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Abstract—The multicovering radii of a code are natural As with the ordinary covering radius, a variety of bounds are
generalizations of the covering radius in which the goal is to known for these quantities [4], [5], but precise values are only
cover all m-tuples of vectors for somem as cheaply as possible. known in cases of small length. By bounding the number of

In this paper we describe several techniques for obtaining lower ts that b db - d d btai
bounds on the sizes of codes achieving a given multicovering”?"S€LS that can be covered by a given coaeword, one obtains a

radius. Our main method is a generalization of the method of Straightforward generalization of the sphere bound [4], namely
linear inequalities based on refined weight distributions of the on
code. We also obtain a linear upper bound on the2-covering K™(n,t) > (m,)
radius. We further study bounds on the sizes of codes with a V= (V(n,t))'
given multicovering radius that are subcodes of a fixed code. We m

find, for example, constraints on parity checks for codes with This bound was improved by considering only pessimadets

)

small ordinary covering radius. [5].
Keywords: Covering radius, error correcting code, weight Theorem 1:Letm, n, andt be integers withn even and
distribution, linear inequality, supercode. m/2 dividing n andn/2 < ¢t < n. Then
n 2"
Km(n’—+6)2 o
I. INTRODUCTION AND DEFINITIONS 2 (2t —n + ]_)m/Q(fn/"])

The method of linear inequalities has been used previously! e method of linear inequalities, due to Zhang [11], is a

to obtain lower bounds on the size of a code with a giv chnique for obtaining lower bounds on the size of a code if
covering radius [2], [L1]. The purpose of this paper is to exter?d"”ear inequality for its generali.zed. weight distribution (for
these techniques to obtain lower bounds on the size of a c&?&h vectorx and er;}ch nonnegative '“t?%'”he number ,Of
with a given multicovering radius. codewords whose distance frasmequals:) is known. In this
The general definitions and basic properties of covering ra per we generalize the method of linear inequalitii.

can be found in Cohen, Honkala, Litsyn, and Lobstein’s bod e treatF™ as a product and consider the distribution of
[2]. Let F = {0,1} and' letC' C F” be a'code of length codewordsc with the distance from each componentwfo

the correspondng componentogpecified. Linear inequalities

on these weight distributions again give rise to lower bounds
on the size of a code. The technique can even be applied if
the linear inequalities hold only fok in some linear code
containing the target code. Kill we combine this approach
with an approach to finding lower bounds from extremal sets
to obtain new lower bounds for thex-covering radius of a
code. In§lV we obtain tight bounds on the size of the smallest
code with a given 2-covering radius using a result of Alon,
Bergmann, Coppersmith, and Odlyzko [1], and combine this

In general we are interested in various extremal Valu?gsult with the method of linear inequalities to obtain improved
associated with this notiom,, (n) = R,,(F™), the smallestn- q P

covering radius among length codes;t,, (n, k), the smallest boun(;s :n codes W'tlh glvem-colverkl]ng radlu; for arbltrarby .

m-covering radius amon@n, k) codes;/,, (a,t), the smallest Ln > d. S arr: exampie, v;e apply these 'égp ?lquesdto o rt]aln
length of a linear code with codimensi@nand m-covering ounds on the 1-, 4-, and 6-covering radii of a coade wit a
radius ¢; and K™ (n, 1), the smallest cardinality of a Iengthsmgle parity check. We see, for example, that a minimal size

n code with m-covering radiust. It is the latter quantity code with lengthn and ordinary covering radius 1 can only

that we study in this paper, deriving new lower bounds usinhave parity checks whose weights are close:f@. Also, a

inequalities for linear combinations of the weight distributio rﬁlmmal size code with length and ordinary covering radius

n . )
of codes. In the case: = 2, we also obtain an upper boundi can only have parity checks whose weights are close to
on K?(n,t) that is twice the lower bound. (n & v/n)/2.

For any positive integem the m-covering radius ofC is the
smallest integer such that every set afi vectors inF" is
contained in at least one ball of radiusaround a codeword
in C' [4]. We denote then-covering radius of a cod€’ by
R, (C). ThusR,(C) is the ordinary covering radius. ¥ is a
vector, therx denotes the bitwise complement xf If x and
y are vectors, thes|y denotes the concatenationofandy.
We denote byd(x,y) the Hamming distance betweanand

y.
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a givenm-covering radiust. We denote byk ™’ (n,t) the Proof: For everyiy,---,i, we have
size of the smallest subcode 6f with m-covering radius at

mostt. Z A o (x) = |{e,x):c=c'|--|c" €C,
Elementary bounds can be obtain by generalizing the sphefe®’ ) o .
bound and by finding certain extremal sets [6]. X=X | (x" e d(, %) =iy,
Theorem 2:(Klapper [6]) Suppos& C C’ are codes with j=1,- r}|
C’ linear, andm is a positive integer. _ Z AC
1) LetT = |[{v € O’ : wt(v) < R (C)}|. Then e
<O/> < |O|( ) = |C|Al1’ .
m ) m)’ Thus summing the inequalities (2) over alle F" gives the
2) Let D be a set ofm vectors inFZ and lett > 0. If decs:|red"|neq1u.alllfty. beode of” with . d.D
Ron(C) < t, then|C| > |C’|/|{c € C" : Yu € D : orollary 1: If every subcode wit m-c?venng radius
d(u,¢) < ). at mostt satisfies equation (2) for evesy € C’, then

For a codeC of lengthn and vectorx € F", let AY (x) = B|C|
{c € C:d(e,x) =i} and A (x) = |A¢ (x)|. Zhang showed Yo im0 Mt A,
that we can derive lower bounds for the cardinalityCofrom . N e
a lower bound on a linear combination of IW(X) [11]. If every subcode ofC’ with m-covering radius at most

K™ (n,t) >

Specifically, suppose that for everye F we have satisfies equation (2) for evesy ¢ C’, then
N0AS (%) + MAC () + -+ + XA () > K™ (1 B = ') _
0Ag (%) 1 AT (%) (x) >0 (n,t) > Z "ano)‘ lr(() AC' 0
for real constants\g,---, A, 5. Then We can use linear mequalltles to obtaln boundsfféfr( t)
" in terms of K" (n, t) for r < m — 2.
|| > "L, Theorem 4:If t > n/2 andm > 3 then
(™ /
ZAZ(i) Km,C' (?’L,t) > - ‘C | /Km—Q,C/(v%t)
Zi:n—t A1C
provided that the denominator is positive. This fact has begﬂd
used to derive several useful lower bounds fot(n,t). We
generalize this result by considering vectors to be concatena- j-m,c’ (n,t) > 2" — || Km—2.C" (n,1)
) 7 - )
tions of shorter vectors. it (% ) AE")

Let ny,---,n, be posmve integers, and let be a code Proof: Suppose thaC C C is a code withR,,(C) = t.
of lengthn = n; +ny + --- + n,. For any vectorx = For everyx let Cx = {c € C : n—t < d(x,c) < t}.
x!x?|---|x" € F"* with x7 € F™ for j = 1,---,7, let Supposeyy, - - -, ym—_2 € F™. Then there exists a € C such

, that d(c,y;,) < ¢t for¢ = 1,---,m — 2, d(c,x) < ¢, and
Af (%) {ceC:c=c'[c?] - |c", ¢/ € F™, d(c, %) < t. It follows thatc € Cy. Thus Ry,_2(Cx) < t, SO
d(cj,xj) =i, =1,---,7}. |Cx| > Km=2.¢" (n,t). This implies the linear inequality
Also let AY ; (x) = |AS i, (X)]. We sometimes write C(x m—2,C"
AS = AC . (o) for simplicity. ZtA )z K (n,t)

Theorem 3 Let 'C be a subcode of the linear cod® and =
let \;, ...;, , 3 be real constants. Suppose that for every ¢’ and we can apply either part of Theorem 3. m
we have

I1l. GENERAL BOUNDS
Z Z Aig ooy n, i, (X) 20 @) In this section we use linear inequalities to improve the
=0 =0 bounds arising from an earlier construction [5]. Suppfsés
Then an s x s matrix each of whose entries is one or minus one.
6|C’\ Let vy, vy, - v, be the rows of with v; = (v; 1, -, v s).
¢z DT EEED DD Ve [ Let £ > 0 andn = ks. We construct a seD of m = 2s

vectors and obtain bounds on the sizes of codes with given
provided that the denominator is positive. Similarly, supposg-covering radii. Define : {+1} — {0,1} by ¢(1) = 0 and
that equation (2) holds for evesy ¢ C’. Then #(—1) = 1. For eachi = 1, - - -, s, let

|C| > nﬁ(z"— ) : ’ u; = (vi1)"] - |d(vis)*
B 211 =0 "Zi,,‘T:O /\nzr((zl) - Ag z)

’ We setD = {u;,w; : i =1,---,s}. We havem > 2, so we
provided that the denominator is positive. lett > n/2. Letc = c!|---|c® be any codeword, with each




¢/ of lengthn; = k and weightd;. The distance frone to Thus we expect to obtain the best lower bounds by maxi-
u; is mizing the determinant off. The problem of maximizing the
s determinant of a matrix of plus and minus ones is old and

Z d; + Z (k—d;) = Z”i’idﬂ' +k|{j : vij = —1}|. not completely solved [10]. This determinant is maximized at

j=1 5°/2 if there exists a Hadamard matrix of orderFor this it is
necessary (and it is conjectured that it is sufficient) thae
divisible by 4. In other cases the maximum is a constant (less
than one) multiple ofs*/2. Thus in general we can say that
the determinant off is of the formes®/2 with 0 < ¢ < 1.

v, =1 vij=—1

Thusu; andu; are both within distance of c if

n—t< Zvi,jdj TE{j vy = -1} <t ©)

j=1
Thus our bound becomes
Let A; be the set of multi-indices = (d4, - - -, ds) satisfying g%/29m e/ 2ns/2
equation (3). Then for ank, the condition thatx + D is K?*(n,t) > 5™ 5372
covered by a codeword within radidssays that (2t - ")5(n7(/zss)) 20/%(2t = n)®
s by Stirling’s formula.
ﬂ U Agl,---,ds (x) # 0. In particular, the bound is asymptotically(n*/?) for fixed
i=1(d1, -, ds)€A; s. If s <2,som = 2s < 4, this bound by itself is weaker than
Thus one obtained ir§lV using quite different methods. However,
s we show that the two methods can be combined to obtain
ﬂ U AG 4 (x) = improved bounds forn > 4.
i=1(dy,-,ds ) €A '
U A9 (%) IV. BOUNDS FROMBALANCING SETS
1,°,0s
(drond eV, A If n is a positive integer, then a sétin R = {£1}" is
2 = called abalancing setof orderd > 0 if for everya € R
' there is a vectob € S such that-d < a-b < d. Herea-b
Thus denotes the usual dot product of real vectors. Alon, Bergmann,
Z Adcl,---,ds(x) >1, Coppersmith, and Odlyzko determined the carinality of the
(i, yds)EA smallest balancing set [1].

Theorem 6:(Alon, Bergmann, Coppersmith, and Odlyzko
[1]) For everyn, the smallest balancing set of ordérhas
[n/(d+1)] elements.

The size of the smallest balancing set is relatedtgn, ¢).
on Forx € F", let ¢(x) be the same vector with O replaced by
s . 1 and 1 replaced by-1. Then forx = (z1---,2,),y =
> TIe (y1---,yn) € F*, we have

dy,ds) j=1 . .
AR V) wy) = iiai =yl - i o # i)l

Suppose that: = t — n/2 is kept constant. Then all the = n—2{i:x; #y}
binomial coefficients in Theorem 5 are approximately equal. = n-2d(x,y).

Since each is at mos(t;c’jz), we have the bound

where A = 7_, A;. By Theorem 3, the following theorem
holds.

Theorem 5:For anyn, s and matrixd as above, ik divides
n then

K*(n,t) >

., Thusn — 2t < ¢(x) - ¥(y) <2t —nifand only if n — t <
> Qiq d(x,y) < t. This pair of inequalities holds if and only if
Al ) both x and its complement are contained in a ball of radius

n/(2s) ) :
i ) centered aly. Thus the size of the smallest balancing set of
The size ofA depends on the choice of the matfik In fact . 4ar9: — 1, is a lower bound fotk 2 (n, t).

A consists of the intersection of the integer lattiCewith the We can also obtain an upper bound. k&t n/2 and letC

K?(n,t)

set 5 of pointsx = (z1,---,x;) with real coordinates such o 5 code whose image undgris a balancing set of order
that s 2t — n. Let x € F™. Then there is & € C with n — ¢ <
n—t< Zvi,jxj +kl{j:v; =1} <t d(c,x) < t. Note that the same pair of inequalities holds with
j=1 c replaced by its bitwise complement. Now lete F™ be

another vector. Then eithel(c,y) < n/2 or d(c,y) < n/2.
Thus the paix, y is covered by some vector iiUC’, where
C' is the set of bitwise complements of vectors@h This
proves the following theorem.

for all i. Thus we expect that there are aboultume(B) points
in A. But HB consists of the set of pointg = (y1,- -, ¥ys)
with real coordinates such that

n—t<y+kl{j:vi;=-1} <t Theorem 7:For everyn andt > n/2 we have
for all 4, and H B thus has volumé2n — ¢)*. It follows that n < K%(n,t) <2 n
B has volume(2n — t)*/det(H) and A has approximately 2t—n+1]| ~ T2t =41
this many points.. Combining this with Theorem 4 we have the following.



Corollary 2: If m is even then V. EXAMPLES

(m—2)/2 In this section we demonstrate the techniques described in
this paper by finding bounds on the sizes of subcodes of a
on code C’ whose codimension is 1. Lef” denote the set of
K™(n,t) > K?*(n,t) - even weight vectors of length. Let ¢’ = E* x F” and let
Z (”) n =k + r with £ > 1. That is,C" has a single parity check
=\t of weight k. ThenC’ has minimum distance 1 if > 1 and
(m—2)/2 minimum distance 2 if- = 0. Its ordinary covering radius is
1:if x = x!|x? € F" with x! € F¥ andx? € F7, then we
n on can finde! € E* so thatd(c!,x!') < 1. Thenc!|x? € ¢’ and
Z (”) Suppose that' is a subcode of” and the 1-covering radius
S\ of C'is 1. Using an improvement to the sphere bound [2] we
We can make the (crude ifis large) estimate get that
1/2 2" /(14+n) if nis odd
(n> < < " > ~ 2" <2> . €1 = { 2”%1 ) if n is even. ®)
i n/2 ™m
We can do better by noting that every vector x!|x? € ¢’
Thus we have with x € F¥ andx? € F" has distance at most 1 from some
. (mn/2)(m=2)/4 vector inC of the formx!|y2. It follows that the seC,: =
K™ (n,t) > ((21f—n+1)’”/2> : {y?: x!|y? € C} is a code of length- and covering radius
1. Hence
If we keept — n/2 constant and let grow, then this is 2" /(1+r) if ris odd
asymptoticallyK™ (n, t) € Q(n™+2/4)1f m is constant, this |G| = { 2 /y if 1 is even.

asymptotically exceeds the bound in Theorem 1 by a factor of

nl/2. Therefore
For largerm we combine this approach with the method | > { 271 /(1 47) @f r ?s odd ©6)
of §lll. Again let C' be a lengthn code with R,,,(C) < t. = 2n if r is even.

As in §lIl, let H be ans x s matrix each of whose entries The weaker bound that we would get by ignoring parities can
is one or minus one. Now, however, we assulRe< m — 2. pe gbtained from linear inequalities as well.) This improves
ConstructD as before, sqD| = 2s. Let x € F" be any qn equation (5) if is less than approximately/2 (there are
vector and letCy = {c € C': Vu € D : d(c,u + “7) < t}_- various cases depending on the paritiesiandr).

Then R, _»5(Cx) < t, S0[Cx| > K™ °(n,t). If Aisasin  on the other hand, ik € F", then there is a codeword

§ill, then c € C with d(c,x) < 1. Thus
D AL, (0= KT, ) AF (%) + AT (x) > 1. (7)
(@1, da)e By the second part of Theorem 3, we have
This implies the following theorem. on—1
Theorem 8:If A is as above, then €] = ——;
m 2n s which improves on equations (5) and (6) wheris less than
K™(n,t) 2 s K (n,2). aboutn/2. It follows that any code that has covering radius
Z H(dj) 1 and has size close @'/n cannot have a parity check of
<d1éﬁds>i:1 either low or high weight.
We can iterate this and obtain lower bounds fof*(n,t) ~ NOw suppose that’ is a subcode of” whose 1-covering

in terms of K™ (n,t) for smallm/. At each iteration we may radius is 2. Ifx € F”, then there is a codewokde C whose
make various choices faras long as the sum of the choices iglistance fromx is at most 2. Thus

at most(m—l)/2_. The_question_of which sequence of choices AS (x) + A (x) + AF (x) > 1. 8)

leads to the optimal (i.e., maximal) lower bound amounts to _ _

asking for the maximal product of terms of the form If we ignore the fact that”' is a subcode of’’, we get the
bound

2n 2n+1
s ICl > ———. ©)
& n*+n+2
Z 1:[1<dj) Again, there are various other slight improvements known in
“1'6'5“”* some cases af. We can also think o as a subcode of”.

We have

(10)

over a set of pairgs, H) with the sum of thess fixed. This A (x) = (7 k
is a complicated question. 2 (x) = 2 + 2



if x € C'. Using Theorem 3, this leads to the bounds c has distance at mosdt+ R,(E* x F"') from everyx,. It

1 n follows that
|C" > 2 — 2 ’ ’
_1+7~+(’2”)+(’5) 2k2 —2(n+ 1)k +n2 +n+2 Ry(E¥ x F") <14 Ry(E¥ x F").
and (11) Let n be even. Repeating this eventually reduces to one
on—1 on—1 of the casegk,r) = (2,0), (1,1), or (0,2). The 4-covering
|C] > ST ES (12)  radius in each of these cases is 2. Thus the original 4-tuple of

n-vectors can be covered in radiis—2)/2+ R4 (E' xF1) =
Equation(11) improves on equation (9) whén + 1 — 5/2 4 1 by C’. This upper bound equals the lower bound.
Vn—1)/2 <k < (n+1++/n—1)/2, while equation (12)  Similarly, whenk is even and- is odd we can reduce to one
improves on equation (9) wheh < (n +1—+vn—1)/2 of the casegk,”) = (2,3) or (2,1) and do a similar analysis.
ork > (n+ 14 +/n—1)/2. It follows that any code with  Now let £ be odd andr be even. Ifk > 3 andr > 2,
minimal size for codes with covering radius 2 can only hav@en the series of reductions can be arranged to end with

parity checks with weight close t0: + 1+ v/n —1)/2. E3 x F?, which has 4-covering radius equal to 3. This

Next we consider then-covering radii of a subcod€’ of gives R,(C') < (n + 1)/2. If r = 0, then ¢’ = E
¢’ for largerm. Form = 2, the bounds we can obtain on theand R,(C’) = (n + 3)/2 follows from R4 (C") = 1 +

size of C by the techniques ofll are still weaker than those R, (F”~!) and previous work [4]. Finally, let: = 1. Then

obtained from§lV by ignoring C’. In fact we have either {107,107/217/2 11+7/207/2 1741} (if » = 2 mod 4)
, . or {107, 107/2=1 /241 17/20r/241 17+1Y (if + = 0 mod 4)
K%Y (n,t) < K*(n,t+1) <2 [213—714-3} , cannot be covered bg’ in radius(n + 1)/2. O

Theorem 10:If n is even, them/2+1 < Rg(C’) < n/2+
for anyt¢ > [n/2] + 1, since the 1-covering radius 6’ is 1. 2. If k is even and- is odd, thenRs(C’) = (n +3)/2. If k

Thus we consider the cases= 4 andm = 6. is odd andr is even, then(n +1)/2 < Rg(C’) < (n+ 3)/2.
First we findR4(C"), and R¢(C’). Recall that by Corollary Proof: The upper bounds follows from equation (14) and
1 of [4], for anym > 1, [3]. The lower bounds follows from the fact thdis (C’) >
. o1 R3(E*)+ Ry(F7). In theory we could use the same reduction
R (E") =14 Ry (F"77). (13) approach as for the 4-covering radius, but in practice the base
Thus case is infeasible. bounding?™” (1) and K (n.0) O
y k1 . Now we return to boundingC=% (n,t) and K> (n,t). As
B (C7) < 14 B (B0 o+ Fo (F7). (14) usual we are most interested in codes with minimal covering
Moreover, the 1-covering radius & is 1, so for anym, radii. Letn be even,C' C C”, and suppose that,(C) =t =
n/2 + 1. Ignoring C’, the bound we obtain from Corollary 2
Ry, (C") <1+ Ry (F™). (15) is
Also, if O is the set of odd weight vectors of length then c| > 2" K2(n, n+ 1) (16)
Ry (OF X F7) = Ry, (E* x F7). (2" 0) + () + (s50) 2
Theorem 9:Letn > 2. If nis even, themR4(C’) = n/2+1. rl/2pl/2
If k=0 andr is odd, thenR,(C") = (n+1)/2. If k> 0 is ~ o K n/2+1).

even and- is odd, thenR,(C’) = (n+ 3)/2. If k is odd and ) , )
r=0orif k=1andr is even, therR,(C") = (n +3)/2. If We can also think of” as a subcode af”. If we constrain

k>3 is odd andr > 2 is even, thenRy(C") = (n + 1)/2. the vectorx in equation (4) to be inC’, then we obtain the

Proof: The case wherk = 0 follows from [4] since then perhaps better inequality
C'= f‘” So assumé > 0. It follows from [4] that R, (C") > Z Adcl,~~-,ds (x) > Jom—2s,C" (n,t). 17)
Ra(E¥) + Ro(F7) = 1+ [(k — 1)/2] + [/2].

For any set of 4 vectors of length at leasthere is a pair _
of coordinates in which only 3 distinct binary pairs occur. Léf the current case this leads to the bounds
n > 4, and letxy,---,x4 be vectors of lengtl. Suppose gn—1
that only 3 binary pairs occur in coordinatésnd ;. Let &’ €l = AC L ACT L AC
be £ minus the number of andj that are less than or equal n/2t n/? n/2H
to k, and letr’ ber minus the number that are greater thian and
For any vectory, let y’ be the length 2 vector consisting of 120 (0, n/2 4 1)
the ith andjth coordinates of, and lety” be the remaining €| = () 420 1) —AC, | —AC, — AT, 19)
coordinates. Let® be a vector of length 2 with(c?, x) < 1. /2 n/2+1 n/2=1l /2 T 2
If the weight of the part ofc® that lies among the firsk For example, whem = 6, the bound in equation (16) is
coordinates of” is even, letC” = E¥ x F”'. Otherwise let 1.28K2(n,n/2 + 1). If k = 2, then the bound in equation
C" = OF x F"'. In either caseR,(C") = Ry(E¥ x F'). (18)is1.45K*% (n,n/2+1) and the bound in equation (19)
Letc! € C” have distance at moft,(E* x F"') from every is 1.14K2% (n,n/2 + 1). However, ifk = 4, then the bound
x!/, and letc be the vector withe’ = c® andc” = c'. Then in equation (18) isl.23K* (n,n/2 + 1) and the bound in

(dla"‘7ds)€A

K> (n,n/2+1) (18)




equation (19) ig.33K2C" (n, n/2+1). One of the new bounds
is no worse than the bound in equation (16).

Now we consider subcodes @6f’ whose 6-covering radii
are minimal. For simplicity we lek be even and: = n/2.
Suppose&” C " andRs(C) = n/2+1. Whenever we prove a
bound|Cy| > dK?2(n,t) or |Co| > dK2C" (n, t) for a subcode
Cy C C'" whose 4-covering radius isby any of the methods
above, we also have a bound| > d?K?(n,t) or |C| >
BPK>C (n,t).

We can also obtain a bound more directly. LBt =
{0, 17, 0k1% 1%0*}. For anyx, y, andz, there is ac € C
with d(c,w) < n/2+ 1 for all w € (x + D) U {y,z}. Let
Cx be the set ofc € C such thatd(c,w) < n/2 + 1 for
all w e x+ D. ThenRy(Cx) < n/2+1andCx C C’, so
|Cx| > K2 (n,n/2 +1). We can sum this inequality over
alxeF", xeC',orx ¢ (.
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To obtain bounds ohC/|, in each case we must determine

what weights of codewords can occur . This depends
on various numeric properties df. For example, suppose
k 0 mod4. If x € ', then (i,5) € {(k/2,k/2 —
1), (k/2,k/2),(k/2,k/2 + 1)}. If x ¢ C’, then (i,j) €
{(k/2+1,k/2),(k/2 + 1,k/2)}. The latter gives the larger
bound from Theorem 3,

2n—1
ICl > —

)

2(%) (x

K2 (n,k +1).
Similar calculations can be made in the other cases.

VI. CONCLUSIONS

We have given a strong upper bound for the case- 2,
so we now knowK?(n,t) within a factor of 2. For larger
m, however, we only know lower bounds d™(n,t). These
bounds are asymptotically(n(™+2)/4) whent —n/2 is fixed,
and we conjecture that in fadk™ (n, t) is ©(n("+2)/4) when
t —n/2 is fixed.

We have also extended these techniques to the problerr\':g
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