing in c — must be removed. Literals in(c) and out(b)
form the necessary change determined by P .

In this example, the intuition behind the term “necessary change” is that no matter
what the initial database is, the actions described by it (insert some objects, eliminate
some objects) will have to be performed. This intuition is formalized as follows.

Definition 2.4 (Necessary change) Let P be a revision program. The necessary
change of P , NC(P), is the least model of P , when treated as a Horn program built of
independent propositional atoms of the form in(a) and out(b).

8

One can develop the notion of necessary change in the language of operator theory.
Namely, one can assign to a revision program P the corresponding one-step revision
operator and then prove that the necessary change is its least fixpoint. This one-step
revision operator coincides, in fact, with van Emden-Kowalski [vEK76] operator for P
treated as a Horn program (Definition 2.4). Hence, it is monotone and compact and,
consequently, the fixpoint exists and is reached in at most ω steps.

Since the notion of necessary change is defined as a least model of a certain Horn
program, we will recall some well-known properties of propositional Horn programs. We
will not prove them, although, to the best of our knowledge, they were not reported in
the literature.

Let P be a propositional Horn program. By LM(P) we denote a least model of P .
Let us define

P u = {c ∈ P : body(c) ⊆ LM(P)}.

Intuitively, P u consists of all those rules in P which “fire” (are used) during the con-
struction of the least model of P . In particular,

head(P u) = LM(P).

Lemma 2.5 Let P be a Horn program and let P = P1 ∪ P2. If

1. P1 ∩ P2 = ∅, and

2. for every rule c ∈ P2, body(c) 6⊆ head(P1),

then P u = P u
1 and LM(P) = LM(P1). If, in addition, P u

1 = P1 then P u = P1 and
LM(P) = LM(P1) = head(P1). 2

Let P be a Horn program and let B be a set of atoms. By P |B we denote the Horn
program obtained from P by eliminating from the body of each rule all atoms that are
in B.

Lemma 2.6 Let P be a propositional Horn program over a denumerable set of atoms
U . Let P ′ be a subset of P and B be a set of atoms such that

1. for every rule c ∈ P \ P ′, body(c) 6⊆ head(P ′) ∪ B, and

2. there is an enumeration {ct: 1 ≤ t < n}, where n is a non-negative integer or
n = ω, of the rules in P ′ such that for every t, 1 ≤ t < n,

body(ct) ⊆ head({cq: 1 ≤ q < t}) ∪ B.

Then, LM(P |B) = head({ct: 1 ≤ t < n}). 2

Lemma 2.7 Let P be a propositional Horn program over a denumerable set of atoms
U . Let B be a set of atoms and let P ′ be a subset of P such that (P |B)u = P ′|B. There
exists an enumeration {ck: 1 ≤ k < n} of P ′, where n is a non-negative integer or n = ω,
such that

9

1. for every rule c ∈ P \ P ′, body(c) 6⊆ head(P ′) ∪ B, and

2. for every k, 1 ≤ k < n, body(ck) ⊆ head({cq: 1 ≤ q < k}) ∪ B. 2

In the paper, we will use the notation introduced above as well as Lemmas 2.5, 2.6
and 2.7 for revision programs treated as propositional Horn programs.

The second key concept is that of the inertia set. Let P be a revision program.
Consider an initial database I. Assume that R is a revision of I by P . Clearly, P must
provide justification for the insertions of the elements in R \ I and the deletions of the
elements in I \R. Since the status of all the other elements remains the same, no other
justifications are needed. In fact, we will use the elements whose status does not change
(formally described by the inertia set), in combination with the program P , to provide
justification for all the changes necessary to transform I into R.

Let us define the inertia set for the pair (I,R) as follows:

I(I,R) = {in(a): a ∈ I ∩R} ∪ {out(a): a /∈ I ∪R}.

The following lemma gathers several simple properties of the inertia set.

Lemma 2.8 Let I, I ′ and R be databases, let L be a set of literals and let α be a literal.

1. α ∈ I(I,R) if and only if I |= α and R |= α,

2. I(I,R) ⊆ I(I ′,R) if and only if R÷ I ′ ⊆ R÷ I,

3. If I(I,R) ⊆ I(I ′,R), L is coherent and R = I ⊕ L, then R = I ′ ⊕ L. 2

Part (1) of the lemma expresses a basic intuition behind the inertia set. It consists
of those literals that are satisfied by both I and R. Part (2) shows that the larger the
inertia set the “closer” the two databases are (and conversely). Finally, part (3) shows
that if R is obtained by revising I by L and if I ′ is “closer” to R than I, then revising
I ′ by L also yields R.

We will use the literals in I(I,R) to simplify P (they need not to be justified by P ,
as they are satisfied by both I and R and can be assumed to hold). By the reduct of
P with respect to (I,R), denoted by PI,R, we mean the revision program obtained from
P by eliminating from the body of each rule in P all literals in I(I,R). That is, in the
notation introduced earlier for the Horn programs,

PI,R = P |I(I,R).

The necessary change of the program PI,R provides a justification for some insertions
and deletions. These are exactly the changes that are justified by P in the context of
the pair of databases (I,R).

10

Definition 2.9 (Justified Revision) Let P be a revision program and let I and R
be databases. If NC(PI,R) is coherent and

R = I ⊕ NC(PI,R)

then R is called a P -justified revision of I.

For every revision program P and every database B, by JRP (B) we denote the set
of all P -justified revisions of B. We propose the operator JR as a semantics for revision
programs. At this point it is not at all clear that JRP (B) ⊆ MODP (B) (that is, that
JR indeed defines a semantics for revision programming). We will later show that it is
the case (Theorem 3.1).

We will now illustrate the notions of necessary change, inertia set, reduct and P -
justified revision.

Example 2.10 Consider the program P = {in(a)← out(b), in(b)← out(a)}. Assume
that I = ∅ and R = {a, b}. Clearly,

I(I,R) = ∅.

Consequently, PI,R = P and
NC(PI,R) = ∅.

Hence, P does not justify any changes in the context of (I,R). Therefore, R 6= I ⊕
NC(PI,R) and, consequently, R is not a P -justified revision of I.

Assume now that I is as before and that R = {a}. Now,

I(I,R) = {out(b)} and PI,R = {in(a)←, in(b)← out(a)}.

Clearly,
NC(PI,R) = {in(a)}.

Since NC(PI,R) is coherent and R = I ⊕ NC(PI,R), R is a P -justified revision of I.
The same reasoning shows that R = {b} is a P -justified revision of I and that R = ∅

is not a P -justified revision of I.

Example 2.11 Let U = {a, b}. Let P = {out(a) ← in(a)}. Consider a database
I = {a}. Then, no set of atoms is a P -justified revision of {a}. For example, let R = ∅.
Then, I(I,R) = ∅, PI,R = P and NC(PI,R) = ∅. Clearly, NC(PI,R) is coherent but
R 6= I ⊕ NC(PI,R). Similarly, we show that none of the remaining subsets of U ({a},
{b} and {a, b}) is a P -justified revision of I.

In the same time, if I = ∅, then R = ∅ is the only P justified revision of I.

These two examples show that given a revision program P , a database B can have
no, exactly one, or many justified revisions. Especially important, from the point of
view of practical database applications are those revision programs that, for every input

11

database, uniquely determine its revision. We exhibit two classes of such programs later
in this paper.

We will now provide an alternative definition of P -justified revisions. It is based
on a different notion of reduct — a counterpart of Gelfond-Lifschitz reduct in logic
programming [GL88].

Let P be a revision program and let I and R be two databases. The GL-reduct of
P with respect to (I,R) is defined in two stages:

Stage 1: Eliminate from P every rule whose body is not satisfied by R. Denote the
resulting program by PR.

Stage 2: From the body of each rule in PR eliminate each literal that is satisfied by I.
Denote the resulting program by PR|I (this is the GL-reduct of P with respect to
(I,R)).

(Observe that PR|I = PR|I(I,R).)
A comment is warranted here. In the original paper by Gelfond and Lifschitz, the

first stage of the reduction is different from the one described here. Namely, Gelfond and
Lifschitz eliminate from P only those rules that have at least one negative literal in the
body not satisfied by a hypothetical stable model (a counterpart of R). In our approach,
we eliminate all those rules that have at least one literal, positive or negative, not satisfied
by R. This is an important point. As we will see there is a high degree of symmetry in
revision programming — positive and negative literals are treated in the same way. The
original definition of the Gelfond-Lifschitz reduct, which treats positive and negative
atoms differently, was not suitable as a template for a reduct of revision programs.
However, the first step in the construction of Gelfond and Lifschitz can be modified.
One can eliminate all those rules whose body is not satisfied by the hypothetical stable
model. The notion of the reduct changes but the notion of the stable model remains the
same! It is this approach that is generalized here to the case of revision programs.

The following theorem ties together the notions of reduct and GL-reduct for revision
programs, and shows that each can be used to define the notion of P -justified revision.

Theorem 2.12 Let P be a revision program and let I and R be two databases. The
following two conditions are equivalent:

(R1) NC(PI,R) is coherent and R = I ⊕ NC(PI,R),

(R2) NC(PR|I) is coherent and R = I ⊕ NC(PR|I).

Proof: Assume (R1). We will first show that

P u
I,R = PR|I. (6)

Consider a rule c
α← α1, . . . , αn

12

from P u
I,R. By the definition of P u

I,R,

α1, . . . , αn ∈ NC(PI,R).

Since R = I ⊕ NC(PI,R), Lemma 2.2 implies that

R |= α1, . . . , αn. (7)

By the definition of PI,R, none of the literals αj is in I(I,R). Hence, by Lemma 2.8
and (7), for every j, 1 ≤ j ≤ n,

I 6|= αj. (8)

Since c ∈ PI,R, there are literals β1, . . . , βk ∈ I(I,R) such that the rule c′, of the
form

α← α1, . . . , αn, β1, . . . , βk,

is in P . By Lemma 2.8, R |= β1, . . . , βk. Hence, by (7), c′ ∈ PR. Moreover, also by
Lemma 2.8, we have that I |= β1, . . . , βk. Hence, by (8), α ← α1, . . . , αn is in PR|I.
This proves that P u

I,R ⊆ PR|I.
To prove the converse inclusion, consider a rule c

α← α1, . . . , αn

from PR|I.
By the definition of PR|I, for every j, 1 ≤ j ≤ n, R |= αj and I 6|= αj. Hence, none

of αj is in I(I,R). Moreover, there are literals β1, . . . , βk such that I |= βj, 1 ≤ j ≤ k,
and the rule c′, of the form

α← α1, . . . , αn, β1, . . . , βk,

is in PR. It follows that R |= βj, 1 ≤ j ≤ k.
Now, it is easy to see that βj, 1 ≤ j ≤ k, are the only literals in the body of c′ that

belong to I(I,R). Consequently, c ∈ PI,R. Recall that R = I ⊕ NC(PI,R), and that
for every j, 1 ≤ j ≤ n, R |= αj and I 6|= αj. By Lemma 2.2, for every j, 1 ≤ j ≤ n,
αj ∈ NC(PI,R). Consequently, c ∈ P u

I,R.
Thus, we have proved (6). It follows that

NC(PI,R) = NC(P u
I,R) = NC(PR|I).

Consequently, NC(PR|I) is coherent and R = I ⊕ NC(PR|I).
Assume now that (R2) holds. We will prove (R1). We will show that also in this

case the identity (6) holds. First, recall that PR|I is obtained from PR by eliminating
from the body of each rule all literals satisfied by I. Since all literals in the body of each
rule of PR are satisfied by R, the result is the same when we eliminate from the body
of each rule in PR the literals satisfied both by I and R, that is, the literals in I(I,R).
It follows that

PR|I = (PR)I,R ⊆ PI,R.

13

Hence, NC(PR|I) ⊆ NC(PI,R).
Consider a rule c

α← α1, . . . , αn

from PR|I. Then, for every j, 1 ≤ j ≤ n, R |= αj and I 6|= αj. SinceR = I⊕NC(PR|I),
αj ∈ NC(PR|I) (Lemma 2.2). Consequently, (PR|I)

u = PR|I.
Observe now that every rule from PI,R \ (PR|I) has at least one literal in the body

that is not satisfied by R. Since, R = I ⊕ NC(PR|I), by Lemma 2.2 it follows that
every rule from PI,R \ (PR|I) has at least one literal in the body that does not belong
to NC(PR|I). By Lemma 2.5, it follows that P u

I,R = PR|I. That is, (6) holds.
The rest of the proof is almost as before. We have NC(PI,R) = NC(P u

I,R) =
NC(PR|I). Hence, NC(PI,R) is coherent and, therefore, R = I ⊕ NC(PI,R). 2

The analysis of the proof of Theorem 2.12 implies another important result. It will
be used frequently throughout the paper.

Theorem 2.13 Let P be a revision program and let R be a P -justified revision of I.
Then, P u

I,R = PR|I and NC(PI,R) = NC(PR|I) = head(PR). 2

Finally, we will state yet another characterization of justified revisions.

Theorem 2.14 The following conditions are equivalent:

1. A database R is a P -justified revision of a database I,

2. NC(P ∪ {α←: α ∈ I(I,R)}) = Rc,

3. NC(PI,R) ∪ I(I,R) = Rc.

Proof: It is easy to see that

NC(P ∪ {α←: α ∈ I(I,R)}) = NC(PI,R) ∪ I(I,R).

Hence, to prove the theorem, one only has to show the equivalence of (1) and (3).
Assume (3). Since Rc is coherent, NC(PI,R) is coherent, too. We will now show that
R = I⊕NC(PI,R). Let a ∈ R. Then in(a) ∈ Rc and, consequently, in(a) ∈ NC(PI,R)∪
I(I,R). If in(a) ∈ NC(PI,R), then a ∈ I ⊕NC(PI,R). So, assume that in(a) ∈ I(I,R).
It follows that a ∈ I. Since out(a) /∈ NC(PI,R) (recall that out(a) /∈ Rc), it follows that
a ∈ I ⊕ NC(PI,R). Hence, R ⊆ I ⊕ NC(PI,R). The converse inclusion can be proved
similarly. Hence, (1) follows. The proof that (1) implies (3) is similar and is left to the
reader. 2

14

3 Basic results

In this section we present a number of fundamental properties of revision programming.
All these results are very natural and indicate that the notion of P -justified revision
corresponds to the intuitions normally associated with the process of change.

Our first result shows that the notion of a P -justified revision indeed specifies a
semantics for revision programming, that is, that P -justified revisions are models of a
program P . In the terminology of Section 2, we show that JRP (B) ⊆MOD(P).

Theorem 3.1 Let P be a revision program and let I be a database. If a database R is
a P -justified revision of I, then R is a model of P .

Proof: Since R is a P -justified revision of I, R = I ⊕ NC(PR|I). By Lemma 2.2 and
Theorem 2.13, it follows that R |= head(PR). Consequently, R |= PR. Since for every
rule c ∈ P \ PR, R 6|= body(c), R |= c. Hence, R |= P . 2

A common feature of knowledge representation formalisms is the confirmation of
evidence property. If a belief set is selected on the basis of some data and if additional
data, consistent with this belief set is received, then there is no need to change the belief
set (although new belief sets may become possible at this point). This new evidence can
come as new facts already present in the belief set, and as new rules that are satisfied
by the belief set. The first of these possibilities was studied in the case of default logic
and logic programming [Rei80, MT93a]. The second one has not been explicitly studied
in the literature so far. We will now prove two versions of confirmation of evidence
property for revision programming.

In the next result, the assumption R ÷ B ⊆ R ÷ I means that B is “closer” to R
than I. That is, it contains additional confirmation for the choice of R as the revision
of I.

Theorem 3.2 Let R be a P -justified revision of I and let B be a database such that
R÷ B ⊆ R÷ I. Then, R is a P -justified revision of B.

Proof: Consider a rule c ∈ PR. Let α be a literal in the body of c. Assume that
B 6|= α. Since R |= α (recall that c ∈ PR), it follows that α /∈ I(B,R). By Lemma
2.8, α /∈ I(I,R). Since R |= α, it follows that I 6|= α. Consequently, for every rule
c ∈ PR|B, its body is a subset of the body of the corresponding rule in PR|I. Hence,

NC(PR|I) ⊆ NC(PR|B) ⊆ head(PR).

By Theorem 2.13, NC(PR|I) = NC(PR|B). Hence, NC(PR|B) is coherent. By Lemma
2.8(3), R = B ⊕ NC(PR|B). 2

The next result deals with the situation when additional evidence comes in the form
of new revision rules.

Theorem 3.3 Let R be a P -justified revision of I. Assume that P ′ is a revision program
such that R |= P ′. Then, R is a (P ∪ P ′)-justified revision of I.

15

Proof: Define P ′′ = P ∪ P ′. Then

P ′′
R|I = (PR|I) ∪ (P ′

R|I).

By Theorem 2.13, NC(PR|I) = head(PR). Hence,

head(PR) ⊆ NC(P ′′
R|I) ⊆ head(PR) ∪ head(P ′

R).

Since R is a model of P , R |= head(PR). Since R |= P ′, R |= head(P ′
R). Consequently,

R |= NC(P ′′
R|I). Thus, NC(P ′′

R|I) is coherent and

R = I ⊕ NC(PR|I) = I ⊕ NC(P ′′
R|I)

(by Lemma 2.2). 2

Theorem 3.3 implies the following corollary.

Corollary 3.4 Let P be a revision program. A database R is a PR-justified revision of
I if and only if R is a P -justified revision of I. 2

Another intuitive principle of revision is that if the current database satisfies all
desired constraints then no change is necessary. The next result shows that under the
semantics of justified revisions not only no change is necessary but, if there are no other
constraints, no change can be justified.

Theorem 3.5 If a database B satisfies a revision program P then B is a unique P -
justified revision of B.

Proof: Observe first that NC(PB|B) ⊆ head(PB). Since B is a model of P , we have
B |= head(PB). Consequently, NC(PB|B) is coherent and B = B ⊕ NC(PB|B) (Lemma
2.2). Hence, B is its own P -justified revision.

Consider now a P -justified revision B′ of B. Consider a rule c ∈ PB′ given by

α← in(a1), . . . , in(am),out(b1), . . . ,out(bn).

There are two possibilities.

Case 1. B satisfies the body of c. Since B is a model of P , B satisfies α. In addition,
α← belongs to PB′ |B.

Case 2. B does not satisfy the body of c. Then, the rule c′ that c contributes to PB′ |B
(that is, the rule obtained from c by eliminating from its body all literals satisfied by B)
has a nonempty body. In fact, none of the elements in the body of c′ is satisfied by B.

Hence, PB′ |B consists of rules of two types: (1) rules with the empty body and with
the head satisfied by B, and (2) rules with a nonempty body in which no element is
satisfied by B. It follows that B |= NC(PB′ |B). Hence, by Lemma 2.2, B⊕NC(PB′ |B) =
B. Since B′ is a P -justified revision of B, B′ = B ⊕ NC(PB′ |B). Hence, B = B′ and B is
a unique P -justified revision of B. 2

16

Major nonmonotonic reasoning systems and several theories of belief revision and
database update satisfy some version of the minimality (parsimony) principle. For ex-
ample, stable models of a logic program P are minimal models of P and extensions of
a default theory (D,W) are minimal theories closed under (D,W) (see [MT93b]). In
a modal nonmonotonic logic S, S-expansions can be characterized in terms of Kripke
models satisfying some minimality criteria ([Sch92, MT93b]). Similarly, in the case of
theories of belief revision and database update, we require that theories (databases) after
revision or update differ from the initial ones by “as little as possible”.

The process of change described by P -justified revisions has a strong proof-theoretic
flavor (we have an a posteriori valid justification of any change in status of every el-
ement). Consequently, the notion of a justified revision also satisfies certain natural
minimality criterion. Given two sets R and I, one can describe how much they differ
by means of their symmetric difference R ÷ I or, equivalently, by means of the corre-
sponding inertia set (Lemma 2.8). Intuitively, P -justified revisions of a database should
differ from the database by as little as possible. Our next result formally describes a
minimality condition satisfied by justified revisions.

Theorem 3.6 Let P be a revision program and let I be a database. If R is a P -justified
revision of I, then R÷ I is minimal in the family {B ÷ I:B is a model of P}.

Proof: Assume that B is a model of P and that B ÷ I ⊆ R ÷ I. It follows that
R÷ B ⊆ R÷ I. By Theorem 3.2, R is a P -justified revision of B. Since B is a model
of P , by Theorem 3.5, R = B. 2

Theorem 3.6 has a corollary which generalizes a well-known property that all stable
models (extensions) of a logic program (default theory) form an antichain.

Corollary 3.7 Let P be a revision program and let I be a database. If R and R′ are
P -justified revisions of I and R÷ I ⊆ R′ ÷ I, then R = R′. 2

We will now study the notion of a dual revision program. Each database B uniquely
determines its complement B = U \ B. We will now show that the chain of transitions

I 7→ I
P
7→ R 7→ R

can be performed directly by a single transformation

I
P ′

7→ R

for a suitably constructed program P ′.
For a literal in(a), its dual is the literal out(a). Similarly, the dual of out(a) is

in(a). The dual of a literal α is denoted by αD. For a set of literals L, we define
LD = {αD: α ∈ L}. Given a revision program P , let us define the dual of P (PD in
symbols) to be the revision program obtained form P by simultaneously replacing all
occurrences of all literals by their duals. It is easy to see that whatever has to be added

17

to I according to revisions specified by P has to be removed from I according to PD.
Similarly, whatever has to be removed from I according to P has to be added to I
according to PD. Hence, in revision programming there is duality between in and out
operators.

Theorem 3.8 (Duality Theorem) Let P be a revision program and let I be a data-
base. Then, R is a P -justified revision of I if and only if R is a PD-justified revision
of I.

Proof: Observe that for every database B

B
c
= (Bc)D.

Observe also that for every two databases I and R,

I(I,R) = I(I,R)D.

Finally, notice that for every revision program P ,

NC(PD) = (NC(P))D.

All these observations and Theorem 2.14 imply the assertion. 2

Finally, we will discuss some properties of necessary change and the notion of coher-
ence. The next result shows that updates implied by the necessary change of a program
P are consistent with the models of P .

Theorem 3.9 Let P be a revision program. For every model M of P , NC+(P) ⊆ M
and NC−(P) ∩M = ∅.

Proof: A setM of atoms is a model of a revision program if and only ifMc is a model of
a (Horn) logic program obtained from P by regarding each revision literal as a distinct
propositional atom. LetM be a model of P . By the definition of NC(P), NC(P) ⊆Mc.
Hence, the assertion follows. 2

Corollary 3.10 If a revision program P has a model then NC(P) is coherent. 2

The converse to Corollary 3.10 fails. For example, consider a program P = {in(a)←
out(a), out(a) ← in(a)}. Clearly, P has no models. In the same time, NC(P) = ∅.
Hence, it is coherent. However, the notion of coherence can be given a complete charac-
terization in terms of 3-valued models of revision programs. A three-valued interpretation
is a pair of sets of atoms 〈D1, D2〉 such that D1 ∩D2 = ∅. Consider a three-valued in-
terpretation V = 〈D1, D2〉. We say that V 3-satisfies in(a) if a ∈ D1. Similarly, V
3-satisfies out(a) if a ∈ D2. We say that V 3-satisfies a revision rule c if V 3-satisfies
the head of c whenever V 3-satisfies all literals in the body of c. Finally, V is a three-
valued model of a revision program P if P 3-satisfies all rules in P . It is easy to show
that a revision program is coherent if and only if P has a three-valued model.

We conclude this section by introducing another semantics for revision programs —
the semantics of supported revisions. It is based on similar ideas as the semantics of
supported models for logic programs [Cla78, MT93a].

18

Definition 3.11 A set of atoms R is a P -supported revision of I if head(PR) is coherent
and R = I ⊕ head(PR).

We will now present several properties of supported revisions. Our results generalize
two well-known results on logic programming: (1) each supported model of a logic
program P is a model of P , and (2) each stable model of a logic program P is a supported
model of P .

Theorem 3.12 Let P be a revision program and let I be a database. If a database R
is a P -supported revision of I then R is a model of P .

Proof: Clearly, R |= head(PR) (Lemma 2.2). Consequently, R |= PR. If c ∈ P \ PR,
then R 6|= body(c) and, consequently, R |= c. Hence, R |= P . 2

Theorem 3.13 Let P be a revision program and let I be a database. If a database R
is a P -justified revision of I, then R is a P -supported revision of I.

Proof: By Theorem 2.13, head(PR) = NC(PI,R). Hence, by the definition of P -justified
revisions, head(PR) is coherent and R = I ⊕ head(PR). 2

4 Relation to logic programming

In Section 2 we proved that P -justified revisions can be defined similarly to stable
models for logic programs [GL88]. We will now study the relationship between revision
programming and logic programming in more detail. In particular, we will propose an
interpretation of logic programs as revision programs.

Given a logic program clause c

p← q1, . . . , qm,not(s1), . . . ,not(sn) (9)

we define the revision rule rp(c) as

in(p)← in(q1), . . . , in(qm),out(s1), . . . ,out(sn). (10)

In addition, for a logic program P , we define the corresponding revision program rp(P)
by

rp(P) = {rp(c): c ∈ P}. (11)

Under this interpretation, several concepts in logic programming such as models,
stable models and supported models of logic programs can faithfully be represented in
terms of revision programs. (Recall thatM is a supported model of a logic program P
ifM = head(PM), where PM is the set of those clauses in P whose bodies are satisfied
byM [MT93a]).

Theorem 4.1 Let P be a logic program.

19

1. A set of atoms M is a model of P if and only if M is a model of rp(P).

2. A set of atoms M is a stable model of P if and only if M is an rp(P)-justified
revision of ∅.

3. A set of atoms M is a supported model of P if and only if P if and only of M is
an rp(P)-supported revision of ∅.

Proof: (1) We leave to the reader proving this part of the assertion.
(2) First, notice that for every R the inertia I(∅,R) consists of negative literals only.
Specifically,

I(∅,R) = {out(a) : a /∈ R}.

Second, since the image of the logic program consists of in-rules only, the necessary
change NC(P∅,M) consists of positive literals only.

Now, let P be a logic program and rp(P) its revision programming translation. Then
M is a stable model of P if and only ifM coincides with the least model of the Gelfond-
Lifschitz reduct of P with respect toM, GL(P,M) (see [GL88]). Notice that rp(P)∅,M
is obtained from rp(P) by eliminating from the bodies of rules in rp(P) all the literals in
I(∅,M). But, as observed above, this inertia set consists of negative literals only. Since
the reduced program consists of in-rules, we can now apply Lemma 2.5 and eliminate
all rules which have negative literals in the body, since they will not be usable. It is
easy to see that the resulting program is precisely the image of the original Gelfond-
Lifschitz reduct1 of P under the embedding rp. This implies that the necessary change
of rp(P)∅,M is {in(a) : a ∈M}. But thenM is a P -justified revision of ∅.

It is easy to see that we used only equivalences, and so the converse implication holds
as well.
(3) Since P is a logic program, it is easy to see thatM = ∅⊕ head(rp(P)M) if and only
ifM = head(PM). This yields the assertion. 2

Theorem 4.1 implies that every characterization of justified revisions has its coun-
terpart — a characterization of stable models of logic programs. In particular, Theorem
2.12 implies a characterization of stable models in terms of a “symmetric” version of
Gelfond-Lifschitz reduct. Similarly, Theorem 2.14 implies a characterization of stable
models equivalent to the one provided in [BTK93] in terms of the assumption-based
framework.

The second confirmation of evidence property (Theorem 3.3) together with the trans-
lation result (Theorem 4.1) imply the following confirmation property for stable models
of logic programs.

Corollary 4.2 Let P and P ′ be logic programs. Let M be a stable model of P . If
M |= P ′ then M is a stable model of P ∪ P ′.

1In Section 2 we used modified Gelfond-Lifschitz reduct.

20

Notice that under the assumptions of Corollary 4.2, althoughM remains the stable
model of P ∪ P ′, the class of stable models of P is not, in general, preserved. That is,
some of the stable models of P may no longer be stable models of P ∪P ′, and new stable
models of the larger program may appear.

We have just argued that logic programs can be regarded as special revision programs.
In fact, the relationship between logic and revision programming is even more interesting.
Przymusinski and Turner [PT95] discovered an encoding of revision programs in terms
of logic programs which expresses justified revisions in terms of stable models. Thus,
revision programs can be viewed as special logic programs. A natural question to ask is
then: why to study revision programs at all?

In our view there are several reasons. The language of revision programming is
tailored directly to situations in which we need to state and enforce constraints on
presence and absence of elements in sets. Such features are important in the areas of
database update and belief revision. Consequently, revision programming is a formalism
which allows us to state problems of importance in these areas in an explicit and direct
manner.

As shown by Przymusinski and Turner, revision programming can be embedded into
logic programming with stable model semantics but, in the process, new symbols have
to be introduced, the size of a program grows, justified revisions are not just stable
models but have to be decoded from stable models, and finally, clear intuitions behind
in and out operators become obscure. In addition, the embedding described in [PT95],
while mapping justified revisions to stable models, does not map supported revisions
to supported models, despite the existing natural correspondence between these two
concepts, evident from the results presented in this section.

On the other hand, the embedding of logic programming into revision programming
discussed in our paper is as simple as it can be. Up to a simple renaming of literals,
it is an identity embedding. Consequently, results on revision programming directly
and literally imply specifications that apply to logic programs. In particular, notions of
models, supported models and stable models are uniformly mapped to the corresponding
concepts in revision programming.

Next, as we discuss in more detail in Section 6, the existence of the encoding of
revision programs as logic programs allows us to identify classes of logic programs with
interesting arithmetic complexity properties. These programs and corresponding results
are easy to describe in terms of revision programs while direct descriptions are less
obvious.

Finally, from the vintage point of revision programs, it becomes clear that the realm
of ”programs” goes beyond just logic programs. There are programs which compute by
adding new facts to the initially empty database (logic programs), programs that com-
pute by deleting facts from a Herbrand base (revision programs dual to logic programs)
and all combinations of these two cases.

21

5 Sequential revision process

Our definition of P -justified revisions has a certain “global” character. It is based on
two operators that are applied to programs rather than to individual rules. The first of
these operators assigns the reduct to a revision program, the other one assigns to the
reduct the necessary change it implies. Hence, P -justified revisions of I can be viewed
as the results of applying all rules of P to I “in parallel”. In this section, we will present
a different description of P -justified revisions. We will show that P -justified revisions
of I are exactly those databases R which can be obtained from I by executing all rules
of P one by one according to some enumeration of the rules in P . This property of the
semantics of P -justified revisions is similar to the notion of serializability in transaction
management.

For every rule c ∈ PB, B |= body(c). Hence, we will call all rules in PB — B-applicable.
For example, the rule in(c) ← in(a),out(b) is not B-applicable for B = {a, b} and it is
B-applicable for B = {a, d}.

If a rule c is B-applicable then its conclusion can be executed on the database B and,
according to the head of c, an atom will be inserted to or deleted from B. Assume that
a certain well-ordering (enumeration) ≺ of the rules of P is given. Then, the following
sequential revision process can be considered: in each step select the first rule according
to ≺ which has not been selected before and which is applicable with respect to the
current state of the database. Modify the database according to the head of the selected
rule. Stop when selection of a rule, according to these principles, is no longer possible.
The question that we deal with in this section is: how the results of such revision process
relate to P -justified revisions?

Example 5.1 Let B = ∅ and let P consist of the following two rules:

(1) in(c)← out(b) (2) in(b)← in(c).

Let us process the rules in the order they are listed. Rule (1) is applicable with respect to
B = ∅. Hence, the update in(c) is executed and we get a new database B1 = {c}. Now,
the second rule is the first B1-applicable rule not applied yet. Hence, the update in(b)
is executed. Consequently, the next database B2 = {b, c} is obtained. Since there are no
other rules left, the process stops. Notice, however, that rule (1) is not B2-applicable.
Hence, the justification for inserting c is lost and B2 should not be regarded as a revision
of B. Observe that B2 is not a P -justified revision of B.

Example 5.1 shows that there are cases when processing rules sequentially does not
lead to a P -justified revision. The problem is that some of the rules applied at the
beginning of the process may be rendered inapplicable by subsequent updates. But
there is yet another source of problems.

Example 5.2 Let B = {a} and let P consist of the following three rules:

22

(1) in(c)← out(b) (2) in(d)← in(a) (3) out(c)← in(d).

Let us process the rules in the order they are listed. After using rule (1) we get a
new database: B1 = {a, c}. Then, rule (2) is B1-applicable and after the update we
obtain the database B2 = {a, c, d}. Finally, we apply rule (3) and produce the database
B3 = {a, d}. Notice that all the rules applied in the process are B3-applicable. But B3

is not a model of the program P . The reason is that the set of literals produced in the
process is not coherent. Hence, B3 cannot be regarded as a possible revised version of
B. Observe also that, since B3 is not a model of P it is not a P -justified revision of B.

It turns out that Examples 5.1 and 5.2 capture all such cases when processing rules
of the program according to some ordering does not yield a P -justified revision.

We will now formally define the sequential revision process and provide a precise
formulation of the statement above. The approach we take is similar to our earlier
result in which default extensions (and, hence, also stable models of logic programs)
are characterized as results of some sequential computation by means of default rules
(program clauses) [MT93a].

Let I be a set of atoms (a database) and let P be a revision program. Both I and P
may be infinite. Let {ct}t<n be an enumeration of rules in P . Here n stands for a natural
number or an infinite ordinal (if the revision program P is infinite). Our argument is
suitable for both finite and infinite case. For simplicity we assume that n is finite. A
reader familiar with induction arguments will have no problem extending the argument
to the transfinite case.

We define an integer n∗, a sequence of integers {tq}1≤q<n∗ and a sequence of sets
{Lq}q<n∗ as follows. First, we set

L0 = ∅.

Let p ≥ 1 be an integer. Assume that we have already defined coherent sets Lq of literals,
for q < p, and integers tq, for 1 ≤ q < p. Set

L<p =
⋃

q<p

Lq.

Observe that L<p is coherent and define

B<p = I ⊕ L<p.

Set L<p represents all updates produced by the process so far and B<p is the result of
revising I by L<p. Next, define

A<p = PB<p
\ {ctq : 1 ≤ q < p}.

The set A<p consists of all rules that are applicable with respect to the database B<p

and have not been applied in the process yet.
If A<p = ∅ then we stop the construction and set n∗ = p. Otherwise, we define

tp = min{t: ct ∈ A<p}

23

and
Lp = L<p ∪ {head(ctp)}.

If Lp is incoherent, define n∗ = p + 1 and stop. Otherwise, continue. The cardinality
argument ensures that the construction terminates.

After the construction terminates, define L =
⋃

q<n∗ Lq. If L is coherent, we also
define R = I ⊕ L. In such case, R = B<n∗ .

Note that n∗ and the sequences {Lq}q<n∗ , and {tq}1≤q<n∗ depend on the enumeration
≺ of P . We suppressed ≺ in the notation in order to simplify it.

The process described above is called the sequential revision process for the enumer-
ation ≺ and a database I. A well-ordering (enumeration) of a revision program P is
called a posteriori consistent for I if all the rules of P that were applied in the cor-
responding sequential revision process ({ctq : 1 ≤ q < n∗}) are applicable with respect
to the resulting database R. It is called sound for a database I if L is coherent. The
ordering considered in Example 5.1 is not a posteriori consistent for I = ∅, The ordering
given in Example 5.2 is not sound for I = {a}.

Theorem 5.3 Let P be a revision program and let I be a database. A database R is
a P -justified revision of I if and only if there exists an enumeration of P which is a
posteriori consistent and sound for I and such that R = I ⊕ L, where L is the set of
literals produced by the corresponding sequential revision process.

Proof: We will use in the proof the notation introduced in the definition of the sequential
revision process. Let ≺ be an ordering of P , a posteriori consistent and sound for I.
Let L be the set of literals produced by the corresponding sequential revision process.
It follows that L = L<n∗ . We will prove that the database R = I ⊕ L is a P -justified
revision of I.

Since the ordering ≺ is a posteriori consistent, it follows that for every q, 1 ≤ q < n∗,
R |= body(ctq). Hence,

{ctq : 1 ≤ q < n∗} ⊆ PR.

Since R = B<n∗ , by the definition of the sequential revision process, PR \ {ctq : 1 ≤ q <
n∗} = ∅ (otherwise, the sequential revision process would not terminate on the integer
n∗). Hence,

PR = {ctq : 1 ≤ q < n∗}. (12)

In particular,
L = head(PR). (13)

Next, notice that for every p, 1 ≤ p < n∗,

body(ctp) ⊆ head({ctq : 1 < q < p}) ∪ I(I,R). (14)

Indeed, let α ∈ body(ctp). Then B<p |= α. Since ctp ∈ PR, R |= α. If I |= α, then
α ∈ I(BI ,R) (Lemma 2.8). So, assume that I 6|= α, Since B<p = I ⊕ L<p, by Lemma
2.2 it follows that α ∈ L<p. Since, L<p = {head(ctq): 1 ≤ q < p}, (14) follows.

24

Now, by (13), (14) and Lemma 2.6,

L = head(PR) = LM(PR|I(I,R)) = NC(PR|I(I,R)) = NC((PR)I,R).

Hence, R is a PR-justified revision of I (recall that L is coherent). By Corollary 3.4, R
is a P -justified revision of I.

Conversely, let us assume that R is a P -justified revision of I. Let {ck: 1 ≤ k < n}
be an enumeration of the rules of PR such that for every k ≥ 1,

body(ck) ⊆ head({cm: 1 < m < k}) ∪ I(I,R).

Existence of such enumeration is guaranteed by Lemma 2.7. Indeed, by Theorem 2.13,

PR|I(I,R) = PR|I = (PI,R)u = (P |I(I,R))u.

Let ≺1 be the enumeration of PR consistent with the enumeration {ck: 1 ≤ k < n}
and let ≺2 be any enumeration of P \ PR. For c, c′ ∈ P , define c ≺ c′ precisely in one of
the following three cases:

1. c ∈ PR and c′ ∈ P \ PR

2. c, c′ ∈ PR and c ≺1 c′

3. c, c′ ∈ P \ PR and c ≺2 c′.

Clearly, ≺ is an enumeration of P . It is easy to show by induction that for every k,
1 ≤ k < n,

tk = k.

Since R = B<n, An = ∅. Hence, n∗ = n and the sequential revision process terminates
with B = R. Consequently, ≺ is a posteriori consistent and sound. 2

Theorem 5.3 states that P -justified revisions correspond to a class of orderings of
the revision program P . It allows us to construct a P -justified revision of I by means
of a process in which rules are applied sequentially one-by-one, assuming an a posteriori
consistent and sound ordering of P can be found.

6 Safe programs

Given a database B and a revision program P , there is no guarantee that there is a
database B′ such that B′ is a P -justified revision of B. Moreover, if such revision exists,
there is no guarantee that this revision is unique. This may be considered a drawback
of revision programming as a proposal for the formalism to describe database revisions
and updates. The goal of this section is to exhibit classes of revision programs which
have a property that is highly desirable from the point of view of any practical database
applications: to every initial database they assign a unique justified revision.

25

The problem outlined here appears also in other domains. For example, a logic
program can have no, one or many stable models. This was of concern to the logic
programming community and two important classes of logic programs were exhibited
with exactly one stable model. These are the class of all Horn programs and the class
of all stratified programs [ABW88]. We will now extend these concepts to the case
of revision programming. We will first introduce the notion of a safe program. Safe
programs generalize Horn programs to the domain of revision programming.

Let us observe that for any coherent set of literals L, the program {α ←: α ∈ L}
has the desired property that every initial database admits exactly one revision. The
notion of safeness, introduced below, can be viewed as a generalization of the notion of
a coherent set of literals.

Definition 6.1 A revision program P is safe if for every literal α ∈ head(P), αD /∈
var(P).

For example, the program

P1 = {in(a)← out(b)}

is safe. Similarly,

P2 = {in(a)← out(b), in(e),out(c)← out(e),out(d)← in(a),out(b)←}

is also safe. However, the program

P3 = {in(a)← out(b), in(b)← out(a)}

is not safe. In the context of logic programming safeness is the requirement that if the
atom appears negated in the body of a logic program clause, then it does not appear
among the heads of the clauses of the program. It is well known that each such logic
program possesses a unique stable model.

Safeness is a syntactic condition and, more importantly, it can be checked in linear
time. In addition, safe revision programs have several other desirable properties all es-
sentially amounting to the fact that safe revision programs uniquely determine a revision
of any initial database.

Theorem 6.2 Let P be a safe revision program. Then, for every database I:

1. There is a unique R such that R is a P -justified revision of I.

2. For every enumeration ≺ of P , the result of the sequential revision process for ≺
and I is the unique P -justified revision of I.

3. The unique P -justified revision for I can be computed in time proportional to the
total size of I and P .

26

Proof: We will first prove (1). Let L be a set of literals such that L ⊆ head(P). By
safeness of P , L is coherent. Define B′ = B ⊕ L. We will first show that

P |B = PB,B′ . (15)

Indeed, let α be a literal in a body of a rule c ∈ P . Assume that B |= α. Since αD /∈ L
(safeness), B′ |= α. Consequently, α ∈ I(B,B′). Conversely, assume that α ∈ I(B,B′).
If α = in(a), then a ∈ B ∩ B′. If α = out(a), then a /∈ B ∪ B′. In each case, B |= α.
It follows that a literal is removed from the body of a rule in the construction of P |B
if and only if it is removed during the construction of P |I(B,B′) = PB,B′ . Hence, (15)
follows.

Let D = B⊕NC(P |B). Clearly, NC(P |B) is coherent (by safeness of P). In addition,
by (15),

D = B ⊕ NC(P |B) = B ⊕ NC(PB,D).

Hence, D is a P -justified revision of B. Uniqueness of D follows directly from (15).
Indeed, if D and D′ are P -justified revisions of B, then

D = B ⊕ NC(PB,D) = B ⊕ NC(P |B) = B ⊕ NC(PB,D′) = D′.

(2) Observe that safeness implies that no rule has in its body a literal whose dual ap-
pears in head(P). Consequently, when the sequential revision process terminates, all the
rules that were applied in the process, remain applicable with respect to the resulting
database. In other words, ≺ is a posteriori consistent. Moreover, since head(P) is co-
herent, ≺ is sound. Hence, for every enumeration ≺, the result of the sequential revision
process is a P -justified revision of B (and it is unique by (1)).

(3) Notice the following facts. First, the reduction process of P with respect to B can
be performed in time proportional to the total size of P and B. Next, we find the
least model of reduced program. This can be done in time proportional to its size (see
[DG84]), which is bound by the size of the original program. Finally, the database B
has to be updated by the computed set of literals (necessary change). This again can
be accomplished in time proportional to the total size of B and P . 2

Property (1) in Theorem 6.2 generalizes a well-known property of Horn programs
that states that every Horn program has a unique least model. Property (3) and its
proof imply a deterministic, linear-time algorithm for computing justified revisions for
safe programs.

As in logic programming, some of useful properties of safe programs can be extended
to a wider class of programs.

Definition 6.3 Let P be a revision program and let {Pt}0<t<n be a partition of P . We
say that {Pt}0<t<n is a stratification of P if for every 0 < t < n:

1. Pt is safe, and

27

2. if α ∈ head(Pt) then α, αD /∈
⋃

q<t var(Pq).

Clearly, each safe program is stratified. Notice also that revision programs obtained
from locally stratified logic programs under the interpretation described in Section 2 are
stratified according to Definition 6.3.

To test if a finite revision program P is stratified and, if so, to find a partition of P
into strata, one can use a modified version of the algorithm of Apt, Blair and Walker
[ABW88]. It takes linear time in the size of a revision program P .

Several important properties of safe revision programs can be extended to the class
of stratified programs. In particular, we have the following generalization of Theorem
6.2(1).

Theorem 6.4 Let P be a stratified revision program. For every database B there exists
a unique database D such that D is a P -justified revision of B.

Proof (sketch): Let {Pt}0<t<n be a stratification of P . For every t, 0 < t < n, define

Bt = {a ∈ B : in(a) ∈ head(Pt) or out(a) ∈ head(Pt)}.

Intuitively, Bt is this part of B that can be affected by revisions implied by the program
Pt. Next, define B0 = B \

⋃

0<t<n Bt. Clearly, {Bt}t<n is a partition of B.
Now, we proceed as follows. First, we define D0 = B0, and we put Dt to be a unique

Pt-justified revision of the database Bt ∪ D
<t, where D<t =

⋃

r<tDr. Then, we define

D =
⋃

t<n

Dt.

Here is an informal account of what happens during the construction. Since B0

cannot be revised by means of P at all, it is put into D at once. Subsequently, at each
stage t we revise Bt ∪ D

<t. Observe that D<t is the result of revisions at earlier stages.
Due to stratification of P , the program Pt cannot modify D<t. Hence, it will remain
unchanged. What will change is Bt. However, since the rules of Pt may contain in their
bodies literals whose status is established in earlier stages of the construction, D<t must
be explicitly used as input. At the end we output the union of constructed layers.

We need to show that B ⊕NC(PB,D) = D. To this end, we observe (the proof is left
to the reader) that by stratification

NC(PB,D) =
⋃

0<t<n

NC(Pt|(Bt ∪ D
<t)).

Hence

B ⊕ NC(PB,D) =

(

⋃

t<n

Bt

)

⊕

(

⋃

0<t<n

NC(Pt|(Bt ∪ D
<t))

)

.

It is easy to see that the latter set coincides with

B0 ∪

(

⋃

0<t<n

Bt ⊕ NC(Pt|(Bt ∪ D
<t))

)

= D0 ∪
⋃

0<t<n

Dt = D.

28

Hence, the existence of a P -justified revision of B follows.
The uniqueness part follows the usual line of stratification arguments, see [MT93a].

We leave the task of checking this to the reader. 2

Let us consider a stratification {Pt}0<t<n of a stratified program P . An enumeration
≺ of P agrees with the the stratification {Pt}0<t<n if for every t1 < t2 < n, and for every
rules c1 ∈ Pt1 and c2 ∈ Pt2 , c1 ≺ c2. It is easy to see that such orderings exist. Now, we
can generalize Theorem 6.2(2).

Theorem 6.5 Let P be a stratified revision program and let I be a database. Then for
every stratification {Pt}0<t<n of P and for every enumeration ≺ of P which agrees with
the stratification {Pt}0<t<n, the result of the sequential revision process for ≺ and I is
the unique P -justified revision of I. 2

It should be clear that the argument of Theorem 6.4 yields an algorithm for com-
putation of the unique P -justified revision of database B whenever P is stratified. The
algorithm computes the revision in stages and, in each stage, a different stratum Pt is
used. Since Pt is safe, the revision can be computed in time linear in the total the size
of Pt, Bt and D<t. If we maintain the set of literals from D computed up to stage t (that
is, the set D<t) as a characteristic array, then the computation of Pt|(Bt ∪ D

<t) can be
performed in time linear in the size of Pt and Bt. Consequently, the computation of a
unique revision of a finite database B by a finite stratified revision program P can be
accomplished in time linear in the total size of P and B. Hence, we have the following
generalization of Theorem 6.2(3).

Theorem 6.6 Let P be a finite stratified revision program and let I be a finite database.
Then a unique P -justified revision of I can be computed in time proportional to the total
size of P and I. In particular, the assertion holds for safe programs. 2

We will conclude this section with a discussion of complexity issues for infinite safe
programs. Apt and Blair [AB90] proved that finite stratified predicate programs and
infinite recursive propositional programs with at most n strata compute precisely Σ0

n

sets of natural numbers (for n = 1 this result was proved by Smullyan [Smu68]; see also
[AN78]). This result provides an insight in the relationship between the complexity of
stratified logic programs, measured in terms of the number of strata, and the complexity
of sets that these programs compute. Revision programming allows for a subtler study
by explicitly allowing for deletions and by providing two control parameters: the com-
plexity of an initial database and the complexity of a revision program (expressed in the
number of strata). We will illustrate this thesis with one example, in which the com-
plexity of justified revisions of recursive databases by means of recursive safe programs
is determined.

Definition 6.7 [EHK81]

1. A subset A ⊆ ω is called a d.r.e. set (difference of r.e. sets) if there are r.e. sets
B,C such that A = B \ C.

29

2. A subset A ⊆ ω is weakly d.r.e. if both A and ω \ A are d.r.e. sets.

The class of d.r.e. sets is not closed under complements in the very same way as r.e.
sets are not closed under complements. However, the class of weakly d.r.e. sets is closed
under complement. In some sense, weakly d.r.e sets play the role of “recursive” sets with
respect to d.r.e. sets. More on d.r.e. sets can be found in [EHK81]. The relationship of
weakly d.r.e. sets to revision programming is explained in the following theorem.

Theorem 6.8 Let B be a recursive database and P be a recursive safe program. Then
the result of P -justified revision of B is a weakly d.r.e. set.

Proof: Let B be a recursive database and P a recursive and safe program. First, observe
that P |B is recursively enumerable. Indeed, let P be a range of a recursive function
f . We define a function g as follows. On input n, function g first computes the rule
f(n) = α ← β1, . . . , βk. When this is done, function g checks if for all j, 1 ≤ j ≤ k,
B |= βj (recall that B is recursive). If so, βj is eliminated from the body of f(n),
otherwise it is left there. Clearly, the function g so defined is recursive and its range is
P |B. Therefore P |B is recursively enumerable.

Next, notice that since P |B is recursively enumerable, so is its least model NC(P |B).
This in turn implies that NC+(P |B) and NC−(P |B) are recursively enumerable. More-
over, P being safe, NC(P |B) is guaranteed to be coherent. It is easy to see that a unique
P -justified revision B′ of B can be written as:

B′ = (B ∪ {a : in(a) ∈ NC+(P |B)}) \ {b : out(b) ∈ NC−(P |B)}.

Since, {a : in(a) ∈ NC+(P |B)} and {b : out(b) ∈ NC−(P |B)} are recursively enumerable
and B is recursive, we see that B′ is a d.r.e. set.

Finally, notice that since B is recursive then so is B. Similarly, since P is recursive
then so is PD (recall that PD stands for the dual program for P , described in the proof
of Theorem 3.8). In addition, it is easy to see that if a revision program P is safe, PD

is safe, too. Consequently, by the Duality Theorem (Theorem 3.8) and the first part of
our argument, B′ is also a d.r.e. set. Thus, B′ is a weakly d.r.e. set, as claimed. 2

Let us discuss the role of Theorem 6.8. It implies that recursive safe revision programs
on recursive inputs compute strictly less than stratified logic programs with two strata.
Indeed, it is well known [EHK81] that the class of weakly d.r.e. sets is strictly smaller
than the class ∆0

2 and, consequently, than the class Σ0
2, which is computed by stratified

programs with two strata. In the same time, recursive safe revision programs on recursive
inputs compute strictly more than Horn programs. For, instance, it is easy to construct
recursive safe revision programs computing co-r.e. sets on recursive inputs. Hence,
revision programs give rise to a finer classification of logic programs with respect to
their expressibility.

30

7 Complexity and algorithms

We will now study the complexity of problems involving justified revisions. Related
results concerning logic programming with stable and supported models can be found in
[MT91, Sch95]. We will also present algorithms for computing justified revisions, given
a finite revision program and a finite initial database.

Problems we are interested in can be be grouped into three broad categories:

Existence: Does a justified revision exist?

Membership in some: Does an atom a belong to some justified revision?

Membership in all: Does an atom a belong to all justified revisions?

To study the complexity of these problems we will need simple auxiliary facts.

Theorem 7.1 Let P be a revision program.

1. There exist databases I and R such that R ∈ JRP (I) if and only if P has a model.

2. If a database R is a P -justified revision of a database I then there is a coherent
set of literals L ⊆ head(P) such that R = I ⊕ L.

Proof: If R ∈ JRP (I), then R is a model of P (Theorem 3.1). Conversely, if B is a
model of P , then B ∈ JRP (B) (Theorem 3.5). The second part of the theorem is a
direct consequence of the definition of P -justified revisions. 2

Let us also observe that the following algorithm Check correctly verifies whether a
database R is a P -justified revision of a database I.

Check(P, I,R)
(1) Compute the program PI,R

(2) Compute NC(PI,R)
(3) if NC(PI,R) is incoherent then return{false}
(4) if R = I ⊕ NC(PI,R) then return{true} else return{false}

It is clear that algorithm Check can be implemented to run in polynomial time (in
fact, a linear-time implementation is also possible) in the size of P , I and R.

We are ready to investigate the complexity of decision problems associated with re-
vision programming. We will consider several versions and specializations of the three
broad problems, Existence, Membership in some and Membership in all, that are men-
tioned above. They are described in Table 7.1. In this table, P stands for a finite revision
program, α for a literal, a for an atom, and I and R for finite databases.

31

Problem Input Question

E1 P ?∃ I, R such that R ∈ JRP (I)

E2 P , I ?∃ R such that R R ∈ JRP (I)

E3 P , R ?∃ I such that R R ∈ JRP (I)

MS1 P , α ?∃ I, R such that R ∈ JRP (I) and α ∈ I(I,R)

MS2 P , α ?∃ I, R such that R ∈ JRP (I) and α /∈ I(I,R)

MS3 P , a, I ?∃ R such that R ∈ JRP (I) and a ∈ R

MS4 P , a, R ?∃ I such that R ∈ JRP (I) and a ∈ I

MS5 P , a, I ?∃ R such that R ∈ JRP (I) and a /∈ R

MS6 P , a, R ?∃ I such that R ∈ JRP (I) and a /∈ I

MA1 P , α ?∀ I, R such that R ∈ JRP (I), α /∈ I(I,R)

MA2 P , α ?∀ I, R such that R ∈ JRP (I), α ∈ I(I,R)

MA3 P , a, I ?∀ R such that R ∈ JRP (I), a /∈ R

MA4 P , a, R ?∀ I such that R ∈ JRP (I), a ∈ I

MS5 P , a, I ?∀ R such that R ∈ JRP (I), a ∈ R

MS6 P , a, R ?∀ I such that R ∈ JRP (I) and a ∈ I

Table 7.1 Decision problems in revision programming

For these problems, we have the following result.

Theorem 7.2 (1) Problems E1 and E2 are NP-complete. Problem E3 can be decided
in time linear in the size of P and R.
(2) Problems MS1 - MS3 and MS5 are NP-complete. Problems MS4 and MS6 are in P.
(3) Problems MA1 - MA3 and MA5 are coNP-complete. Problems MA4 and MA6 are
in P.

Proof: (1) Consider a nondeterministic algorithm that, given P , first guesses a database
B consisting of some atoms occurring in P and, then, checks whether B is a model of P .
This last task can be accomplished in polynomial time. By Theorem 7.1(1), problem
E1 is in NP. We will now show that E1 is NP-complete by describing a polynomial-time
reduction of the propositional satisfiability problem to E1. Let C = {c1, . . . , ck} be a
collection of clauses. Assume that each clause is in the form

a1 ∧ a2 ∧ . . . ∧ ak → ak+1,

where each ai is a literal. For each such clause C define a revision rule rp(c)

αk+1 ← α1, α2, . . . , αk,

where αi = in(ai), if ai is an atom, and αi = out(a′
i), if ai is the negation of an atom a′

i.
It is easy to see that B is a model of C if and only if B is a model of a revision program
{rp(c): c ∈ C}. Hence, by Theorem 7.1(1), C is satisfiable if and only if problem E1 has
answer YES for the revision program {rp(c): c ∈ C}.

32

By Theorem 7.1 it follows that the problem E2 is in NP. Indeed, to decide (nonde-
terministically) whether there is a P -justified revision of a database I, it is enough to
guess a subset L of head(P), check that it is coherent, compute R = I ⊕ L and, finally,
use algorithm Check(P, I,R) to verify that R is a P -justified revision of I.

Furthermore, problem E2 is NP-complete. It follows from the observation that under
the restriction to programs consisting of in-rules only and to the case I = ∅, problem
E2 becomes equivalent to the question whether a logic program has a stable model
(Theorem 4.1), which is known to be NP-complete [MT91].

Finally, problem E3 is equivalent to the problem whether R is a model of P . Hence,
E3 can be decided in linear time.

(2) We will start with problem MS4. Consider the following algorithm.

1. If R is not a model of P then return NO and stop.

2. If R is a model of P and a ∈ R then return YES and stop.

3. if R is a model of P and a /∈ R then, if R is a P -justified revision of R∪{a} then
return YES and stop, otherwise, return NO and stop.

This algorithm can be implemented to run in polynomial time (using algorithm
Check described earlier). It is also correct. Indeed, if R is not a model of P there is
no I such that R is a P -justified revision of I (Theorem 3.1). If R is a model of P and
a ∈ R, the answer is YES since R is a P -justified revision of R (Theorem 3.5). Finally,
if R is a model of P and a /∈ R then, by Theorem 3.2, there is a database I such that
a ∈ I and R is a P -justified revision of I if and only if R is a P -justified revision of
R∪ {a}. It follows that MS4 is in P.

In a similar way, one can show that MS6 is in P. The key observation (again implied
by Theorem 3.2) is that if R is a model of P and a ∈ R, then there exists a database
I such that R is a P -justified revision of I and a /∈ I if and only if R is a P -justified
revision of R \ {a}.

Next, we will deal with problems MS1, MS2, MS3 and MS5, All of them are in
NP. For example, an algorithm to decide MS1 first nondeterministically guesses two
databases I an R. Then, it checks that R is a P -justified revision of I (using algorithm
Check). Finally, it checks that α ∈ I(I,R). It is clear that this nondeterministic
algorithm runs in polynomial time.

NP-completeness of MS3 and MS5 follows from the fact that their restricted versions
(when P consists of in-rules only and I = ∅) are equivalent to the problems to decide
whether a given element belongs (does not belong, respectively) to a stable model of a
logic program, which is known to be NP-complete ([MT91, Sch95]).

Let us consider now problem MS1. It is easy to see that problem E1 can be polyno-
mially reduced to MS1. Let P be a finite revision program. Let x be an atom not in U .
Define P ′ = P ∪ {in(x) ← in(x)}. It is easy to see that R is a P -justified revision of
I if and only if R ∪ {x} is a P ′-justified revision of I ∪ {x}. Hence, any algorithm for
MS1, when used for P ′ and x, decides problem E1. It follows that MS1 is NP-complete.

33

A similar argument works for problem MS2. As before, let P be a finite revision
program and let x be an atom not in U . Define P ′ = P ∪ {in(x) ← }. One can
now show that R is a P -justified revision of I if and only if R ∪ {x} is a P ′-justified
revision of I. Hence, E1 can be polynomially reduced to MS2, which implies that MS2
is NP-complete.

(3) Observe that problem MAi is the complement of problem MSi, 1 ≤ i ≤ 6. Conse-
quently, the result follows from Theorem 7.2. 2

We will conclude this section with two straightforward algorithms for computing all
P -justified revisions for a given database I. The first of these algorithms, Guess and Check,
is based directly on the definition of justified revisions and on Theorem 7.1.

Guess and Check(P, I)
(1) for every coherent subset L of head(P) do
(2) B := I ⊕ L
(3) if Check(P, I,B) then output B as a P -justified revision of I.

The next algorithm is based on the sequential revision process idea. Namely, it is
based on Theorem 5.3 which states that all P -justified revisions of I can be found if
all possible orderings of rules in P are considered. In the description given below, L
stands for the set of literals produced so far in the construction, B stands for the current
database, R consists of all the rules that were already used and A stands for the rules
that can be applied in a current stage. If the algorithm does not generate any output,
I has no P -justified revisions.

Sequential Revision Process(P, I)
(1) for all total orderings ≺ of P do
(2) L := ∅
(3) B := I
(4) R := ∅
(5) A := PB

(6) while L is coherent and A 6= ∅ do
(7) c:= ≺-first rule in A
(8) L := L ∪ {head(c)}
(9) R := R ∪ {c}
(10) if L is coherent then
(11) B := I ⊕ L
(12) A := PB \R
(13) if L is coherent and PB = R then report “B is a P -justified revision of I”

Checking coherence of L in line (13) verifies that ≺ is sound, and checking that
PB = R decides a posteriori consistency.

As stated, this algorithm is more complex than the previous one (the main loop has to

34

be repeated |P |! times). However, it can be improved. In fact, to insure its completeness,
it is enough to consider only a subset of the set of all orderings of cardinality at most
2|P |.

These algorithms can only be regarded as the departure point for any serious study
of algorithms for computing justified revisions. Specifically, as in the case of stable
model computation, search space pruning techniques have to be developed to make
these algorithms practical. This is the subject of a work in progress.

High complexity of computing justified revisions is a serious problem. Fortunately,
there are wide classes of programs (safe and stratified) whose computational properties
are much better. We have discussed them in Section 6.

8 Conclusions

In this paper we introduced revision programming — a logic-based framework for de-
scribing constraints on databases and providing a computational mechanism to enforce
them.

Revision programming has an elegant theory. The change (revisions performed) is
minimal and justified by the revision program based on the inertia set — a collection
of literals that do not change status during the revision. There is a natural notion of
duality, which allows us to treat positive and negative literals uniformly. Complexity of
reasoning with revision programs is well understood and algorithms to compute justified
revisions are known. In general, a revision program does not guarantee a unique revision
for every initial database. However, we found two wide classes of logic programs which
do have this desirable property.

Revision programming is closely related to logic programming. There is a simple
embedding of logic programs in revision programming under which such concepts as
model, stable model and supported model of a program are preserved. Looking at logic
programming from the perspective of revision programming explains why positive and
negative literals cannot be treated as dual notions in logic programming. In the same
time, there are recent results that show that revision programs can be embedded in logic
programs [PT95].

Several important questions remain open. First, connections with logic programming
have to be further explored, especially, a possibility of developing a revision programming
version of well-founded semantics. Another interesting avenue of research is to study the
exact relationship of revision programming to theories of update and belief revision by
Alchourrón, Gärdenfors and Makinson [AGM85], and Katsuno and Mendelzon [KM91].

Acknowledgments

This work was partially supported by the National Science Foundation under the grant
IRI-9400568.

35

References

[AV91] S. Abiteboul and V. Vianu. Datalog extensions for database queries and
updates. Journal of Computer and System Sciences, 43:62–124, 1991.

[AGM85] C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic
Logic, 50:510–530, 1985.

[AN78] H. Andreka and I. Nemeti. The generalized completeness of Horn predicate
logic as a programming language. Acta Cybernetica, 4:3–10, 1978.

[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theoretical
computer science, pages 493–574. MIT Press, Cambridge, MA, 1990.

[AB90] K. Apt and H.A. Blair, Arithmetical classification of perfect models of strat-
ified programs. Fundamenta Informaticae, 12:1–17, 1990.

[ABW88] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of deductive databases and logic program-
ming, pages 89–142, Los Altos, CA, 1988. Morgan Kaufmann.

[BF91] N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic
programs. Theoretical Computer Science, 78:85–112, 1991.

[BTK93] A. Bondarenko, F. Toni and R.A. Kowalski. An assumption-based frame-
work for non-monotonic reasoning. In A. Nerode and L. Pereira, editors,
Logic programming and non-monotonic reasoning. Proceedings of the Second
International Workshop, pages 171–189. MIT Press, 1993.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and data bases, pages 293–322. Plenum Press, 1978.

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the sat-
isfiability of propositional Horn formulae. Journal of Logic Programming,
3:267–284, 1984.

[EHK81] R.L. Epstein, R. Haas, and R.L. Kramer. Hierarchies of sets and degrees
below 0′. In M. Lerman, J.H. Schmerl, and R.I. Soare, editors, Logic Year
1979-80, pages 32–48. Springer Verlag, 1981. S.L.N. in Mathematics 859.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th international sym-
posium on logic programming, pages 1070–1080, Cambridge, MA, 1988. MIT
Press.

36

[KM91] H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence Journal, 52:263 – 294, 1991.

[Llo84] J. Lloyd. Foundations of logic programming. Berlin: Springer-Verlag, 1984.

[MT89] W. Marek and M. Truszczyński. Stable semantics for logic programs and
default theories. In E.Lusk and R. Overbeek, editors, Proceedings of the North
American conference on logic programming, pages 243–256, Cambridge, MA,
1989. MIT Press.

[MT91] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,
38:588–619, 1991.

[MT93a] W. Marek and M. Truszczyński. Nonmonotonic logics; context-dependent rea-
soning. Berlin: Springer-Verlag, 1993.

[MT93b] W. Marek and M. Truszczyński. Reflexive autoepistemic logic and logic pro-
gramming. In A. Nerode and L. Pereira, editors, Logic programming and
non-monotonic reasoning. MIT Press, 1993.

[MT94] W. Marek and M. Truszczyński. Revision specifications by means of revi-
sion programs. In Logics in AI. Proceedings of JELIA ’94. Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1994.

[MT95] W. Marek and M. Truszczyński. Revision programming, database updates
and integrity constraints. In Proceedings of the 5th International Conference
on Database Theory — ICDT 95, pages 368–382. Berlin: Springer-Verlag,
1995. Lecture Notes in Computer Science 893.

[PT95] T.C. Przymusiński and H. Turner. Update by means of inference rules. In Pro-
ceedings of LPNMR’95, pages 156–174. Berlin: Springer-Verlag, 1995. Lecture
Notes in Computer Science 928.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

[Sch95] J. Schlipf. The expressive powers of the logic programming semantics. Journal
of the Computer Systems and Science, 51:64 – 86, 1995.

[Sch92] G.F. Schwarz. Minimal model semantics for nonmonotonic modal logics. In
Proceedings of LICS-92, 1992.

[Smu68] R.M. Smullyan. First-order logic. Berlin: Springer-Verlag, 1968.

[Ull88] J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer
Science Press, Rockville, MD, 1988.

37

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733–742, 1976.

38

