Computing with default logic*

Pawet Cholewinski Victor W. Marek!
Hynomics Corporation Computer Science Department
10632 NE 37th Circle, Bldg. 23 University of Kentucky
Kirkland, WA 98033-7921 Lexington, KY 40506-0046
Artur Mikitiuk Mirostaw Truszczynski
Fort Valley State University Computer Science Department
Department of Computer Technology University of Kentucky
1005 State University Drive, Lexington, KY 40506-0046

Fort Valley, GA 31030

Keywords: knowledge representation, default logic, nonmonotonic reasoning, automated reasoning,
constraint satisfaction, experimental studies, benchmarking

Abstract

Default logic was proposed by Reiter as a knowledge representation tool. In this paper, we
present our work on the Default Reasoning System, DeReS, the first comprehensive and optimized
implementation of default logic. While knowledge representation remains the main application area
for default logic, as a source of large-scale problems needed for experimentation and as a source
of intuitions needed for a systematic methodology of encoding problems as default theories we use
here the domain of combinatorial problems.

To experimentally study the performance of DeReS we developed a benchmarking system, the
TheoryBase. The TheoryBase is designed to support experimental investigations of nonmonotonic
reasoning systems based on the language of default logic or logic programming. It allows the user to
create parameterized collections of default theories having similar properties and growing sizes and,
consequently, to study the asymptotic performance of nonmonotonic systems under investigation.
Each theory generated by the TheoryBase has a unique identifier, which allows for concise descrip-
tions of test cases used in experiments, and, thus, facilitates comparative studies. We describe the
TheoryBase in this paper and report on our experimental studies of DeReS performance based on
test cases generated by the TheoryBase.

1 Introduction and motivation

In this paper we describe an automated reasoning system, DeReS, based on default logic. We discuss
the problem of testing and experimenting with nonmonotonic reasoning. We describe a system, called
the TheoryBase, that generates families of default theories for use in experimental studies. We describe
results of experiments with DeReS that used as test cases default theories generated by the TheoryBase.

*This paper is a full version of the material presented in two extended abstracts: [CMMT95] and [CMT96].
tCorresponding author.



The area of nonmonotonic logics originated in the late 1970s [Rei78, Rei80, MD80, McC80] in an
effort to build effective knowledge representation formalisms. Since then, solid theoretical foundations
of nonmonotonic logics have been established. The efforts of the past two decades culminated in several
research monographs [Eth88, Bes89, Bre91, MT93] describing major nonmonotonic systems: default
logic, logic programming with negation as failure, autoepistemic logic and circumscription.

In this paper we focus on default logic — a knowledge representation formalism introduced by
Reiter [Rei80] to capture reasoning based on incomplete information. The original motivation of Reiter
was to use defaults to derive new information under the assumption of “normality” or “typicality” of
a situation. Defaults are inference rules with two types of premises: prerequisites and justifications.
Prerequisites are treated similarly as premises of standard inference rules  they have to have a proof
in order to allow for the application of a default. Justifications specify the notion of a context-dependent
normality under which the default can be applied. To formally describe a semantics for default theories,
Reiter introduced the notion of an extension. Extensions are theories that model the agent’s possible
belief sets.

Default logic of Reiter has been widely studied for its potential as a knowledge representation
mechanism. Reiter and his collaborators studied default logic as a way to model and investigate the
Closed World Assumption [Rei78], inheritance networks with exceptions [ER83], and situations with
conflicting default assumptions [RC81]. Formalizations of the frame problem and reasoning about action
in default logic were extensively studied in [Rei80, HM86, Gin86, GL92]. Applications of default logic
to diagnosis are discussed in [Rei87, Poo89]. Default logic provides also a semantics for normal logic
programs with negation. In [MT89] we described an encoding of logic programs as default theories, under
which there is a straightforward one-to-one correspondence between stable models of a program and
extensions of its default interpretation (this application of default logic was independently discovered
in [BF91]).

It is important to notice that, although default logic is a declarative formalism, it is quite different
from Horn clause style logic programming. Specifically, extensions of default theories are subsets of the
set of formulas, not the elements of that set. For this reason, extensions of default theories correspond
to branches of a search tree, rather than to individual nodes of an SLD-tree, which is the case for Horn
programs. This “second order” flavor of default logic makes it especially useful in representing problems
in which solutions are subsets (rather than elements) of some domain. We illustrate the advantage of
this property of default logic later in the paper.

It was expected that default logic (and other nonmonotonic systems, too) would have better compu-
tational properties than classical logics. Computational complexity results obtained in recent years were
discouraging. Decision problems associated with nonmonotonic reasoning, even when restricted to the
propositional case, are computationally complex. For example, in the case of logic programming with
the stable model semantics they are NP-complete or co-NP-complete [MT91]. In the case of default
logic, they are X' -complete or II%'-complete [Got92, Sti92]. We will discuss these results in Section 2.

However, the complexity results do not disqualify nonmonotonic logics as a practical computational
knowledge representation mechanism. The results of [CDS94, GKPS95] show that higher computational
complexity of nonmonotonic logics may be offset by more concise encodings of application problems than
those possible with propositional logic. It seems that the only way to establish whether default logic can
serve as a computationally practical knowledge representation system is through implementations and
systematic experimentations. Recent dramatic improvements in performance of satisfiability algorithms
[SLM92, SKC96, DABC96, CA96] demonstrate the value of experimental studies.

The progress in understanding default logic resulted in several algorithms for computing extensions
and led to first implementation projects [Nie92, MT93, ALS94, BL93, JK90, BED91]. In the last
few years, implementing nonmonotonic reasoning systems became one of the most actively pursued
directions in the area of nonmonotonic logics. Several working systems were presented recently at the
Fourth Conference on Logic Programming and Nonmonotonic Reasoning [DFN97].

Our goal in this research was to study experimentally properties and performance of default logic
as an automated reasoning system. We describe here the Default Reasoning System, DeReS, developed



and studied over several years at the University of Kentucky. DeReS supports basic automated rea-
soning tasks for default logic and for logic programming with the stable model semantics [GL88]. Our
current version of DeReS uses relazed stratification [Cho95b, Cho95a] as a primary search-space pruning
mechanism. A relaxed stratification of a default theory allows us to use a divide-and-conquer approach
when computing extensions. An original default theory is partitioned into several smaller subtheories,
called strata. The extensions of the original theory are then reconstructed from the extensions of its
strata. The notion of a relaxed stratification considered here is a generalization of the concept of a
stratification of a logic program, as introduced in [ABW88]. In particular, a theory (logic program)
stratified in our sense may possess no extension (stable model) or, if it does, not necessarily a unique
one. In the paper we show that applying relaxed stratification leads to substantial speedups, especially
when the strata are small. Relaxed stratification is discussed in Section 3.2.

In the paper we also study the effects of different propositional theorem provers on the efficiency of
DeReS. We observe that full theorem provers, which check global consistency when deciding whether a
theory proves a formula, result in performing prohibitive amount of redundant computation. A weaker
notion of a local prover, sound but not complete, can also be used to correctly implement default
reasoning and results in significant improvements in time performance. For consistent theories local
prover is complete, and we use this feature of local prover to limit the size of theories that need to be
consulted for provability and satisfiability. Use of a local prover requires modifications in algorithms
processing default theories. The details are discussed in Section 3.3.

Our results show that there are classes of theories that DeReS can handle very efficiently. However,
if relaxed stratification does not yield a partition of an input theory into small strata, the efficiency of
DeReS may be poor. In this context, it is interesting to relate our work to that of Niemeld and Simons
[NS95]. Their system, s-models, is currently the best implementation of the stable model semantics for
logic programs. It is based on the ideas first proposed in [SNV95] that have some common features
with the Davis-Putnam approach to satisfiability testing. Namely, s-models makes a decision about the
membership of an atom in a stable model, propagates the effects of this decision through the program,
thus decreasing its size and, then selects the next atom to deal with. As soon as s-models establishes
that there is no stable model consistent with the decisions made so far, it backtracks. Thus, DeReS
and s-models attack different aspects of the same problem. While our research focused on techniques
to exploit relaxed stratification to reduce the problem to smaller ones (divide-and-conquer), Niemeld
and Simons developed techniques to deal with individual strata (s-models does not exploit stratification
at all). It seems that the next-generation implementations of nonmonotonic systems, in order to be
effective in a large range of different applications, must combine techniques developed in both projects.

Systematic implementation and experimentation effort is necessary to provide us with better insights
into the computational properties of nonmonotonic logics. Despite importance of experimental studies
to the area of nonmonotonic logics, there has been little work reported in the literature. While several
algorithms were published and some implementations described [MW88, BNNS93, BNNS96, BEP94,
NS95, DFN97], the results are far from conclusive. This state of affairs can be attributed to the
lack of systematic experimentation with implemented systems. One possible reason is the absence of
commonly accepted benchmarking systems that could generate rich classes of meaningful test data
logic programs and default theories.

Resorting to randomly generated programs and theories, a solution often used in other areas such
as graph algorithms or satisfiability testing, is not a viable approach. First, it is difficult to argue that
randomly generated data have any correlation with cases that are encountered in practical situations.
Second, only a very careful selection of parameters makes randomly generated instances difficult to solve
and, hence, useful for benchmarking purposes [CA96]. Third, no model of a random logic program or
random default theory has been proposed yet.

In this paper we describe an approach to the problem of generating logic programs and default
theories to test nonmonotonic reasoning systems. Namely, we develop encodings of graph problems as
logic programs and default theories. Our approach builds on the work of Knuth [Knu93] in which he
presented a graph generating system called The Stanford GraphBase. We apply our encodings of graph



problems to graphs generated by The Stanford GraphBase, thus producing a rich variety of programs
and theories for testing. We call the resulting system the TheoryBase.

The Stanford GraphBase allows the user to generate parameterized families of graphs of similar
structure and properties, and of sizes controlled by a numeric parameter. This feature is inherited by
the TheoryBase. Thus, the TheoryBase can generate families of default theories and logic programs of
similar structure and properties, and of growing sizes, which supports studies of scalability of reasoning
algorithms.

Each graph generated by The Stanford GraphBase has a unique identifier. This feature greatly
facilitates the use of The Stanford GraphBase as a benchmarking system. We extended the concept of
the GraphBase identifier to the case of default theories and logic programs generated by the TheoryBase.

In the paper we demonstrate the usefulness of the TheoryBase in experimental studies of automated
reasoning systems by using the TheoryBase generated default theories in our studies of the performance
of DeReS.

The paper is organized as follows. In the next section we provide the reader with the formal
definition of default logic and its simplified version, logic programming with the stable semantics. We
discuss the complexity results for default logic. In Section 3, we describe DeReS, its main components
and reasoning algorithms. Section 4 contains descriptions of default encodings of graph problems that
are used by the TheoryBase. The TheoryBase itself is described in Section 5. Results of experimenting
with DeReS are presented in Section 6. The last section contains conclusions.

2 Default logic — technical introduction

The language of default logic is an extension of the language of first order logic by new structures
called defaults. In this paper, we concentrate on the case when the underlying first-order language is
propositional. A more general case, of the predicate language without quantifiers and function symbols
follows immediately from our presentation.

Let £ be a fixed propositional language over a set of atoms At. A default is an expression d of the
form

a: T
g

where a and (8 are formulas from £, and T is a finite set of formulas from £. The formula « is called
the prerequisite, formulas in I' — the justifications, and 8 — the consequent of d. The prerequisite, the
set of justifications and the consequent of a default d are denoted by p(d), j(d) and ¢(d), respectively.
If p(d) is a tautology, d is called prerequisite-free (p(d) is then usually omitted from the notation of d).
This terminology is naturally extended to a set of defaults D. When I' = {v4,..., Y }» we will write d

as .
QY Y

B

By a default theory we mean a pair A = (D, W), where D is a set of defaults and W is a set of
formulas from £. The set W is called the objective part of (D,W). A default theory A = (D, W) is
called finite if both D and W are finite.

Let T be a set of formulas from £. A default rule 2L is T-applicable if every formula v € T
is consistent with 7. For a set of defaults D, by Dy we denote the set of defaults from D that are
T-applicable.

For a set of defaults D, define

Mon(D) = {%:de D}.

Thus, Mon(D) consists of standard inference rules obtained from defaults in D by dropping the jus-
tification part. By CnP-T(W) (Reiter used the notation I'(T)) we denote the closure of W under



propositional consequence and under all the rules in Mon(Dr). A theory T is called an extension® of
(D, W) if
onP (W) =T.
Let T' be a theory. A default d is gemerating for T if d is T-applicable and p(d) € T. The set of
all defaults in D generating for T is denoted by GD(D,T). The following proposition gathers some
well-known properties of default logic [MT93].

Proposition 2.1 Let (D, W) be a default theory.
1. If T is an extension of (D, W) then T = Cn(W Uc¢(GD(D,T))).

2. If all defaults in D are prerequisite-free then T is an extension of (D, W) if and only if T =
Cn(WUc(GD(D,T))).

Part (1) of this proposition is the basis for all algorithms that compute extensions.
A logic programming clause (or, simply, a clause) is an expression of the form

pP<qi,-. '7qm7n0t(rl)7' ..,IlOt(’I'n)

where p,q1,...,qm,71,-- ., are atoms. A logic program is a finite set of such clauses. When n = 0,
the clause is called a Horn clause. A program P consisting of Horn clauses has a least model, that is, a
least set M C At such that for every clause C € P, C' =p + q1,...,qm, whenever qy,. .., G¢m € M then

alsope M.
Given a set of atoms M C At and a logic program P, the reduct P of P with respect to M consists of
Horn clauses p < ¢1, ..., ¢m such that for some r1,...,r, ¢ M, p < q1,...,qm,not(ry),...,not(r,) €

P. A stable model of a logic program P is a set M of atoms such that M coincides with the least model
of PM. Stable models were introduced by Gelfond and Lifschitz [GL8S].
Logic programs can be represented by default theories. Specifically, a clause

C=p<+aq,...,qm,not(ry),...,not(ry,)

can be represented as the default

(AN AN St £ TN
p

di(C) =

For this representation we have the following result [MT89, BF91].

Proposition 2.2 Let P be a logic program. Then M is a stable model of P if and only if Cn(M) is
an extension of ({dI(C):C € P}, ).

Proposition 2.2 tells us that if we are able to compute extensions of default theories then, in partic-
ular, we are able to compute stable models of logic programs.

There is an important difference between computing stable models and computing default extensions.
Namely, when computing stable models, procedures testing full propositional provability are not needed.
DeReS takes advantage of this fact.

Reasoning tasks associated with default logic are listed below. In the descriptions we assume that
a finite default theory (D, W) and a formula ¢ form the input.

Existence  decide whether (D, W) has an extension.
In-Some  decide whether (D, W) has an extension containing (.

In-All — decide whether ¢ belongs to all extensions of (D, W).

1Our definition is different from but equivalent to the original definition by Reiter [Rei80].



The following result due to Gottlob [Got92] and Stillman [Sti92] determines the complexity of these
problems.

Proposition 2.3 The problems Existence and In-Some are %Y -complete. The problem In-All is
1L -complete.

The same reasoning tasks can be formulated for the domain of logic programs and the stable model
semantics. In this setting the complexity of the reasoning problems goes down. This is due to the
fact that deciding whether an atom follows from a set of atoms is easier (polynomial) than the task
of deciding whether a formula follows from a set of formulas (co-NP-complete). Specifically, for logic
programs we have the following result [MT91].

Proposition 2.4 In the case of logic programs and atoms, the problems Existence, and In-Some are
N P-complete. The problem In-All is co-N P-complete.

A default theory (D, W) is disjunction-free if all formulas in W, all prerequisites, justifications and
consequents of defaults in D are conjunctions of literals. One can show that the same complexity bounds
as those given in Proposition 2.4 hold for the class of disjunction-free default theories [KS89]. Several
default theories studied below are disjunction-free.

3 Automated reasoning with default logic

In this section we describe the Default Reasoning System DeReS developed at the University of Ken-
tucky. We provide a general overview of DeReS, describe its main components and the key reasoning
algorithms.

3.1 Overview

DeReS is a software package implementing nonmonotonic reasoning and running under all major versions
of Unix, including Linux. The focus of DeReS is on automated reasoning with default logic and with
logic programming with the stable model semantics?.

DeReS computes extensions for finite propositional default theories®. Given a default theory, DeReS
can determine existence of extensions and can compute one of the extensions or all of the extensions.
There are no syntactic restrictions on input default theories and formulas.

The user communicates with DeReS via its shell. The DeReS shell provides the user with access
to commands specific to DeReS, as well as to system commands. In particular, it reads user queries,
initiates appropriate reasoning procedures, and outputs results of the reasoning process. It also outputs
statistics such as the amount of the CPU time used to solve a query, the number of calls to the
propositional provability procedure and the number of candidates for extensions that were tested. Three
main modules of DeReS are:

Default Reasoning Module — a library of routines for reasoning with a given default theory,

Prover Module — a collection of propositional theorem provers that can be called by the Default
Reasoning Module,

User Interface — a collection of shell commands for processing input theories and programs, and
displaying the progress of the computation and the results.

2A detailed information about DeReS and how to use it, as well as the system itself can be obtained from
ftp://al.cs.engr.uky.edu/cs/software/logic/DeReS.Versionl.3.tar.gz
3To be precise, for each extension T, DeReS computes its base, that is, a finite set of formulas B such that T = Cn(B).



Is_Extension(D,W,U)

Input: Finite sets of defaults D and U such that U C D, and a finite set of formulas W;

Output: true — if U is the set of generating defaults for an extension of (D, W) and
false  otherwise;

R:={de D:WUc(U) ¥ -4, for B € j(d)};
if not (U C R) then return(false) else

B :=W;
X =0
repeat
AR:={de R\ X: BF p(d)};
B := BUc(AR);
X := X UAR,;
if not (X C U) then return(false)
until AR = (;

if X = U then return(true) else return(false);

Figure 1: Algorithm Is_Extension

3.2 Default Reasoning Module

The key reasoning algorithm of DeReS is based on the observation that every extension of a default
theory (D, W) is of the form Cn(W U ¢(U)) for some set of defaults U C D. This representation may
not be unique. That is, an extension may be generated by W and consequents of different subsets of
D. However, every extension T has a unique largest subset of defaults that generates it. This is the set
of its generating defaults GD(D,T) (see Proposition 2.1). This observation implies a method, called
generate-and-check, to construct one (or all) extensions. The idea is to construct all subsets of D and,
for each of them, test whether it is the set of generating defaults of an extension.

To accomplish this latter task, DeReS uses a procedure Is_Extension(D,W,U). Given a finite
default theory (D, W) and a set U C D, it returns value true if U is the set of generating defaults of an
extension for (D, W), and returns value false, otherwise. One such procedure is described in [MT93].
It is presented here in Figure 1.

To generate all subsets of D, DeReS generates and searches a full binary tree whose nodes are labeled
by subsets of D. This tree is constructed as follows. Let D = {d;,ds,...,d,}. The root of the tree is
labeled by the empty subset of D. If a node a, at depth k in the tree, is labeled by set U C D, then the
left child of a is labeled by U U {dk+1} and the right child of a is labeled by U, again. It is clear that
every subset of D appears as a label on at least one node. In the case when n = 3, the corresponding
binary tree is shown in Figure 2.

DeReS considers the nodes of the tree according to the depth-first search order. To avoid considering
the same subset several times (if it appears as the label on more than one node of the tree), a set of
defaults is checked by the Is_Extension procedure only when it is encountered for the first time as the
label on a node in the tree. In Figure 2, the nodes where Is_Extension is actually invoked are shown
in solid lines.

The sets of generating defaults of extensions form an antichain. This observation yields a method
to prune the search space. When the set of defaults represented by a node in the search space is found
to be generating for an extension, DeReS prunes all descendants of this node in the search tree. The
resulting algorithm to compute all extensions, referred to as All_Extensions, is presented in Figure 3.
The variable backtrack is set to true whenever the currently considered node in the search space is a
leaf or represents the set of generating defaults of an extension, causing the algorithm to backtrack.



Figure 2: Generating all subsets of X = {1,2,3}.

The algorithm All_Extensions is capable of computing extensions for arbitrary finite propositional
default theories. However, due to the high computational complexity of default reasoning, computation
time can be very long. In many cases this problem can be avoided by splitting the input default theory
into several strata (clusters) of defaults and dealing with one stratum at a time. This technique, we
will refer to it as relazed stratification, was developed in [Cho95b, Cho95a]. It is the main search space
pruning technique used by DeReS.

Relaxed stratification applies to default theories that do not have justification-free defaults and
in which formulas in W do not have common propositional variables with the consequents of the
defaults. In this method, we first find a finest possible relaxed stratification of D, that is, a partition
D = {D,...,D,,} such that propositional variables appearing in defaults from D; do not appear in
the consequents of defaults from D;, for ¢ < j, and such that no set D; can be further partitioned
preserving the constraint on variable occurrence. It can be shown that such a relaxed stratification
exists. We search for extensions for a single stratum (D;, W;) (W; = W) using the same approach as in
the algorithm All_Extensions. However, when an extension, say Cn(W; U ¢(U)), is found we report
it only if D; is the last stratum of the default theory (that is, when i = m). Otherwise, we add the
formulas from ¢(U) to W; to form Wi 1 (W;pq1 := W; U ¢(U)), and start the search for extensions of
(Diy1,Wit1). If the stratification is fine-grained, then in each step we deal with small sets of defaults
and computational savings can be expected. The detailed description of this method can be found in
[Cho95b, Cho95a].

We refer to the algorithm based on the idea described above as All_Extensions_Stratified. The
pseudocode is given in Figure 4.

3.3 Prover Module

Prover Module of DeReS is used as an oracle by all reasoning procedures. Currently, DeReS is equipped
with a prover that implements the propositional tableaux method. However, any other technique based,
for instance, on the resolution inference rule or on satisfiability testing procedures could be used in its
place.

Using a sound and complete prover allows DeReS to handle arbitrary default theories. However, it
carries a heavy computational cost due to the inefficiency of such provers. Analyzing the performance
of sound and complete provers, one can see that substantial amount of time spent to decide whether a
theory 1" proves a formula ¢ is actually spent to decide consistency of T'. Next, when searching for a
proof of ¢ from T', even those parts of T' that are irrelevant to ¢ may be considered by the prover.

Based on these observations, we designed and implemented a method referred to as a local prover.



All_ Extensions(D, W)
Input: A finite default theory (D, W) and D = {d;,ds,...,d,};
Output: The list of all extensions of (D, W);

U :=
Build_Extensions(D, W, U, 0);

procedure Build_Extensions(D, W, U, k);
backtrack := (k = |DJ);
if k=0 or d, € U then
if Is_Extension(D,W,U) then
write(WW U ¢(U));
backtrack = true;
if not backtrack then
Build_Extensions(D, W,U U {d4+1},k + 1);
Build_Extensions(D, W, U, k + 1);

Figure 3: Search for all extensions of (D, W).

This provability testing procedure does not perform consistency checks and, consequently, is sound
but not complete. Moreover, the local prover takes into account only the part of T that is relevant
to proving ¢. We then modified reasoning algorithms in DeReS so that a full prover can be replaced
with a local prover without affecting the correctness of DeReS. As expected, we observed substantial
computational gains. We will now describe in detail the concept of a local prover.

Let £ be any propositional language. For a formula ¢ € £, by Var(p) we denote the set of atoms
occurring in ¢. Similarly, for a theory T, we define Var(T) as the set of all atoms occurring in the
formulas from T

Consider a theory T' C £ and a formula ¢ € L. The g-pertinent fragment of T, Ty, is defined
recursively as follows:

TO = [ € T Var(s) 0 Var(p) # 0},
T = {¢ € T: Var(y) N Var(T}) # 0},
for n > 0, and

T,=J T}
n>0

Next, we will introduce the concept of a local provability. The main idea is to capture the expression
“the information in T, pertinent to ¢, entails ¢”. Thus, ¢ should not be locally provable just because
T contains some inconsistent data.

Definition 3.1 A theory T locally proves a formula ¢ (denoted T Fioc @) if Ty F .
Local provability has the following useful properties.

Proposition 3.1 Let T C L be a theory and let ¢ € L be a formula.
1. If T Fipe @ then T F .
2. If T bioe ¢ and T is consistent then T U {p} is consistent.

3. If T is consistent then T F ¢ if and only if T Foc .



All_ Extensions_Stratified (D, n, W)

Input: A consistent finite propositional theory W and a relaxed stratification D = {Ds,...,D,} of
(U?:l Dl: W)a

Output: The list of all extensions of (=, Di, W);

U = (;
Stratified_Build_Extensions(D,n, W,U, 1,0);

procedure Stratified_Build_Extensions(D,n, W, U, 1, k);
(* we assume that D; = {d,...,dn} *)
backtrack := (k = |Dy|);
if k=0or d, € U then
if Is_Extension(D;, W,U) then
if (I = n) then (x last stratum extension )
write(W U ¢(U));
backtrack = true;
else
W':=WuUcU); U =
Stratified_Build_Extensions(D,n, W', Ul + 1,0);
if not backtrack then
Stratified_Build_Extensions(D,n, W,U U {dy+1},l, k + 1);
Stratified_Build_Extensions(D,n, W, U, 1,k + 1);

Figure 4: Search for all extensions of a stratified theory (U,_, Di, W).

4. T+ @ if and only if either T is inconsistent or T .. ©.

All standard propositional routines can be easily modified so that they implement the concept of a
local provability. For instance, in order to decide whether T' F;,. ¢, our tableaux method is modified so
that

1. The root of the tableau is labeled with —p, and

2. A branch is never expanded by formulas that have no variables in common with those already
appearing on the branch.

In this way, the prover remains restricted to the theory T,. This component is often much smaller in
size than T
Replacing a full prover by a local prover may lead, in general, to incorrect results.

Example 3.1 Let (D, W) be a default theory with W = {p, —p} and D = {dy}, where dy = % This
theory has a unique extension, £, that is generated by the empty set of generating defaults. Since
W Hi0e —q, using a local prover instead of a sound and complete prover will classify dy as applicable
with respect to the context W. Consequently, the same unique extension £ will be found but the set
of generating defaults will be determined incorrectly (dy will be returned as generating).

Example 3.2 Let (D, W) be a default theory with W = {p} and D = {dy, dy,d2}, where

: L r LT
d(] = p_7 dl = d2 =
-p T —r

10



Suppose that we search for extensions by examining subsets of D. For each U C D we have to check
whether Cn(WUc(U)) is an extension of (D, W). This theory has only one extension Cn(WUc({dg})) =
L with U = {dp} returned by DeReS as the set of generating defaults. Substituting F by k. in the
algorithm Is_Extension will result in the algorithm All Extensions returning two sets of defaults
U, = {dy,d1} and Us = {do,d2}, as {p, =p} Viee © and {p,—p} Vi,c —x. Both sets generate the only
extension of (D, W), £, but none is, in fact, its set of generating defaults.

Example 3.3 Let (D, W) be a default theory with W = {p} and D = {dy, d; }, where

do= -1 g =L
-p —-q
The theory (D, W) has a single extension Cn({p, —q}). However, substituting F by ;.. in the algorithm
Is_Extension will return two theories as extensions: Cn({p,~q}) and Cn({p, —p}) = L.

The algorithm All_Extensions outputs sets of generating defaults of extensions of the input de-
fault theory. Our examples show that when the local prover is used in Is_Extension, the algorithm
All_Extensions may return additional solutions (sets of defaults). Each of these additional solutions
generates the theory £, the entire language. This is the only problem caused by the use of the local
prover. Consistent extensions of a default theory will be computed correctly and only once.

We will now describe modifications in the algorithm All_Extensions to guarantee correctness when
the local prover is used in Is_Extension instead of the full propositional prover. These modifications
exploit the observation that in the case of a consistent theory T', there is no difference between provability
and local provability from T' (Proposition 3.1).

First, we will decide whether W is inconsistent. To this end, we will start with the empty set of
formulas. Then, we will add the formulas from W one by one, each time checking whether consistency
is preserved. This can be accomplished by means of a local prover. If W is inconsistent, then (D, W)
has a unique extension, which is inconsistent. In this case, the set of generating defaults is the set of
all justification-free defaults in D.

If W is consistent, we next check whether an inconsistent extension can be generated out of W
and the justification-free defaults (defaults with justifications do not matter in the case of inconsistent
extensions). This is done be gradually building the closure of W under the justification-free defaults.
Again, each time before a rule is applied, it is checked whether consistency will be preserved (by a single
call to the local prover). If a contradiction is detected, (D, W) has an inconsistent extension.

Otherwise, all extensions of (D, W), if they exist, are consistent (and so is W). Before we complete
the description of the algorithm, let us notice that the procedure Is_Extension with the local prover
correctly determines whether U C D is the set of generating defaults of an extension if W U ¢(U) is
consistent. Indeed, if in an iteration of the repeat loop the consequents of the defaults in X together
with W lead to a contradiction, then the set X is not included in U (as W U ¢(U) is consistent).
Hence, the procedure will return false and terminate. This is correct, as at this point in the algorithm,
only consistent theories may be extensions. Otherwise, all theories involved in provability checks are
consistent and the local prover works exactly as the full prover.

Notice that in the algorithms All_Extensions and All_Extensions_Stratified the space of all
subsets U of D is searched by starting with U = () and then, in each step, a single default is either
deleted from or added to U. Assume that the current set of defaults U (the current candidate for
the set of defaults generating an extension) is such that W U ¢(U) is consistent (this assumption holds
at the beginning of the search as, let us recall, W is consistent). If the next set of defaults, say U’,
to be considered is obtained by deleting a default then, clearly, W U ¢(U') is consistent, too. Hence,
the procedure Is_Extension with the local prover can be used to determine whether U’ is the set of
generating defaults of an extension.

If U’ is obtained by adding a default, say d, then we first check whether W U ¢(U) ko —e(d). If
the answer is positive, the set W U ¢(U’) is inconsistent and does not generate an extension (recall that
at this point we know that all extensions are consistent). Thus, the recursive call (second line from

11



the bottom in Figure 3) is omitted (supersets of U’ do not generate an extension, either). Otherwise,
W U ¢(U’) is consistent. Hence, as before, Is_Extension with the local prover can be used to decide
whether U’ is the set of generating defaults of an extension.

A description of the modified algorithm All_Extensions, called All_Extensions_Loc, is shown in
Figure 5.

All_Extensions_Loc(D, W)
Input: A finite default theory (D, W), where W = {w1,...,wn} and D = {d4,...,dn};
Output: The list of all extensions of (D, W);

Set JF to be the set of justification-free defaults in D;
for i :=1 to m do
if {wl, Sy ’U)ifl} |_loc —W; then
write(W U c(JF));
return;
(* If the execution goes past this point, W is consistent *)
B :=W;
AD:={d € JF: Bl.pld)};
JF = JF\ AD;
while AD # ) do
d := any rule in AD;
if B k), —¢(d) then
write(W U c(JF));
return;
B:=BU{c(d)};
AD = (AD\{d}) U{r e JF: Bl p(r)};
JF = JF\{re JF: Bt,.p(r}
(* If the execution goes past this point, extensions of (D, W), if exist, are consistent *)
U = (;
Build_Extensions_Loc(D, W, U, 0);

procedure Build_Extensions_Loc(D, W, U, k);
backtrack := (k = |D|);
if k=0or d, € U then
if Is_Extension(D, W,U) then
write(W U ¢(U));
backtrack := true;
if not backtrack then
if WU c(U) 1o ¢(di+1) then Build_Extensions_Loc(D, W,U U {dk+1}, k + 1);
Build_Extensions_Loc(D, W, U, k + 1);

Figure 5: Search for all extensions of (D, W) using a local prover.

Analogous modifications allow us to use the algorithm Stratified_Build _Extensions with a local
prover instead of a full propositional prover.

Using a local prover significantly improves the performance of DeReS (see Section 6 for a discussion
of our experimental results) and requires no restrictions on the syntax of input theories. Another way to
improve the performance of DeReS is to impose syntactic constraints on input theories and exploit these
restrictions in the design of even more efficient provers. In particular, DeReS uses special processing
methods to deal with disjunction-free theories.

12



Recall that a default theory (D, W) is disjunction-free if all formulas in W, all prerequisites, justi-
fications and consequents of defaults in D are conjunctions of literals. This condition yields a simple
but still very useful class of default theories. In particular, every logic program can be encoded by a
disjunction-free default theory.

Recall that every extension of a default theory (D, W) is of the form Cn(W U ¢(U)), for some
U C D. In the case when (D, W) is disjunction-free, each set of the form W U ¢(U) is a collection of
conjunctions of literals and, consequently, can be represented as a set of literals, say L. In the algorithm
Is_Extension the first task is to compute the set R. Consider a justification g of a default in D. The
formula (3 is a conjunction of literals. The negation of 3 is logically equivalent to a disjunction of literals,
say (3'. Deciding whether (' is entailed by the set of literals L can be accomplished as follows:

1. If L is inconsistent (contains a pair of complementary literals), then L entails 3';
2. If B’ is a tautology (that is, contains a pair of complementary literals), then L entails §';
3. Otherwise, L entails 3’ if and only if L and 8’ have at least one literal in common.

The only other time when a propositional prover is called by procedure Is_Extension is while computing
the set of defaults AR. If B is maintained as a set of literals, then deciding whether a prerequisite « is
entailed by B can be accomplished as follows:

1. If B is inconsistent (contains a pair of complementary literals), then B entails «;

2. If B is consistent and « is inconsistent (that is, contains a pair of complementary literals), then
B does not entail «;

3. Otherwise, B entails « if and only if every literal occurring in a belongs to B.

All the provability tests mentioned above can be accomplished by deciding membership of a literal in
a set of literals. This method is implemented in DeReS and referred to as the table lookup method. Tt
decides each provability of a literal from a set of literals in a constant time.

In Section 6 we present several examples of performance of provers on concrete default theories,
generated using the TheoryBase.

3.4 Using DeReS

To work with DeReS the user invokes the DeReS shell. The shell allows the user to load files with input
default theories, display them, and compute, display and record extensions.

Each default theory to be processed by DeReS is identified by a file filenamel.dt. This file specifies
the names of two other files, filename2.thc and filename3.dc, by including lines

w = filename2
d = filename3

The file filename2.thc consists of formulas (part W of the default theory). The file filename3.dc consists
of defaults (part D of the default theory).

The performance of DeReS is substantially improved if the input default theory, say represented
by the file filename.dt, is stratified and if the strata are possibly small. To take advantage of this
feature, the user has to construct an additional file, filename.str (the same name as the file identifying
the default theory, but different suffix). This file is automatically created by the TheoryBase for all
default theories that it produces and which admit non-trivial relaxed stratification. The stratification
file defines a partition of input defaults into strata. If the stratification file is not found, DeReS assumes
trivial stratification into a single cluster.

The syntax of formulas and defaults is rather straightforward. Symbols &&, | |, !, => and <=> serve
as conjunction, disjunction, negation, implication and equivalence, respectively. Defaults are specified

13



% File re80.dt
% Example 2.4 from R. Reiter "A logic for default reasoning"

w = re80-2.4-formulas
d = re80-2.4-defaults

% File re80-2.4-formulas.thc

c=>4d || a;
a && c => le;

% File re80-2.4-defaults.dc

:a -> a;
b: c > c;
d ||l a: e ->e;

c && e : 'a, dlla > f ;

Figure 6: DeReS encoding of a default theory (example).

by providing the prerequisite, the list of justifications and the consequent. The prerequisite is separated
from the justifications by a colon “:”. The list of justifications is then followed by -> and by the
consequent,.

Example 3.4 Let (D, W) be a default theory defined as:

p_l@ b:c dVa:e cANe:—a,dVa
- a} c ) e ) 'f )
W ={b,c=>dVa,ahc= —e}.

This theory was described in Example 2.4 in [Rei80]. In Figure 6 we show the three input files which
represent the theory (D, W) in the DeReS format.

The user runs DeReS by invoking its shell. The shell provides the user with several commands:
1. load filename — loads a default theory (D, W) described in the file filename.dt;

2. status — shows the name of the current default theory (the theory loaded by the most recent
use of the load command) and system settings;

3. setprover [-f | -1 | -a] — selects a prover mode; options -f, -1, -a select full, local and
table lookup provers, respectively; default setting is -1;

4. quit  quits DeReS;

5. list [numl [num2]] displays default rules of the current input theory from the default number
numl to the default number num2; the default values for num1 and num2 are the first and the last
default of the current input;

14



6. pds [numl [num2]] — displays strata of the current input theory from the stratum number
numl to the stratum number num2; the default values for num1 and num?2 are the first and the last
stratum of the current input;

7. size shows the size of the current input theory;

8. ext [-c] [-f] [-h] [-s] [-x] [-timeN] [-lastS] [-1lenK] — computes extensions with
terminal output; it has several options that specify whether to halt after first extension is found,
compute all extensions, count extensions, store extensions in a file, etc.;

9. x11ext  starts DeReS X11 interface; provides a graphical user interface to DeReS.

A typical session consists of invoking the DeReS shell, loading default theories and starting ext or
xl1llext.

4 Programming with default logic

Programming with default logic means reducing a given problem to reasoning tasks of default logic
such as existence of extensions, finding an extension or finding all extensions. Consider a problem
whose solutions are subsets of some domain. Reducing the problem to default logic means constructing
a default theory whose extensions allow the user to determine all solutions to the original problem.
Similarly, in the case of decision problems, solving them by means of default logic means constructing
a default theory that has an extension if and only if the original problem has a solution. Constructing
these default encodings and reconstructing solutions from extensions should be algorithmically easy —
polynomial (linear, whenever possible) in the size of the original problem.

In this section, we discuss techniques to systematically encode problems as default theories. Since
extensions of default theories form subsets of the language, default theories can be used to represent
those problems whose solutions are subsets of some domain. These solutions are usually defined as
subsets of the domain satisfying certain constraints. With these insights, we propose an approach to
programming with default logic that has two main components:

1. Techniques to construct default theories representing collections of basic objects such as sets and
functions.

2. Techniques for modifying these default theories to eliminate extensions representing those objects
that do not satisfy constraints implied by the original problem specification.

Although the target of default logic is knowledge representation, the large test cases are needed for
both experimentation and for studies of the methodology of representing problems as default theories. In
our research, we chose the domain of combinatorics as the source of large and meaningful examples. In
this domain it is easy to generate parameterized families of test cases needed for performance evaluation.
Further, combinatorial problems are often specified in terms of constraints. Consequently, the domain
of combinatorics can provide useful insights into modelling constraints as defaults or sets of defaults.

In what follows, we will be introducing techniques to impose constraints (item 2) on default theories
representing collections of sets and functions (item 1). However, these techniques can be used in any
application domain where constraints can be specified by means of default theories.

While in our discussion we focus on the propositional case, DATALOG-style encodings of some of
the problems discussed below have been considered in [Nie98, ELM 198, MT99].

4.1 Subsets

In this section we will present default theories whose extensions encode all subsets of a given set. For
a propositional variable p let us define defaults

and s (p) = P

S =
p -p

15



Consider the default theory
{s*(p), s~ (0)},0).
It is clear that this default theory has exactly two extensions, Cn({p}) and Cn({—-p}). Consequently,

it can be used to decide whether p is in or out.
Consider now a set X. Define a set of defaults S;(X) as follows:

Si1(X)={s"(p):pe X}U{s (p):pe X}.

Since, for p # p', there are no interactions between defaults in {s™(p), s (p)} and {s™(p'),s~(p')}, we
have the following observation.

Observation 4.1 Let X be a set and let Y C X. A theory T is an extension of the default theory
(S1(X),Y) if and only if T = Cn({p:p € U} U{—-p:p € X\U}), for some set U C X such thatY C U.

It follows that there is a one-to-one correspondence between extensions of (S;(X),Y") and all subsets
of X that contain Y. In other words, the default theory (S;(X),Y’) can be used to represent all subsets
of X containing Y.

Observe that elements p € X are treated in the definition of S;(X) as propositional variables.
We will often use elements of combinatorial structures (for instance, vertices and edges of graphs) as
propositional variables to indicate their membership in sets.

Another straightforward form of encoding all subsets of X is to introduce for every element p of X
two propositional variables: in(p) and out(p). Consider the following two defaults:

: =in(p)

+, \ _ :—out(p)
r= oui(p)

i) and ¢ (p) =

Consider the default theory
{t*(p),t~(p)}. 0).

t
This default theory has two extensions: Cn({in(p)}) and Cn({out(p)}). Hence, as before, this theory
can be used to decide whether p is in or out.
Define a set of defaults S, (X) by:

Sa(X) ={t"(p):pe X}U{t (p):pe X}.

The same argument as before yields the following observation, establishing a one-to-one correspondence
between subsets of a set X, containing a prespecified subset Y C X, and extensions of the default
theory (S2(X), {in(p):p € Y'}).

Observation 4.2 Let X be a set and let Y C X. A theory T is an extension of the default theory
(S2(X), {in(p):p € Y}) if and only if T = Cn({in(p):p € U} U {out(p):p € X \U}), for some set
U C X such thatY CU.

Let us observe that the theories (S1(X),Y) and (S2(X), {in(p):p € Y'}) are disjunction-free. More-
over, the theory (S2(X), {in(p): p € Y'}) has a straightforward translation into a logic program. Namely,
the default ¢*(p) can be represented by the clause

in(p) < not(out(p)),
the default ¢~ (p) can be represented by the clause
out(p) < not(in(p)),
whereas the atom in(p) can be represented by the clause
in(p) <

(see Section 2).

16



4.2 Maximal conflict-free sets

Often solutions to problems are specified as maximal conflict-free subsets. Let X be a set and let C be
a function from X to P(X). If

1. for every z,y € X, z € C(y) if and ouly if y € C(z), and
2. forevery z € X, z ¢ C(x),

then C is called a conflict function.
A subset Y of X is conflict-free if for every x € Y, C(z) NY = 0. For every x € X, define a default
select(x) by
_ gy e Ca)}
= " )
The intuition behind the default select(z) is as follows: if none of the elements in conflict with z is

included in the solution, then include x.
Define now a set, of defaults SELECT (X, C) by

SELECT(X,C) = {select(z):xz € X}.

Observation 4.3 Let X be a set and let C be a conflict function from X to P(X). Let Y C X be
conflict-free. Then a theory T is an extension of (SELECT(X,C),Y) if and only if T = Cn(U), for
some mazximal (with respect to inclusion) conflict-free subset U of X such that Y CU.

select(x)

Clearly, Observation 4.3 establishes a one-to-one correspondence between maximal conflict-free sub-
sets of X and extensions for (SELECT(X,C),0).

Observe also that the theory (SELECT(X,C),Y) is disjunction-free. This theory can also be
represented as a logic program by means of the translation described in Section 2.

4.3 Maximal independent subsets

A common type of a combinatorial structure appearing in practical applications is an independent set.
Consider a finite collection H of finite subsets of a set X. A subset Y C X is called independent for
H if there is no H € H such that H C Y. We will construct now a default theory that represents all
maximal independent subsets for a family of sets H C P(X).

For a finite set H C X, define a clause ¢(H) by

p(H) = \/{~h:h € H}.

(Observe that, as before, we treat elements of X as propositional variables.) Let z € X and let
Hy,...,H} be all the sets in H containing z (recall that # is finite). Define

an(r) = :(’O(Hl \ {T}) R ‘P(Hk \ {’E})

Consider a set X and a finite collection H of finite subsets of X. Define a set of defaults as follows:
MS(H,X) = {ind(z):z € X}.

Observation 4.4 Let H be a finite collection of finite subsets of a set X. Let Y C X be an independent
set in H. Then, a theory T is an extension for the default theory (MS(H,X),Y) if and only if T =
Cn(U) for some mazimal independent subset U of X such that Y C U.

Observation 4.4 establishes a one-to-one correspondence between maximal independent sets for H
and extensions of (MS(H, X),0).

Default theories (MS(H,X),Y) are not, in general, disjunction-free (unless |[H| = 2 for all sets
H € H). However, the existence of an extension problem for such theories is still only NP-complete.

The concept of a maximal independent set is a very general one. In particular, it is possible to
represent maximal conflict-free sets as maximal independent sets in a suitably defined family .

17



4.4 Functions

In this section we will use the results of Section 4.2 to construct a default theory whose extensions
correspond to all functions from a finite set X to a finite set Y. First, for every z € X and y € Y,
let us introduce a propositional variable f, ,. This variable will represent the fact that y is assigned to
z. The set of all these new variables will be denoted by F(X,Y). For each new atom f, ,, define its
conflict set, C(fz.y), by

C(fz,y) = {fz,z: z€Y,z 7£ y} (1)
Clearly, a subset F' of {f; ,;z € X,y € Y} is a maximal conflict-free set if and only if there is a function

g: X — Y such that F' = {f, ):® € X}. Let us define the set of defaults M AP(X,Y) as follows:

MAP(X,Y) = SELECT(F(X,Y),C)

where C is given by equation (1). Observation 4.3 implies the following corollary.

Corollary 4.1 Let X and Y be finite sets, let Z C X and let h: Z — Y. A theory T is an extension
for the default theory (M AP(X,Y ), {f. n:):2 € Z}) if and only if T = Cn({fs gx):® € X}), for some
function g: X =Y such that g|Z = h.

Observe that the default theory (M AP(X,Y),{f. n(:): 2 € Z}) is disjunction-free.

4.5 Constraints

In this section, we will present a method to impose constraints that can be expressed by propositional
formulas. That is, we will show how to modify a default theory so that the extensions of the resulting
default theory are precisely those extensions of the original theory that satisfy the constraints.

Let ¢ be a propositional formula and let auz, be a new atom. Define the following defaults:

g = TP maut,
p=——"°
auz,
and )
g prauTy
o= .
auz,

Theorem 4.2 Let (D, W) be a default theory in a propositional language L, let p € L and let auz, be
a new propositional variable (not in £). Let d, and d;, be defaults defined as above. Then:

1. The theory (D, W) has an inconsistent extension if and only if the theory (D U {d,}, W) has an
inconsistent extension. Similarly, the theory (D, W) has an inconsistent extension if and only if
the theory (D U {d,}, W) has an inconsistent extension.

2. Every consistent extension of (DU{d,}, W) is a subset of L. Moreover, a consistent theory E C L
is an extension of the default theory (D U {d,}, W) if and only if E is an extension of (D, W)
and ¢ € E.

3. Bvery consistent extension of (D U{d],}, W) is a subset of L. Moreover, a consistent theory E is
an extension of the default theory (D U{d;,}, W) if and only if E is an extension of (D, W) and

p¢E.

Proof: The proof of (1) is straightforward. We leave it to the reader.
(2) Define D' = D U {d,}, and assume that E is a consistent extension of the default theory (D', W).
We have

E =Cn"""(W).

18



Assume that d, is E-applicable. Then, since d, is prerequisite-free, auz, € E. On the other hand,
E-applicability of d, implies that E I/ =(-auz,). Since E is closed under propositional consequence,
we obtain a contradiction. Thus, d, is not E-applicable. It follows that £ C £ and that

Cn” F(W) = enP P (w).

Consequently,
E = CnPEW).

Hence, E is an extension of (D, W). Since E is consistent, d, is not E-applicable, and auz, occurs
only in dy, it follows that E F —(-¢). Thus, ¢ € E.

Conversely, assume that F is a consistent extension of (D, W) and that ¢ € E. The latter fact
implies that d, is not E-applicable. So, as before,

CnPE(W) = cnPE (W)

and, consequently,
E=CnP EwW).

The proof of (3) is similar and we omit it. O

Theorem 4.2 shows that defaults d, and d:‘, can be used to enforce constraints expressed by propo-
sitional formulas. Enforcing means selecting those extensions that entail the constraints. Defaults that
act as such selection filters (for instance, d, and d;,) will be referred to as selection defaults. Observe
also that when constructing the selection defaults, a formula ¢ can be replaced by a logically equivalent
one (cf. [MT93], Theorem 5.3) without changing the selection properties of the default. We will often
take advantage of this observation.

In general, we can use the same atom auz in all selection defaults. However, to decrease the number
of dependencies between defaults and obtain finer stratification, it is better to use different auxiliary
atoms in different selection defaults. Thus, in this section and throughout the paper we use a new
auxiliary atom auz, for each selection default.

There are other classes of defaults that act as selection defaults. For instance, % eliminates all
extensions not containing ¢ (similarly to d,). However, the default % may interact with other defaults
and introduce cyclic dependencies that lead to larger strata.

4.6 Kernels in directed graphs

In the remainder of this section, we will present several default theories that encode problems in graph
theory. They are constructed by first using our results about representing all subsets (or functions) and
then by imposing constraints.

We will start by constructing default theories that represent the problem of existence of kernels in
directed graphs. Given a directed graph G = (V, A) (V stands for the set of vertices and A for the set
of directed edges of ), a set K C V is called a kernel if:

(K1) The set K is an independent set, that is, for every edge (u,v) € A, u e V\ K orve V\K.
(K2) For every vertex w € V' \ K, there exists a vertex v € K such that (w,v) € A.

The first, rather ad-hoc representation of the kernel problem as a default theory appeared in [MT91].
Let G = (V, A) be a directed graph. For every edge e = (z,y) € A, define

Denote by KER;(G) the default theory ({r(e):e € A},0). It was shown in [MT91] that K C V is
a kernel of a directed graph G = (V, A) if and only if Cn(M), where M = V' \ K, is an extension of

19



KER:(G). In other words, extensions of this default theory are precisely the complements of kernels.
Note that the theory K ER;(G) is disjunction-free.

We will now construct another encoding of the kernel problem, systematically utilizing the results
from the preceding sections. Consider the default theory (S1(V),0). Its extensions represent the
collection of all subsets of V. More precisely, they are all of the form {z:2 € K}U{-z:z € V' \ K}, for
some K C V. We will denote a set of this form, determined by K C V, by K.

To represent kernels, we need to enforce kernel conditions (K1) and (K2) on such sets. To enforce

(K1), for every directed edge e = (x,y) define

ple) = ~(zAy).

Clearly, K satisfies condition (K1) if and only if K entails ¢(e), for every e € A.
To enforce condition (K2), for every vertex v define a formula

Y(w)=-vDuv V...V,

where vy, ..., v, are all the vertices connected to v by an edge starting in v. Observe that a set of
vertices K satisfies condition (K2) if and only if K entails ¢(v), for every v € V.
Formulas ¢(e) and 1 (v) give rise to selection defaults

TTA Y, TaUT ()

w(e) auz () )

fore € A, e = (z,y), and

3

U UL AL A TV, TAUT (o)

dy(v) =

au.’nl/)(v)

for v € V (where vy, ..., v are all the vertices connected to v by an edge starting in v). Notice that

when defining d(,), we replaced —¢)(v) by an equivalent formula (using Theorem 5.3 from [MT93]).
Let G = (V, A) be a directed graph. Let us denote by K ERy(G) the default theory obtained from

S1(V) by adding all defaults d.), e € A, and dy (), v € V, to the set of defaults S; (V). Observe that

the theory K ER»(G) is disjunction-free.

Observation 4.5 Let G = (V, A) be a directed graph. A set K C V is a kernel of G if and only if
Cn(K) is an extension of KERy(G). Moreover, every extension of KERy(G) is of the form Cn(K),
for some kernel K of G.

Yet another approach is to encode complements of kernels, as it is easy to decode a set from its
complement (this approach was used in [MT91]).

4.7 Maximal independent sets in graphs, matchings and perfect matchings

Let G = (V, E) be an undirected graph. A set of vertices I C V is independent if for every edge e € E,
at least one of its endvertices is not in I. Let us recall that an edge in an undirected graph can be
identified with the set of its endvertices. Hence, it is clear that [ is an independent set in G if and only
if it is independent for E in the sense of Section 4.3. Let us denote MIS(G) = (MS(E,V), ).

Observation 4.6 Let G = (V, E) be an undirected graph. A set Y C V is a maximal independent
subset of G if and only if Cn(Y') is an extension of MIS(G). Moreover, every extension of MI1S(G) is
of the form Cn(Y), for some mazimal independent set'Y in G.

It is also easy to see that if U C V is independent, then the default theory (MS(E,V),U) describes
all maximal independent sets in an undirected graph G that contain U. Since all sets in E have only
two elements, the theory (M S(E,V),U) is disjunction-free.

3

20



An alternative encoding is implied by an observation that undirected graphs can be regarded as
directed graphs (each undirected edge {z,y} is treated as a pair of two directed edges (z,y) and (y,x)).
It is easy to see that a set of vertices K is a kernel of an undirected graph G (regarded as a directed
graph in the sense described above) if and ounly if K is a maximal independent set. Thus, extensions of
the theory K ERy(G), where A = {(z,y), (y,z): {x,y} € E} are precisely maximal independent sets of
the (undirected) graph G = (V, E).

Next, we will construct default theories representing all maximal matchings and perfect matchings
in an undirected graph. Let G = (V, E) be an undirected graph. A set of edges M is called a matching
if no two different edges from M share an endvertex. A matching M is called mazimal if there is no
matching in G that would properly contain M. A matching M is called perfect if it covers all vertices
of the graph.

Let G = (V,E) be an undirected graph. Observe that M C F is a matching if and only if M
is independent for £(G) = {{e,f}:e,f € E,e # f,e and f share an endvertex}. Consequently, the
default theory (M S(E(G), E), D) represents (through its extensions) all maximal matchings in G.

We will now add to (MS(E(G), E), D) selection defaults to weed out those maximal matchings that
are not perfect. To this end, for every vertex v € V define the formula

cov(v) =e; V...Vey,

where eq,..., e, are all the edges with endvertex v. Clearly, a matching M is perfect if and only if M
entails cov(v), for every vertex v € V. Each formula cov(v) gives rise to the selection default dqy(y)-
Adding all these defaults to the set of defaults in (MS(E(G), E),D) yields a default theory, called

PM(G), whose extensions are those extensions of (MS(E(G), E),}) that entail all formulas cov(v)

3 3

that is, those extensions of (M S(E(G), E), D) that represent perfect matchings.

Observation 4.7 Let G = (V, E) be an undirected graph. A set of edges M C E is a perfect matching
of G if and only if Cn(M) is an extension of PM(G). Moreover, every extension of PM(G) is of the
form Cn(M), for some perfect matching M of G.

Since all sets in £(G) contain two elements and, since while constructing the selection default d.,,(v)
we can use —ej A...A—e instead of —(e; V...Veg), the default theories (M S(E(G), E), D) and PM(G)
are disjunction-free.

If M' is a matching in a graph G, then extensions of the default theory (M S(E(G), E), M'") represent
all maximal matchings in G that contain M'. Theory PM(G) can be modified in the same way. This
yields a default theory representing all perfect matchings in the graph G containing M’.

4.8 Graph coloring
Let G = (V, E) be an undirected graph. Let us denote by I the set {1,..., k}. A function f:V — I

is a k-coloring of G if for every edge {u,v} € E, f(u) # f(v). A graph G is k-colorable if there is a
k-coloring of . Since a coloring is a function from V' to I, which satisfies certain conditions, we can
encode all k-colorings of a graph as a default theory using the results given in Sections 4.5 and 4.4. By
Corollary 4.1, extensions of the default theory (M AP(V, I}), ) encode all functions from V to Ij.

We will now define propositional formulas that describe a violation of the condition that the end-
vertices of the same edge are assigned different colors. For every edge e = {z,y} € E and every i € I,
define

cl(e i) = fei N fyi

(recall that f,, is a new atom used in the construction of the default theory M AP(X,Y’) to represent
the fact that v € X is assigned p € Y'). Hence, cl(e, i) states that the endvertices of e are assigned color
i.

It is easy to see that a function ¢ : V — Iy is a coloring if for every e € E and every i € Iy,
{fa.c(x):x € V} does not entail cl(e,i). Weeding out extensions that entail formulas cl(e,4) can be

21



accomplished by adding to M AP(V, I) the selection defaults d’d(
resulting default theory by COL, (G, k).

) €€ E, i € I. Let us denote the

e,i

Observation 4.8 Let G = (V, E) be an undirected graph. A function ¢ : V. — Iy is a k-coloring of
G if and only if Cn({fs c):x € V'}) is an extension of COL,(G, k). Moreover, every extension of
COL (G, k) is of the form Cn({fs,c(x):x € V'}), for some coloring ¢ of G.

Note that the theory COL;(G, k) is disjunction-free.

Another approach to encoding of the coloring problem was given in [NS95]. This encoding, COL»(G, k),
can be constructed, using our approach, as follows. For every x € V and i € Iy, define the conflict set
O(fz,z) by:

C(fei) ={fzjij €Is,j #i}U{fyi1y € V is a neighbor of z}. (2)

It is clear that maximal conflict-free subsets of {f;;:x € V,i € I} are maximal partial k-colorings
of the graph G (a partial coloring is an assignment of colors to some of the vertices of the graph so
that no edge has the same color assigned to its endvertices). Thus, maximal partial k-colorings of G
are encoded (in a one-to-one fashion) by extensions of the default theory (SELECT(F,C), ), where
F={fyizeV,iel;} and C is defined by (2).

Next, for each vertex v, define a formula s(v):

s() = foa V...V fyk.

Clearly, a subset of F entails s(v) if and only if it contains at least one element of the form f, ;. Thus,
by Theorem 4.2, adding to (SELECT(F,C),() the selection defaults dy(v) leaves as extensions only
those that encode complete k-colorings of G (colorings assigning a color to every vertex of the graph).
Let us define

COLy(G,k) = (SELECT(F,C) U {ds):v € V},0).

Observation 4.9 Let G = (V, E) be an undirected graph. A function ¢ : V. — Iy is a k-coloring of
G if and only if Cn({fs c):® € V}) is an extension of COLy(G, k). Moreover, every extension of
COLsy(G, k) is of the form Cn({fs,c(x):x € V'}), for some coloring c of G.

By using —f, 1 A ... A =f, 1 instead of =(f,,1 V...V f, 1) when constructing d,(,), we can ensure
that the theory COL2 (G, k) is disjunction-free.

As in the previous cases, by modifying the objective part of the theories COL; (G, k) and COLy (G, k)
one can encode the collection of those colorings that assign prespecified colors to prespecified vertices.

4.9 Cycles and hamiltonian cycles

Let G = (V, A) be a directed graph and |[V| > 3. For an edge e = (x,y) € A let us define the conflict
set

Cle) ={(z,2) € Az £y} U{(z,y) € A: z # z}.

Let us observe that H C A is a maximal conflict-free subset of A if and only if H is a maximal subset
of edges in G with the following two properties:

(C1) no vertex is the tail of two different edges in H,
(C2) no vertex is the head of two different edges in H.

Consequently, the default theory (SELECT (A, C), () has as its extensions precisely the sets of the form
Cn(H), where H C A is a maximal set satisfying conditions (C1) and (C2).

For every edge e = (z,y) € A, let us define a default move(e) by
T Ae:

Y

move(e) =

22



The default move(e) is justification-free. It is used like a standard inference rule. If e = (z,y) and =
are in an extension of a default theory that contains default move(e), then y is in this extension as well.
Let us define the default theory A(G) by:

A(G) = (SELECT(A,C) U {move(e):e € A}, {vs})

where vs € V is a fixed vertex. One can show that extensions of A(G) are precisely the theories of the
form Cn(X U H), where H C A is a maximal subset of edges of G satisfying conditions (C1) and (C2)
and X is the set of vertices reachable from vy by means of the edges in H.

To leave only those extensions that correspond to hamiltonian cycles, it is enough to enforce two
constraints:

1. An extension must entail formulas v, for every v € V (in other words, all vertices must be reachable
from v by means of edges in the extension),
2. an extension must contain an edge with the head vs.

To enforce the first constraint, the selection defaults d,, v € V are added to A(G). To enforce the

second constraint, the selection default

S f €A f = (5,05)}, auz

auxr

must be added. Let us denote the resulting theory by HAM;(G).

Observation 4.10 Let G = (V, A) be a directed graph. A set H of edges spans a hamilton cycle in G
if and only if Cn(V U H) is an extension of HAM;(G). Moreover, every extension of HAM:(G) is of
the form Cn(V U H), for some set H C A spanning a hamiltonian cycle in G.

Clearly, the theory HAM,(G) is disjunction-free.
We will now describe an alternative encoding. Let, as before, G = (V, A) be a directed graph. For
an edge e = (z,y) define the default

_w{ofif =) €Az ty}

!
move' (e) Yy

The intuitive meaning of move’(e) is: if x has been reached and it is possible to select an outgoing edge
e = (z,y) (none of the other outgoing edges from z is known to have been selected), then select e and
visit y. Define A'(G) by:

A'"(G) = ({move'(e):e € A}, {vs}),

where vs € V is a fixed vertex. One can show that extensions of A’(G) are precisely the theories of the
form Cn(X U H), where H is a sequence of edges starting in vs with each next edge starting where the
previous one ended and X is the set of vertices of the edges in H. The sequence H ends when for the
first time the endvertex of an edge coincides with one of the vertices visited earlier.

Note that the sequence H need not to end in vs and it is not guaranteed that all vertices are visited
(that is, X may be a proper subset of V). To construct a default theory such that its extensions
represent, hamiltonian cycles, let us observe that to guarantee that all vertices are visited, we must
require that the extensions entail the formulas v (v is treated here as a propositional variable), for
all v € V. Similarly, to guarantee that the sequence H ends up back in vy we must ensure that the
extensions entail the formula @ = \/{e € A:e ends in vs}. Both objectives can be accomplished by
adding the selection defaults d,, v € V, and d, to A'(G). Let us denote the resulting theory by
HAM,(QG).

Observation 4.11 Let G = (V, A) be a directed graph. A set H of edges spans a hamilton cycle in G
if and only if Cn(V U H) is an extension of HAM>(G). Moreover, every extension of HAMs(G) is of
the form Cn(V U H), for some set H C A spanning a hamiltonian cycle in G.

Note that HAM,(G) is disjunction-free.

23



5 TheoryBase

We believe that the lack of significant experimental studies of the performance of nonmonotonic rea-
soning systems can be, in large part, attributed to the absence, in the past, of large sets of test cases of
varying difficulty and structure. This problem is not unique to automated theorem proving. It appears
in all areas of experimental research [Hoc96].

To test and experiment with software systems we need easily generated, realistic and meaningful test
instances. A possible approach is to produce a collection of real-life problems. Such benchmarks are
now used in several areas of experimental research in computer science. The benefits of this approach
are evident. The problems are real and, thus, meaningful. In addition, they can easily be disseminated.
But, there are also drawbacks. The data often does not provide enough flexibility to allow full-fledged
testing. In particular, a comprehensive study of performance scalability cannot be easily conducted, as
databases of benchmarks rarely contain families of test cases of similar structure and growing sizes that
would allow good extrapolation of the running time.

The other approach frequently used in experimental research is to generate data randomly. This
method offers an unlimited number of test cases and often the user has control over at least some
parameters of data generated. For example, when generating random graphs, we can request a specific
number of vertices and edges. However, the data generated randomly has often properties that rarely
occur in real-life examples. It is well known that (under appropriate technical assumptions) almost
every connected random graph is hamiltonian [Bol85]. Similarly, it is now believed that random 3-
SAT problems do not provide an adequate model for problems likely to occur in real-life applications
[GM94, CBY4].

None of these two approaches has been fully developed for experimenting with logic programming
and nonmonotonic reasoning. In logic programming, the set of benchmark programs is very small.
Two programs most commonly used in testing are the “naive reverse” program [SS86], and the “win”
program [NS96, RRST97]. The situation is even worse with generating logic programs and default
theories randomly. In fact, up to now, no random model of a logic program or a default theory has
been proposed.

In this section, we will describe a system that generates logic programs and default theories. Our
approach is based on the work by Knuth on methods to generate graphs [Knu93], and on the results
from the previous section providing encodings of graph problems in terms of default theories and logic
programs.

Knuth argues that random graphs do not constitute an adequate tool for testing graph algorithms.
Instead, Knuth develops a graph generation system, The Stanford GraphBase. This system is publicly
available (see [Knu93] for details) and, thus, can be used as a “common denominator” for work requiring
experimenting with graphs. The Stanford GraphBase is a collection of datasets and graph generating
procedures. It allows the user to generate families of directed, undirected, weighted, unweighted,
bipartite, planar, regular and random graphs. An important feature of The Stanford GraphBase is
that every graph generated gets a unique label (or identifier). It is essential for storing and easy
reconstruction of test cases generated.

The core of The Stanford GraphBase is formed by several procedures to generate basic graphs (other
graphs can be obtained by applying graph operations implemented in The Stanford GraphBase). These
procedures root the graphs they generate in objects such as maps and dictionaries in an effort to ensure
some correlation of the graphs generated to real-life problems. For instance, an interesting family of
graphs in The Stanford GraphBase is generated from a table of highway distances between 128 North
American cities.

In our work, we extended The Stanford GraphBase to a system, called the TheoryBase?, that
generates logic programs and default theories. It was developed to facilitate experimenting with DeReS.
Our idea is to apply the encodings presented in Section 4 to graphs which are the outputs of The Stanford

4A detailed description of the TheoryBase commands and features, as well as the executable code can be obtained
from ftp://al.cs.engr.uky.edu/cs/software/logic/TheoryBase.tar.gz

24



GraphBase. Thus, the TheoryBase shell provides the user with two main classes of commands: to
generate graphs, and to generate default theories encoding graph problems.

The graph generating commands rely on The Stanford GraphBase program. They allow the user to
generate families of graphs of similar structure but increasing sizes.

The graph generating commands must be followed by invoking encoding generating commands. The
encoding commands allow the user to specify a graph (or a range of graphs) generated before, a graph
problem and a version of an encoding to use (they are minor modifications of the encodings presented
in Section 4). Currently, the TheoryBase supports the following commands (together with available
options, they allow the user to generate nine different encodings):

1. kernel  this command produces the theory KER5(G) (to be precise, its slight modification)
encoding the existence of a kernel for G; by selecting appropriate options two other encodings can
also be generated

2. color — this command, invoked with the parameter k, generates the theory COL,(G,k) to
encode the existence of a k-coloring problem for G

3. hamilton — produces the theory H AM,(G) to encode the existence of a hamilton cycle problem
for G

4. maxind — generates the default theory M IS(G), whose extensions identify all maximal indepen-
dent sets in G

5. maxmatch  generates the default theory (MS(E(G), E), ) (see Section 4.3), whose extensions
identify all maximal matchings in G.

Each of these commands generates: the header file (suffix .dt), the file of propositional formulas (suffix
.the), the file of defaults (suffix .dc), the stratification file (suffix .str).

The TheoryBase provides a unique identifier for each theory it allows the user to construct. The
concept is an extension of a unique identifier of a graph in The Stanford GraphBase. Combining the
name of the encoding generating command (possibly appended by strings representing a selection of
options) with The Stanford GraphBase identifier of a graph for which the encoding is applied yields the
identifier of the resulting default theory. For instance, if kernel command is applied to a graph with
The Stanford GraphBase identifier board(5,5,0,0,5,3,1) (see Figure 7) the resulting default theory is
denoted by kernel.board_5,5,0,0,5,3,15. Similarly, applying the command color to the same graph,
to produce a default theory encoding the existence of 3-colorings, yields the default theory with the
identifier color3.board_5,5,0,0,5,3,1_.

The TheoryBase encoding generating commands also generate two additional files: the graph de-
scription file and the display actions file. These two additional files play no role in the reasoning but
they support graphical presentation of the results by the TheoryBase and DeReS X11 graphical user
interfaces. For instance, the graphical user interface for DeReS, x11ext, allows the user to display the
underlying graph, identifies the graph problem to be solved, provides the user with several command
buttons and displays the results of the computation. Figure 7 presents the state of the interface after
the first extension was computed for the theory encoding the existence of a kernel problem for the graph
with The Stanford GraphBase identifier board(5,5,0,0,5,3,1).

Although the present focus in the TheoryBase is on test theories for experimentation with non-
monotonic reasoning, our method has wider implications. By encoding graph problems by means of
propositional theories or 3-SAT data instances, one can obtain a benchmarking system for testing
propositional theorem proving techniques. There is an obvious need for such a system (see [GM94]
for additional discussion of the subject), especially in view of recent work on new satisfiability testing

methods: GSAT [SLM92], TABLEAU [CA96], WSAT [SKC96], CSAT [DABCY6] and other.

5For technical reasons, the parentheses in The Stanford GraphBase identifier are replaced by _ symbols.

25



= E [Eideres = =

N I T

S,
: \‘c‘@\»!(’ 8N . CIRCLE

; A Iy
= .._._4‘1 NS V'ré__-_.
SOOI A
AV St sy 67
YRR AT

\ SR A ST A
A\ r""‘v‘t"\w@t!," %7 Ny T\

Yy o‘-ﬁ"f’"&o‘%‘
NN AN
@ﬂ“ NN

e e

7 ‘\A ﬁ{-,%

NN,
DR
KA

BUILT IN

Figure 7: A kernel in graph board(5,5,0,0,5,3,1).

6 Using TheoryBase, experimenting with DeReS

In this section we present the results of our experiments with DeReS and demonstrate usefulness of the
TheoryBase in experimental studies of nonmonotonic reasoning systems. When studying DeReS, we
were interested in the following three main questions:

1. How does the performance of DeReS scale up with the growth of the size of input default theories?

2. How the selection of a prover (recall that DeReS offers three choices) influences the performance
of DeReS?

3. What is the effect of stratification on the performance of DeReS?

In order to obtain meaningful and reliable results, testing must be extensive and the test cases must
cover a wide spectrum of default theories with diverse properties.

The TheoryBase was designed to support this type of studies. Let us recall that the TheoryBase
allows the user to produce parameterized families of default theories. The size of default theories in
such a parameterized family grows as a function of the parameters and all the default theories in the
family share similar properties. Several such families were constructed for our experiments.

We will first discuss those families of default theories that are constructed by means of the Theo-
ryBase kernel and kernel -b commands. These commands produce an encoding of the existence of
a kernel problem (through encodings K ER, and K ER,, respectively). We applied these commands
to several families of directed graphs, called n x m-tori, whose vertices form an n x m-grid wrapped

26



Figure 8: A 3 x 5-grid wrapped around a torus

on a torus, edges connect vertices at distance one in the grid, with the direction determined by the
lexicographic ordering of the endpoints (see Figure 8 for the 3 x 5-torus):

1. 3 x (3m — 1)-tori, m > 1; the Stanford GraphBase labels board(3,3m — 1,0,0,1,3,1),
2. 4 x 2m-tori, m > 1; the Stanford GraphBase labels board(4,2m,0,0,1,3,1).

We also applied these commands to the graphs with the vertex set representing squares on an 8 X n
chessboard, in which two vertices connected if one can be reached from the other by a knight’s move
(with wrap around allowed along both dimensions). These graphs have The Stanford GraphBase labels
board(8,m,0,0,5,3,1).

As a result, we obtained several families of default theories with labels kernel.board_p,q,0,0,s,3,1_
and kernel.b.board_p, q,0,0, s, 3, 1_, for appropriate values of p, ¢ and s. All these theories are disjunction-
free. Consequently, all three provers can be used by DeReS when processing them. The theories in
the families with the prefix kernel have a relaxed stratification into small strata. The theories in the
families with the prefix kernel.b have no non-trivial relaxed stratification. The theories obtained from
graphs board(4,2m,0,0,1,3,1) have exactly two extensions (it is easy to see that the corresponding
graphs have exactly two kernels) and the theories obtained from graphs board(3,3m — 1,0,0,1,3,1)
have no extensions. Finally, the number of extensions for the theories kernel.board_8,m,0,0,5,3,1_is a
slowly growing function of m.

We obtained especially encouraging results on DeReS performance for theories encoding the existence
of k-colorings of graphs. We applied the TheoryBase color command, that implements the translation
COLy, to the following families of graphs:

1. ladder graphs (see Figure 9(a) for an example of a ladder graph), with the Stanford GraphBase
labels board(n,2,0,0,1,0,0),

2. simplex graphs with the side of size n (see Figure 9(b)), with the Stanford GraphBase labels
simplex(n,n,—2,0,0,0,0).

For graphs in these families, we generated theories encoding the existence of a 3-coloring. As a
result, we obtained the following families of default theories:

1. color3.board_n,2,0,0,1,0,0_, n > 2,
2. color3.simplex_n,n,—2,0,0,0,0_, n > 2.

All these default theories are disjunction-free and have a good relaxed stratification. The theories
color3.board_n,2,0,0,1,0,0_have a large number of extensions (ladder graphs have exponentially many
3-colorings). The theories color3.simplez_n,n,—2,0,0,0,0_ have exactly six extensions (each graph
simplex(n,n, —2,0,0,0,0) has exactly six 3-colorings).

The effects of a fine relaxed stratification are perhaps best illustrated by the theories encoding
the existence of a hamiltonian cycle problem. So far, no encoding with good stratification is known.

27



@ o —4eo (b)
| S

o —0

*—©

Figure 9: (a) Ladder graph; (b) Simplex graph

It is easy to see that ladder graphs board(n,2,0,0,1,0,0) have a hamiltonian cycle. We applied the
command hamilton to the ladder graphs to produce the family hamilton.board_n,2,0,0,1,0,0_. Default
theories in this family are disjunction-free and do not have a non-trivial relaxed stratification. Moreover,
each has exactly two extensions (there are two directed hamiltonian cycles in the directed symmetric
representation of a ladder graph).

This collection of test families demonstrates that the TheoryBase allows the user to generate a wide
range of examples that can be used to test nonmonotonic reasoning systems. Some of the families we
generated and used consist of theories which have a relaxed stratification into small clusters and others
had only a trivial, one-cluster, relaxed stratification. Some families had no extensions, some other had
very few extensions, and yet other had large numbers of extensions. Additional diversification was
ensured by the fact that the families generated encode several graph problems and by the diversity of
underlying families of graphs.

In the remainder of this section we present experimental results on the performance of DeReS on
the default theories described above. In all the tables we give, we use the following notation:

1. timey denotes the CPU time for queries processed with the full propositional tableaux prover;
2. time; denotes the CPU time for queries processed with the local propositional tableaux prover;
time, denotes the CPU time for queries processed with the table lookup prover;

NCPP stands for the number of calls to a prover;

oroe W

EXT stands for the total number of extensions for the input theory.

All times are measured in seconds.

The results were obtained on a 166MHz Pentium PC under Linux 2.0.18 operating system. The
time was measured using the time routine and is presented as the sum of the CPU time used while
executing instructions in the user space of the calling process and the CPU time used by the system on
behalf of the calling process. To capture the reasoning time we measure the CPU time from the point
when an input default theory is already stored together with its stratification in DeReS data structures
to the point when the answer is returned.

6.1 Provers, efficiency of DeReS processing and scalability

DeReS offers a choice of three propositional provers. Recall that these are: a full tableaux prover, a
local tableaux prover (sound, but not complete), and a table lookup prover (applicable to disjunction-
free theories only). All our experiments, perhaps not surprisingly, demonstrate that the local prover
significantly and uniformly outperforms the full prover and that the lookup prover, whenever applicable,
performs better than tableaux provers. In particular, this is illustrated in Table 1, which summarizes
DeReS performance for the family of theories kernel.board_8,m,0,0,5,3,1_1in the case when only one
solution was needed, and in Table 2 that reports time needed to compute all extensions for these default
theories.

28



kernel.board_8, m, 0,0, 5,3, 1_, one solution
m | |D] NCPP timey | time; | time,
4 | 224 14804 14.32 1.04 0.06
5 | 280 34377 52.91 3.04 0.14
6 | 336 121249 291.27 | 12.28 0.49
7| 392 105548 302.70 | 11.97 0.42
8 | 448 | 308910 | 1389.91 | 39.65 1.24
9 | 504 | 557398 | 2924.17 | 78.11 2.21
10 | 560 | 1982796 | 14327.56 | 316.29 7.86

Table 1: Searching for a kernel in board(8,m,0,0,5,3,1).

In both cases time grows exponentially with the size of the underlying default theory. Nevertheless,
both experiments show that DeReS can deal, in the matter of seconds, with default theories containing
hundreds of defaults and encoding non-trivial problems.

kernel.board_8, m,0,0,5,3,1_, all solutions
m | |D] NCPP timey time; | time, | EXT
41224 65704 72.89 4.65 0.26 6
5 | 280 114709 208.79 10.23 0.48 15
6 | 336 421082 | 1039.76 42.77 1.65 5
71392 | 1255383 | 4214.01 | 146.72 5.02 147
8 | 448 | 4130579 | > 2 hrs. | 541.35 | 16.29 134
9 | 504 | 10760494 | > 2 hrs. | 1603.21 | 42.53 120
10 | 560 | 31630658 | > 2 hrs. | 5204.96 | 124.24 267

Table 2: Computing all kernels in board(8,m,0,0,5,3,1).

The results from the tables can be used to extrapolate the behavior of the performance of DeReS
for theories kernel.board_8,m,0,0,5,3,1_ and obtain quantitative insights on the savings possible due
to the choice of a prover. For instance, the time time,(m) (in us) to compute all extensions using the
table lookup prover satisfies the inequalities

Cy 3™ < timeg(m) < Cy 3™,

for some small constants C; and C5. Hence, the time grows exponentially and has order @(3‘D‘/56)
(where, recall, D stands for the set of defaults of the theory). That is, the time grows at a much smaller
rate than the theoretical bound O(|D|? x 2/°!) [MT93].

When tableaux provers are used times are larger because more time is needed for each call to the
propositional provability procedure. For instance, the local prover needs to scan the input theory to
find all formulas which have common propositional variables with the query formula and then decide
provability. From our results, it can be estimated that the time time;(m) (in ups) for computing all
extensions by means of the local prover satisfies

C; m3™ < time;(m) < C) m3™,

that is, it is of the order ©(|D| x 3/°1/56). Finally, similar considerations for the full prover show that, in
this case, the time needed to find all extensions is of the order @(|D|* x 3/P1/36). Thus, for the default
theories kernel.board_8, m,0,0,5,3,1_, using the local prover saves a factor of |D| over the full prover,
and using the table lookup prover saves an additional factor of |D|.

29



The results were similar for several other families of default theories. In some cases, the sav-
ings due to the choice of the prover were even more dramatic and led to excellent scalability. Ta-
ble 3 summarizes running times of DeReS for all three provers for the family of default theories
color8.board_n,2,0,0,1,0,0_

color83.board_n,2,0,0,1,0,0_, one solution

n |D| | NCPP timey | time; | time,
300 | 4494 | 11988 | 1343.57 | 10.75 0.08
400 | 5994 | 15988 | 3385.35 | 19.20 0.09
500 | 7494 | 19988 | > 2 hrs. 30.27 0.11
600 | 8994 | 23988 | > 2 hrs. 45.68 0.13
700 | 10494 | 27988 | > 2 hrs. 62.74 0.14
800 | 11994 | 31988 | > 2 hrs. 82.77 0.16
900 | 13494 | 35988 | > 2 hrs. | 108.05 0.18
1000 | 14994 | 39988 | > 2 hrs. | 137.02 0.20

Table 3: Finding a 3-coloring for board(n,2,0,0,1,0,0).

In this case, due to a large number of solutions, we only computed the first extension (computing
all would clearly take exponential time). As before, full and local provers are not practical while the
table lookup prover performs very well. Even for very large default theories from this family, with
tens of thousands of defaults, the table lookup version of DeReS computes an extension in less than
a second. This excellent performance is due to two factors: relaxed stratification and a large number
of extensions these theories have, which makes it easy to stumble upon them. Table 4 presents the
performance results of DeReS for theories color3.simplez_n,n,—2,0,0,0,0_ (they encode 3-colorings of
the simplex graphs). Each such theory has exactly six extensions corresponding to six 3-colorings of
the graph simplex(n,n, —2,0,0,0,0).

color8.simplez_n,n,—2,0,0,0,0_, one solution
n |D| | NCPP | timey | time time,
6| 270 806 0.26 | 0.05 0.01
7| 360 1020 0.53 | 0.08 0.01
8 459 1845 1.10 0.19 0.01
91 570 1649 1.35 0.18 0.01
10 | 693 1950 218 | 0.27 0.01
11| 828 3294 4.61 0.52 0.02
12| 975 2789 5.44 | 0.50 0.02
13 | 1134 3177 8.16 | 0.67 0.02
14 | 1305 5160 | 16.21 1.29 0.03
15 | 1488 4226 | 17.74 1.19 0.03

Table 4: Finding a 3-coloring for simplex(n,n,—2,0,0,0,0).

Finally, DeReS exhibits similar scalability and prover performance results for theories with no exten-
sions. Table 5 summarizes our experiments with the family of theories kernel.board_3,3m—1,0,0,1,3,1_.
Since these theories have no extensions, DeReS can terminate execution only after it scans through a
portion of the search space that is large enough to allow it to conclude that indeed no extensions exist.
Consequently, in this case, the performance of DeReS is worse than in the previous two cases.

All these results demonstrate the magnitude of savings possible with the appropriate choice of the
propositional prover in DeReS. Significant savings were observed for theories encoding both existence

30



kernel.board_3,3m — 1,0,0,1,3,1_

m | |D| NCPP timey | time; | time, | EXT
2 75 2,170 0.58 0.09 0.01 0
3| 120 12,626 8.77 0.68 0.06 0
4 | 165 66,740 79.14 4.39 0.27 0
5| 210 339,032 667.74 | 26.81 1.36 0
6 | 255 | 1,673,382 | 4890.73 | 154.85 6.79 0
71 300 | 8,093,622 | 32620.66 | 819.07 | 31.82 0

Table 5: Searching for a kernel in board(3,3m — 1,0,0,1,3,1), stratified encoding.

of kernels and 3-colorings, and for theories with very many, moderately many, few and no extensions.
They also show that the performance of DeReS, even in the current implementation, scales up very
well for several non-trivial families of default theories. Our results point to the importance of encoding
problems as disjunction-free theories as this allows the user to select the table lookup prover in DeReS.

6.2 Effects of relaxed stratification

Currently, the main pruning mechanism of DeReS is relaxed stratification. We will now discuss how
it influences the performance of DeReS. In particular, we report experiments with theories that are
equivalent (in the sense that they possess precisely the same extensions) but differ in the quality of
relaxed stratification.

The times took by DeReS to find a single extension for the theories kernel.b.board_4,2m,0,0,1,3,1_
are shown in Table 6. Each of these theories has exactly two extensions. None of them has a good relaxed
stratification. In general, in the encoding K ER;(G), the strata correspond to the strong components
of the underlying graph G. The size of each stratum is equal to the number of edges in G starting in
the corresponding strong component of G. In particular, for strongly connected graphs, there is a single
stratum of size |D| = |E(G)|. The graphs board(4,2m,0,0,1, 3,1) are strongly connected and have two
edges originating in each of 8m vertices. Hence, the encoding K ER;(G) has a single stratum of size
16m.

kernel.b.board_4,2m,0,0,1,3,1_, one solution

m | |D| NCPP | timey | time time,
1 16 30,284 1.04 0.40 0.08
2] 32 36,371,891 — | 589.13 78.76
3| 48| 36,743,185,961 — — | 76,191.31

Table 6: Searching for a kernel in board(4,2m,0,0,1,3,1), non-stratified encoding.

Significantly better performance of DeReS is obtained if the theories kernel.board-4,2m,0,0,1,3,1_
are used. They encode the same problem, the existence of kernels, and for the same family of
graphs, board(4,2m,0,0,1,3,1), as theories kernel.b.board_4,2m,0,0,1,3,1_. However, as opposed to
kernel.b.board_4,2m,0,0,1,3,1_, they have a relaxed stratification into small strata. The results are
summarized in Table 7.

Tables 6 and 7 show that the same problem can be represented in DeReS in an efficient way and in a
inefficient manner. The difference is dramatic (7 orders of magnitude) and it points to the importance
of good programming in DeReS. Whenever possible, one should encode problems by means of theories
that have a good relaxed stratification.

Similarly significant speedups were observed for theories which have no extensions. Table 8 shows the
timing results for the task of computing extensions for the theories kernel.b.board_4,2m +1,0,0,1,3,1_

31



kernel.board_4,2m,0,0,1,3,1_, all solutions
m | |D| | NCPP | timey | time; | time,
1 36 484 0.05 0.02 0.01
2| 80 989 0.45 0.08 0.01
3| 120 6,674 3.51 0.34 0.04

Table 7: Searching for a kernel in board(4,2m,0,0,1,3, 1), stratified encoding.

(they do not have extensions).

kernel.b.board_4,2m + 1,0,0,1,3,1_
m | |D| NCPP | timey | time time,
1] 24 914,523 | 41.95 | 13.70 2.01
40 | 1,153,615,536 — — | 2,438.99

Table 8: Searching for a kernel in board(4,2m + 1,0,0,1,3,1), non-stratified encoding.

Again, once a stratified encoding was used, DeReS performance improved dramatically, as reported
in Table 9.

kernel.board_4,2m + 1,0,0,1,3,1_
m | |D| | NCPP | timey | time; | time,
1| 60 671 0.13 | 0.03 0.01
21100 | 3,157 135 | 0.15 0.02

Table 9: Searching for a kernel in board(4,2m + 1,0,0,1,3,1), stratified encoding.

Finally, the same poor performance of DeReS on theories without good relaxed stratification is
observed for the default theories hamilton.board_n,2,0,0,1,0,0_that encode the existence of hamiltonian
cycles in ladder graphs board(n,2,0,0,1,0,0) (Tables 10 and 11). It is worth noting that, to the best
of our knowledge, these theories do not possess equivalent theories with small strata.

The results in this section demonstrate, on one hand, the importance of good search space pruning
techniques and, on the other, the need for the programmer to understand them and to take full advantage
of them. In particular, when solving problems by means of default logic, an effort should be made to
always encode the problems by means of theories which admit relaxed stratification into strata of small
sizes.

7 Conclusions and future work

We described a comprehensive environment for computation with default logic of Reiter. The imple-
mentation, the Default Reasoning System (DeReS) is capable of handling large default theories, often
with thousands of defaults. Our paper reports the results of the past 5 years when DeReS has been
implemented and experimented with.

DeReS performs significantly better if the programmer writes a program (a default theory) that
is disjunction-free and possesses a fine relaxed stratification. This implies that good programming
practices in DeReS require that the programmer submits (if possible) a theory with these desirable
properties. From this perspective, DeReS is not much different from other declarative languages such
as Prolog or LDL[Zan88]. That is, the programmer writes a declarative program, but the ease with

32



hamilton.board_n,2,0,0,1,0,0_, one solution

|D] NCPP timey time; | time,
13 260 0.02 0.01 0.01
21 5248 0.55 0.11 0.01

29 121371 16.92 2.56 0.30
37 | 2598270 488.29 65.32 9.67
45 | 52139039 | > 2 hrs. | 1365.10 | 111.67

o Utk W NS

Table 10: Finding a hamiltonian cycle in board(n,2,0,0,1,0,0).

hamilton.board_n,?2,0,0,1,0,0_, all solutions

VI | |E|l| |D| | K NCPP | CAND timey time; | time,
4 41 13 8 1027 129 0.06 0.02 0.01
6 7| 21|14 33239 1719 3.74 0.66 0.08

81 10| 29| 20 809973 26278 129.29 17.17 1.93
10 | 13| 37| 26| 17478917 | 417441 | 4030.99 413.73 | 39.88
12 | 16 | 45| 32 | 352170869 | 6672528 | > 2 hrs. | > 2 hrs. | 789.35

S U W NS

Table 11: Finding all hamiltonian cycles in board(n,2,0,0,1,0,0). (There are two solutions for each of
these theories.)

which DeReS is able to solve the problem depends on the syntactic form of the theory (i.e. of DeReS
program).

In order to demonstrate that DeReS can handle large and diverse examples, we implemented a
benchmarking environment for nonmonotonic reasoning, the TheoryBase. Building on the work of
Knuth (The Stanford GraphBase) and the systematic technique for implementing constraints as de-
faults (outlined in Section 4.5) we were able to construct large examples of default theories. These
examples can be used as benchmark problems for DeReS. Moreover, by using families of similar graphs
as underlying structures, we were able to construct parameterized families of default theories, thus
creating families of benchmarks. Those families allow us to extrapolate the behavior of the algorithms
underlying DeReS.

Although our benchmarking system was implemented expressly to facilitate experimentation with
DeReS, the TheoryBase can be used alone without DeReS. All nonmonotonic reasoning systems can
now use the TheoryBase as a tool for benchmarking.

Currently we are working on several improvements to DeReS that, we expect, will lead to a better
performance. Those improvements can, roughly, be categorized in three main thrusts. First, we need
better cluster-handling techniques. Those are necessary especially in the situation when the program
does not admit a fine relaxed stratification. Second, the natural parallelism implied by the structure
of the search tree associated with the default theory makes it possible to apply tools such as PVM
(Parallel Virtual Machine) or DIB (Distributed Implementation of Backtracking) for speeding up DeReS
performance. Third, a natural structure of the acyclic graph of clusters associated with the relaxed
stratification, allows for a better control of backtracking (in effect, backjumping). We expect that
the cumulative effect of all these techniques will result in significant improvements over the current
performance of DeReS.

Acknowledgments

This work was partially supported by the NSF grants IRI-9400568 and IRI-9619233.

33



References

[ABWSS]

[ALS94]

[BED91]

[BEP94]

[Bes89]
[BF91]

[BL93]

[BNNS93]

[BNNS96]

[Bol85)
[Bre91]

[CA96]

[CB94]

[CDS94]

[Cho95a]

[Cho95b]

[CMMTY5]

K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,
editor, Foundations of deductive databases and logic programming, pages 89-142, Los Altos,
CA, 1988. Morgan Kaufmann.

G. Antoniou, E. Langetepe, and V. Sperschneider. New proofs in default logic theory.
Annals of Mathematics and Artificial Intelligence, 12:215 230, 1994.

R. Ben-Eliyahu and R. Dechter. Default logic, propositional logic and constraints. In
Proceedings of AAAI-91, Los Altos, CA, 1991. Morgan Kaufmann.

R. Ben-Eliyahu and L. Palopoli. Reasoning with minimal models: Efficient algorithms and
applications. In Proceedings of KR’94, San Francisco, CA, 1994. Morgan Kaufmann.

P. Besnard. An introduction to default logic. Springer-Verlag, Berlin, 1989.

N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic programs. The-
oretical Computer Science, 78:85-112, 1991.

S. Brass and U.W. Lipeck. Bottom-up query evaluation with partially ordered de-
faults. In Proceedings of 3rd Int. Conference on Deductive and Object-Oriented Databases
(DOOD’93), pages 253 266. Berlin: Springer-Verlag, 1993. Lecture Notes in Computer
Science, 760.

C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementing stable semantics by linear
programming. In A. Nerode and L. Pereira, editors, Logic programming and non-monotonic
reasoning. MIT Press, 1993.

C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian. Implementing deductive databases by
mixed integer programming. ACM Transactions on Database Systems, 21:238-269, 1996.

B. Bollobas. Random Graphs. Academic Press, 1985.

G. Brewka. Nonmonotonic reasoning: logical foundations of commonsense. Cambridge
University Press, Cambridge, UK, 1991.

J.M. Crawford and L.D. Auton. Experimental results on the crossover point in random
3-sat. Artificial Intelligence, 81:31 57, 1996.

J.M. Crawford and A.B. Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94). Morgan Kaufmann, 1994.

M. Cadoli, F.M. Donini, and M. Schaerf. Is intractability of non-monotonic reasoning a
real drawback? In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94), pages 946-951, Seattle, USA, 1994. Morgan Kaufmann.

P. Cholewiniski. Reasoning with stratified default theories. In Proceedings of LPNMR’95,
pages 273 286. Berlin: Springer-Verlag, 1995. Lecture Notes in Computer Science, 928.

P. Cholewinski. Stratified default theories. In Proceedings of CSL’94, pages 456 470. Berlin:
Springer-Verlag, 1995. Lecture Notes in Computer Science, 933.

P. Cholewinski, W. Marek, A. Mikitiuk, and M. Truszczyriski. Experimenting with non-
monotonic reasoning. In Proceedings of the 12th International Conference on Logic Pro-
gramming, pages 267-281. MIT Press, 1995.

34



[CMT96]

[DABCY6]

[DFN97]

[ELM*98]

[ER83]

[Eth8S8]
[Gin86]
[GKPS95]

[GL8S]

[GL92]

[GM94]

[Got92]

[HMS6]

[Hoc96]

[TK90]

[Knu93]

[KS89)

P. Cholewinski, W. Marek, and M. Truszczynski. Default reasoning system deres. In
Proceedings of KR-96, pages 518-528. Morgan Kaufmann, 1996.

O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. Sat versus unsat. In Cliques, Coloring
and Satisfiability, Second DIMACS Implementation Challenge, pages 415 436. American
Mathematical Society, 1996.

J. Dix, U. Furbach, and A. Nerode, editors. Proceedings of the Fourth International Con-
ference on Logic Programming and Non-Monotonic Reasoning. Springer Verlag, 1997.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv: Progress
Report, Comparisons, and Benchmarks. In A.G. Cohn, L. Schubert, and S.C. Shapiro, edi-
tors, Proceedings Sizth International Conference on Principles of Knowledge Representation
and Reasoning (KR-98), pages 406-417, June 2—4 1998.

D. W. Etherington and R. Reiter. On inheritance hierarchies with exceptions. In Proceedings
of AAAI-83, Washington, D.C., pages 104 108, 1983.

D. W. Etherington. Reasoning with incomplete information. Pitman, London, 1988.
M.L. Ginsberg. Counterfactuals. Artificial Intelligence, 30:35 79, 1986.

G. Gogic, H. Kautz, Ch. Papadimitriou, and B. Selman. Compactness of knowledge rep-
resentation: A comparative analysis. In Proceedings of IJCAI-95, pages 862 869. Morgan
Kaufmann, 1995.

M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski and
K. Bowen, editors, Proceedings of the 5th International Symposium on Logic Programming,
pages 1070-1080, Cambridge, MA, 1988. MIT Press.

M. Gelfond and V. Lifschitz. Representing actions in extended logic programming. In
Proceedings of International Joint Conference and Symposium on Logic Programming, pages
559 573. MIT Press, 1992.

M.L. Ginsberg and D.A. McAllester. Gsat and dynamic backtracking. In J. Doyle, E. Sande-
wall, and P. Torasso, editors, Principles of Knowledge Representation and Reasoning, KR
’94, pages 226 237. Morgan Kaufmann, 1994.

G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Computation,
2:397-425, 1992.

S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics and frame problem.
In Proceedings of AAAI-86, pages 328-333. Morgan Kaufmann, 1986.

R.W. Hockney. The Science of Computer Benchmarking. STAM, Philadelphia, 1996.

U. Junker and K. Konolige. Computing the extensions of autoepistemic and default logics
with a truth maintenance system. In Proceedings of the Fighth National Conference on
Artificial Intelligence (AAAI-90). Morgan Kaufmann, 1990.

D. E. Knuth. The Stanford GraphBase: a platform for combinatorial computing. Addison-
Wesley, 1993.

H.A. Kautz and B. Selman. Hard problems for simple default logics. In Proceedings of the
1st International Conference on Principles of Knowledge Representation and Reasoning,
KR ’89, pages 189-197. Morgan Kaufmann, 1989.

35



[McC80]

[MDS0]

[MT89]

[MT91]

[MT93]

[MT99]

[IMWS8S]

[Nie92]

[Nie98]

[NS95]

[NS96]

[Poo89]

[RC81]

[Rei78]

[Rei80]
[Rei87]

[RRS*97]

[SKCI6]

J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial Intelligence,
13:27-39, 1980.

D. McDermott and J. Doyle. Nonmonotonic logic 1. Artificial Intelligence, 13:41-72, 1980.

W. Marek and M. Truszczyniski. Stable semantics for logic programs and default theories.
In E.Lusk and R. Overbeek, editors, Proceedings of the North American Conference on
Logic Programming, pages 243 256. MIT Press, 1989.

W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the ACM, 38:588 619,
1991.

W. Marek and M. Truszczynski. Nonmonotonic logics; context-dependent reasoning.
Springer-Verlag, 1993.

W. Marek and M. Truszczynski. Stable models and an alternative logic programming
paradigm. In K.R. Apt, W. Marek, M. Truszczynski, and D.S. Warren, editors, The Logic
Programming Paradigm: a 25-Year Perspective, pages 375-398. Springer Verlag, 1999.

D. Maier and D. S. Warren. Computing with logic. Logic programming with Prolog. The
Benjamin/Cummings Publishing Company, Inc., 1988.

I. Niemela. On the decidability and complexity of autoepistemic reasoning. Fundamenta
Informaticae, 17:117 155, 1992.

I. Niemela. Logic programs with stable model semantics as a constraint programming
paradigm. In I. Niemeld and T. Schaub, editor, Proceedings of the Workshop on Computa-
tional Aspects of Nonmonotonic Reasoning, pages 72—79, 1998.

I. Niemeld and P. Simons. Evaluating an algorithm for default reasoning. In Proceedings of
the IJCAI-95 Workshop on Applications and Implementations of Nonmonotomic Reasoning
Systems, 1995.

I. Niemelad and P. Simons. Efficient implementation of the well-founded and stable model
semantics. In Proceedings of JICSLP-96. MIT Press, 1996.

D. Poole. Normality and faults in logic-based diagnosis. In Proceedings of IJCAI-89, pages
1206 1212, San Mateo, CA, 1989. Morgan Kaufmann.

R. Reiter and G. Criscuolo. On interacting defaults. In Proceedings of IJCAI-81, pages
270 276, 1981.

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and
data bases, pages 55—76. Plenum Press, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57 — 95,
1987.

P. Rao, I.V. Ramskrishnan, K. Sagonas, T. Swift, D. S. Warren, and J. Freire. XSB: A
system for efficiently computing well-founded semantics. In Proceedings of LPNMR’97,
pages 430 440. Berlin: Springer-Verlag, 1997. Lecture Notes in Computer Science, 1265.

B. Selman, H.A. Kautz, and B. Cohen. Local search stragies for satisfiability testing.
In Cliques, Coloring and Satisfiability, Second DIMACS Implementation Challenge, pages
521 531. American Mathematical Society, 1996.

36



[SLM92]  B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of AAAI-92, pages 440 — 446, Los Altos, CA, 1992. American
Association for Artificial Intelligence, Morgan Kaufmann.

[SNV95]  V.S. Subrahmanian, D. Nau, and C. Vago. Wfs + branch bound = stable models. IEEE
Transactions on Knowledge and Data Engineering, 7:362 377, 1995.

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. Cambridge, MA: MIT Press, 1986.

[Sti92] J. Stillman. The complexity of propositional default logics. In Proceedings of AAAI-92,
pages 794 799, Menlo Park, CA, 1992. American Association for Artificial Intelligence,
Morgan Kaufmann.

[Zan88] C. Zaniolo. Design and implementation of logic based language for data intensive appli-
cations. In International Conference om Logic Programming, Cambridge, MA, 1988. MIT
Press.

37



