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Improved Multicovering Bounds from Linear
Inequalities and Supercodes

Andrew Klapper

Abstract— The multicovering radii of a code are natural
generalizations of the covering radius in which the goal is to
cover all m-tuples of vectors for somem as cheaply as possible.
In this paper we describe several techniques for obtaining lower
bounds on the sizes of codes achieving a given multicovering
radius. Our main method is a generalization of the method of
linear inequalities based on refined weight distributions of the
code. We also obtain a linear upper bound on the2-covering
radius. We further study bounds on the sizes of codes with a
given multicovering radius that are subcodes of a fixed code. We
find, for example, constraints on parity checks for codes with
small ordinary covering radius.

Keywords: Covering radius, error correcting code, weight
distribution, linear inequality, supercode.

I. I NTRODUCTION AND DEFINITIONS

The method of linear inequalities has been used previously
to obtain lower bounds on the size of a code with a given
covering radius [2], [11]. The purpose of this paper is to extend
these techniques to obtain lower bounds on the size of a code
with a given multicovering radius.

The general definitions and basic properties of covering radii
can be found in Cohen, Honkala, Litsyn, and Lobstein’s book
[2]. Let F = {0, 1} and letC ⊆ Fn be a code of lengthn.
For any positive integerm them-covering radius ofC is the
smallest integerr such that every set ofm vectors inFn is
contained in at least one ball of radiusr around a codeword
in C [4]. We denote them-covering radius of a codeC by
Rm(C). ThusR1(C) is the ordinary covering radius. Ifx is a
vector, thenx denotes the bitwise complement ofx. If x and
y are vectors, thenx|y denotes the concatenation ofx andy.
We denote byd(x,y) the Hamming distance betweenx and
y.

In general we are interested in various extremal values
associated with this notion:tm(n) = Rm(Fn), the smallestm-
covering radius among lengthn codes;tm(n, k), the smallest
m-covering radius among(n, k) codes;̀ m(a, t), the smallest
length of a linear code with codimensiona andm-covering
radius t; andKm(n, t), the smallest cardinality of a length
n code with m-covering radiust. It is the latter quantity
that we study in this paper, deriving new lower bounds using
inequalities for linear combinations of the weight distributions
of codes. In the casem = 2, we also obtain an upper bound
on K2(n, t) that is twice the lower bound.
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As with the ordinary covering radius, a variety of bounds are
known for these quantities [4], [5], but precise values are only
known in cases of small length. By bounding the number of
m-sets that can be covered by a given codeword, one obtains a
straightforward generalization of the sphere bound [4], namely

Km(n, t) ≥
(
2n

m

)(
V (n,t)

m

) . (1)

This bound was improved by considering only pessimalm-sets
[5].

Theorem 1:Let m, n, and t be integers withm even and
m/2 dividing n andn/2 ≤ t ≤ n. Then

Km(n,
n

2
+ e) ≥ 2n

(2t− n+ 1)m/2
(

2n/m
bn/mc

)m/2
.

The method of linear inequalities, due to Zhang [11], is a
technique for obtaining lower bounds on the size of a code if
a linear inequality for its generalized weight distribution (for
each vectorx and each nonnegative integeri, the number of
codewords whose distance fromx equalsi) is known. In this
paper we generalize the method of linear inequalities (§II).
We treat Fn as a product and consider the distribution of
codewordsc with the distance from each component ofc to
the correspondng component ofx specified. Linear inequalities
on these weight distributions again give rise to lower bounds
on the size of a code. The technique can even be applied if
the linear inequalities hold only forx in some linear code
containing the target code. In§III we combine this approach
with an approach to finding lower bounds from extremal sets
to obtain new lower bounds for them-covering radius of a
code. In§IV we obtain tight bounds on the size of the smallest
code with a given 2-covering radius using a result of Alon,
Bergmann, Coppersmith, and Odlyzko [1], and combine this
result with the method of linear inequalities to obtain improved
bounds on codes with givenm-covering radius for arbitrary
m > 2. As an example, we apply these techniques to obtain
bounds on the 1-, 4-, and 6-covering radii of a code with a
single parity check. We see, for example, that a minimal size
code with lengthn and ordinary covering radius 1 can only
have parity checks whose weights are close ton/2. Also, a
minimal size code with lengthn and ordinary covering radius
2 can only have parity checks whose weights are close to
(n±

√
n)/2.

II. SUPERCODES ANDL INEAR INEQUALITIES

In this section we consider a fixed linear codeC ′ and derive
a lower bound on the size of a code contained inC ′ that has



2

a givenm-covering radiust. We denote byKm,C′
(n, t) the

size of the smallest subcode ofC ′ with m-covering radius at
most t.

Elementary bounds can be obtain by generalizing the sphere
bound and by finding certain extremal sets [6].

Theorem 2:(Klapper [6]) SupposeC ⊆ C ′ are codes with
C ′ linear, andm is a positive integer.

1) Let T = |{v ∈ C ′ : wt(v) ≤ Rm(C)}|. Then(
|C ′|
m

)
≤ |C|

(
T

m

)
.

2) Let D be a set ofm vectors inFn
2 and let t ≥ 0. If

Rm(C) ≤ t, then |C| ≥ |C ′|/|{c ∈ C ′ : ∀u ∈ D :
d(u, c) ≤ t}|.

For a codeC of lengthn and vectorx ∈ Fn, let AC
i (x) =

{c ∈ C : d(c,x) = i} andAC
i (x) = |AC

i (x)|. Zhang showed
that we can derive lower bounds for the cardinality ofC from
a lower bound on a linear combination of theAC

i (x) [11].
Specifically, suppose that for everyx ∈ Fn we have

λ0AC
0 (x) + λ1AC

1 (x) + · · ·+ λnAC
n (x) ≥ β

for real constantsλ0, · · · , λn, β. Then

|C| ≥ β2n

n∑
i=0

λi

(
n
i

) ,
provided that the denominator is positive. This fact has been
used to derive several useful lower bounds forK1(n, t). We
generalize this result by considering vectors to be concatena-
tions of shorter vectors.

Let n1, · · · , nr be positive integers, and letC be a code
of length n = n1 + n2 + · · · + nr. For any vectorx =
x1|x2| · · · |xr ∈ Fn with xj ∈ Fnj for j = 1, · · · , r, let

AC
i1,···,ir

(x) = {c ∈ C : c = c1|c2| · · · |cr, cj ∈ Fnj ,

d(cj ,xj) = ij , j = 1, · · · , r}.

Also let AC
i1,···,ir

(x) = |AC
i1,···,ir

(x)|. We sometimes write
AC

i1,···,ir
= AC

i1,···,ir
(0n) for simplicity.

Theorem 3:Let C be a subcode of the linear codeC ′ and
let λi1,···,ir , β be real constants. Suppose that for everyx ∈ C ′

we have
n1∑

i1=0

· · ·
nr∑

ir=0

λi1,···,irAC
i1,···,ir

(x) ≥ β (2)

Then

|C| ≥ β|C ′|∑n1
i1=0 · · ·

∑nr

ir=0 λi1,···,irAC′
i1,···,ir

,

provided that the denominator is positive. Similarly, suppose
that equation (2) holds for everyx 6∈ C ′. Then

|C| ≥ β(2n − |C ′|)∑n1
i1=0 · · ·

∑nr

ir=0 λi1,···,ir
(
(
n
i

)
−AC′

i1,···,ir
)
,

provided that the denominator is positive.

Proof: For everyi1, · · · , ir we have∑
x∈C′

AC
i1,···,ir

(x) = |{(c,x) : c = c1| · · · |cr ∈ C,

x = x1| · · · |xr ∈ C ′,d(cj ,xj) = ij ,

j = 1, · · · , r}|
=

∑
c∈C

AC′

i1,···,ir
(c)|

= |C|AC′

i1,···,ir
.

Thus summing the inequalities (2) over allx ∈ Fn gives the
desired inequality. 2

Corollary 1: If every subcode ofC ′ with m-covering radius
at mostt satisfies equation (2) for everyx ∈ C ′, then

Km,C′
(n, t) ≥ β|C ′|∑n1

i1=0 · · ·
∑nr

ir=0 λi1,···,irAC′
i1,···,ir

.

If every subcode ofC ′ with m-covering radius at mostt
satisfies equation (2) for everyx 6∈ C ′, then

Km,C′
(n, t) ≥ β(2n − |C ′|)∑n1

i1=0 · · ·
∑nr

ir=0 λi1,···,ir
(
(
n
i

)
−AC′

i1,···,ir
)
.

We can use linear inequalities to obtain bounds forKm(n, t)
in terms ofKr(n, t) for r ≤ m− 2.

Theorem 4:If t ≥ n/2 andm ≥ 3 then

Km,C′
(n, t) ≥ |C ′|∑t

i=n−tAC′
i

Km−2,C′
(n, t)

and

Km,C′
(n, t) ≥ 2n − |C ′|∑t

i=n−t(
(
n
i

)
−AC′

i )
Km−2,C′

(n, t)

Proof: Suppose thatC ⊆ C ′ is a code withRm(C) = t.
For everyx let Cx = {c ∈ C : n − t ≤ d(x, c) ≤ t}.
Supposey1, · · · ,ym−2 ∈ Fn. Then there exists ac ∈ C such
that d(c,yi) ≤ t for i = 1, · · · ,m − 2, d(c,x) ≤ t, and
d(c,x) ≤ t. It follows that c ∈ Cx. ThusRm−2(Cx) ≤ t, so
|Cx| ≥ Km−2,C′

(n, t). This implies the linear inequality

t∑
i=n−t

AC
i (x) ≥ Km−2,C′

(n, t)

and we can apply either part of Theorem 3. 2

III. G ENERAL BOUNDS

In this section we use linear inequalities to improve the
bounds arising from an earlier construction [5]. SupposeH is
an s × s matrix each of whose entries is one or minus one.
Let v1,v2, · · ·vs be the rows ofH with vi = (vi,1, · · · , vi,s).
Let k > 0 and n = ks. We construct a setD of m = 2s
vectors and obtain bounds on the sizes of codes with given
m-covering radii. Defineφ : {±1} → {0, 1} by φ(1) = 0 and
φ(−1) = 1. For eachi = 1, · · · , s, let

ui = φ(vi,1)k| · · · |φ(vi,s)k.

We setD = {ui,ui : i = 1, · · · , s}. We havem ≥ 2, so we
let t ≥ n/2. Let c = c1| · · · |cs be any codeword, with each



3

cj of lengthnj = k and weightdj . The distance fromc to
ui is∑
vi,j=1

dj +
∑

vi,j=−1

(k − dj) =
s∑

j=1

vi,jdj + k|{j : vi,j = −1}|.

Thusui andui are both within distancet of c if

n− t ≤
s∑

j=1

vi,jdj + k|{j : vi,j = −1}| ≤ t. (3)

Let ∆i be the set of multi-indicesδ = (d1, · · · , ds) satisfying
equation (3). Then for anyx, the condition thatx + D is
covered by a codeword within radiust says that

s⋂
i=1

⋃
(d1,···,ds)∈∆i

AC
d1,···,ds

(x) 6= ∅.

Thus
s⋂

i=1

⋃
(d1,···,ds)∈∆i

AC
d1,···,ds

(x) =

⋃
(d1,···,ds)∈

⋂s

i=1
∆i

AC
d1,···,ds

(x)

6= ∅.

Thus ∑
(d1,···,ds)∈∆

AC
d1,···,ds

(x) ≥ 1,

where∆ =
⋂s

i=1 ∆i. By Theorem 3, the following theorem
holds.

Theorem 5:For anyn, s and matrixH as above, ifs divides
n then

K2s(n, t) ≥ 2n∑
(d1,···,ds)

∈
⋂s

i=1
∆i

s∏
j=1

(
n/s
dj

) .

Suppose thata = t − n/2 is kept constant. Then all the
binomial coefficients in Theorem 5 are approximately equal.
Since each is at most

(
k

k/2

)
, we have the bound

K2s(n, t) ≥ 2n

|∆|
(

n/s
n/(2s)

)s .

The size of∆ depends on the choice of the matrixH. In fact
∆ consists of the intersection of the integer latticeZs with the
setB of points x = (x1, · · · , xs) with real coordinates such
that

n− t ≤
s∑

j=1

vi,jxj + k|{j : vi,j = −1}| ≤ t,

for all i. Thus we expect that there are aboutvolume(B) points
in ∆. But HB consists of the set of pointsy = (y1, · · · , ys)
with real coordinates such that

n− t ≤ yi + k|{j : vi,j = −1}| ≤ t,

for all i, andHB thus has volume(2n − t)s. It follows that
B has volume(2n − t)s/det(H) and ∆ has approximately
this many points..

Thus we expect to obtain the best lower bounds by maxi-
mizing the determinant ofH. The problem of maximizing the
determinant of a matrix of plus and minus ones is old and
not completely solved [10]. This determinant is maximized at
ss/2 if there exists a Hadamard matrix of orders. For this it is
necessary (and it is conjectured that it is sufficient) thats be
divisible by 4. In other cases the maximum is a constant (less
than one) multiple ofss/2. Thus in general we can say that
the determinant ofH is of the formcss/2 with 0 < c ≤ 1.
Thus our bound becomes

K2s(n, t) ≥ css/22n

(2t− n)s
(

n/s
n/(2s)

)s ∼
cπs/2ns/2

2s/2(2t− n)s

by Stirling’s formula.
In particular, the bound is asymptoticallyΩ(ns/2) for fixed

s. If s ≤ 2, som = 2s ≤ 4, this bound by itself is weaker than
one obtained in§IV using quite different methods. However,
we show that the two methods can be combined to obtain
improved bounds form ≥ 4.

IV. B OUNDS FROMBALANCING SETS

If n is a positive integer, then a setS in R = {±1}n is
called abalancing setof order d ≥ 0 if for every a ∈ R
there is a vectorb ∈ S such that−d ≤ a · b ≤ d. Herea · b
denotes the usual dot product of real vectors. Alon, Bergmann,
Coppersmith, and Odlyzko determined the carinality of the
smallest balancing set [1].

Theorem 6:(Alon, Bergmann, Coppersmith, and Odlyzko
[1]) For everyn, the smallest balancing set of orderd has
dn/(d+ 1)e elements.

The size of the smallest balancing set is related toK2(n, t).
For x ∈ Fn, let ψ(x) be the same vector with 0 replaced by
1 and 1 replaced by−1. Then for x = (x1 · · · , xn),y =
(y1 · · · , yn) ∈ Fn, we have

ψ(x) · ψ(y) = |{i : xi = yi}| − |{i : xi 6= yi}|
= n− 2|{i : xi 6= yi}|
= n− 2d(x,y).

Thusn − 2t ≤ ψ(x) · ψ(y) ≤ 2t − n if and only if n − t ≤
d(x,y) ≤ t. This pair of inequalities holds if and only if
both x and its complement are contained in a ball of radiust
centered aty. Thus the size of the smallest balancing set of
order2t− n is a lower bound forK2(n, t).

We can also obtain an upper bound. Lett ≥ n/2 and letC
be a code whose image underψ is a balancing set of order
2t − n. Let x ∈ Fn. Then there is ac ∈ C with n − t ≤
d(c,x) ≤ t. Note that the same pair of inequalities holds with
c replaced by its bitwise complement. Now lety ∈ Fn be
another vector. Then eitherd(c,y) ≤ n/2 or d(c,y) ≤ n/2.
Thus the pairx,y is covered by some vector inC∪C ′, where
C ′ is the set of bitwise complements of vectors inC. This
proves the following theorem.

Theorem 7:For everyn and t ≥ n/2 we have⌈
n

2t− n+ 1

⌉
≤ K2(n, t) ≤ 2

⌈
n

2t− n+ 1

⌉
.

Combining this with Theorem 4 we have the following.
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Corollary 2: If m is even then

Km(n, t) ≥ K2(n, t)


2n

t∑
i=n−t

(
n

i

)


(m−2)/2

≥
⌈

n

2t− n+ 1

⌉


2n

t∑
i=n−t

(
n

i

)


(m−2)/2

.

We can make the (crude ift is large) estimate(
n

i

)
≤

(
n

n/2

)
∼ 2n

(
2
πn

)1/2

.

Thus we have

Km(n, t) ≥
(

(πn/2)(m−2)/4

(2t− n+ 1)m/2

)
n.

If we keep t − n/2 constant and letn grow, then this is
asymptoticallyKm(n, t) ∈ Ω(n(m+2)/4). If m is constant, this
asymptotically exceeds the bound in Theorem 1 by a factor of
n1/2.

For largerm we combine this approach with the method
of §III. Again let C be a lengthn code withRm(C) ≤ t.
As in §III, let H be ans × s matrix each of whose entries
is one or minus one. Now, however, we assume2s ≤ m− 2.
ConstructD as before, so|D| = 2s. Let x ∈ Fn be any
vector and letCx = {c ∈ C : ∀u ∈ D : d(c, u + x) ≤ t}.
ThenRm−2s(Cx) ≤ t, so |Cx| ≥ Km−2s(n, t). If ∆ is as in
§III, then ∑

(d1,···,ds)∈∆

AC
d1,···,ds

(x) ≥ Km−2s(n, t). (4)

This implies the following theorem.
Theorem 8:If ∆ is as above, then

Km(n, t) ≥ 2n∑
(d1,···,ds)

∈∆

s∏
j=1

(
k
dj

)Km−2s(n, t).

We can iterate this and obtain lower bounds forKm(n, t)
in terms ofKm′

(n, t) for smallm′. At each iteration we may
make various choices fors as long as the sum of the choices is
at most(m−1)/2. The question of which sequence of choices
leads to the optimal (i.e., maximal) lower bound amounts to
asking for the maximal product of terms of the form

2n∑
(d1,···,ds)

∈∆

s∏
j=1

(
k
dj

)
over a set of pairs(s,H) with the sum of thess fixed. This
is a complicated question.

V. EXAMPLES

In this section we demonstrate the techniques described in
this paper by finding bounds on the sizes of subcodes of a
codeC ′ whose codimension is 1. LetEr denote the set of
even weight vectors of lengthr. Let C ′ = Ek × Fr and let
n = k + r with k ≥ 1. That is,C ′ has a single parity check
of weight k. ThenC ′ has minimum distance 1 ifr ≥ 1 and
minimum distance 2 ifr = 0. Its ordinary covering radius is
1: if x = x1|x2 ∈ Fn with x1 ∈ Fk andx2 ∈ Fr, then we
can findc1 ∈ Ek so thatd(c1,x1) ≤ 1. Thenc1|x2 ∈ C ′ and
d(c1|x2,x) ≤ 1.

Suppose thatC is a subcode ofC ′ and the 1-covering radius
of C is 1. Using an improvement to the sphere bound [2] we
get that

|C| ≥
{

2n/(1 + n) if n is odd
2n/n if n is even.

(5)

We can do better by noting that every vectorx = x1|x2 ∈ C ′

with x ∈ Fk andx2 ∈ Fr has distance at most 1 from some
vector inC of the formx1|y2. It follows that the setCx1 =
{y2 : x1|y2 ∈ C} is a code of lengthr and covering radius
1. Hence

|Cx1 | ≥
{

2r/(1 + r) if r is odd
2r/r if r is even.

Therefore

|C| ≥
{

2n−1/(1 + r) if r is odd
2n−1/r if r is even.

(6)

(The weaker bound that we would get by ignoring parities can
be obtained from linear inequalities as well.) This improves
on equation (5) ifr is less than approximatelyn/2 (there are
various cases depending on the parities ofn andr).

On the other hand, ifx ∈ Fn, then there is a codeword
c ∈ C with d(c,x) ≤ 1. Thus

AC
0 (x) +AC

1 (x) ≥ 1. (7)

By the second part of Theorem 3, we have

|C| ≥ 2n−1

k
,

which improves on equations (5) and (6) whenk is less than
aboutn/2. It follows that any code that has covering radius
1 and has size close to2n/n cannot have a parity check of
either low or high weight.

Now suppose thatC is a subcode ofC ′ whose 1-covering
radius is 2. Ifx ∈ Fn, then there is a codewordc ∈ C whose
distance fromx is at most 2. Thus

AC
0 (x) +AC

1 (x) +AC
2 (x) ≥ 1. (8)

If we ignore the fact thatC is a subcode ofC ′, we get the
bound

|C| ≥ 2n+1

n2 + n+ 2
. (9)

Again, there are various other slight improvements known in
some cases ofn. We can also think ofC as a subcode ofC ′.
We have

AC′

2 (x) =
(
r

2

)
+

(
k

2

)
(10)
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if x ∈ C ′. Using Theorem 3, this leads to the bounds

|C| ≥ 2n−1

1 + r +
(
r
2

)
+

(
k
2

) =
2n

2k2 − 2(n+ 1)k + n2 + n+ 2
(11)

and

|C| ≥ 2n−1

k(r + 1)
=

2n−1

k(n− k + 1)
. (12)

Equation(11) improves on equation (9) when(n + 1 −√
n− 1)/2 < k < (n + 1 +

√
n− 1)/2, while equation (12)

improves on equation (9) whenk < (n + 1 −
√
n− 1)/2

or k > (n + 1 +
√
n− 1)/2. It follows that any code with

minimal size for codes with covering radius 2 can only have
parity checks with weight close to(n+ 1±

√
n− 1)/2.

Next we consider them-covering radii of a subcodeC of
C ′ for largerm. Form = 2, the bounds we can obtain on the
size ofC by the techniques of§II are still weaker than those
obtained from§IV by ignoring C ′. In fact we have

K2,C′
(n, t) ≤ K2(n, t+ 1) ≤ 2

⌈
n

2t− n+ 3

⌉
,

for any t ≥ dn/2e+ 1, since the 1-covering radius ofC ′ is 1.
Thus we consider the casesm = 4 andm = 6.

First we findR4(C ′), andR6(C ′). Recall that by Corollary
1 of [4], for anym ≥ 1,

Rm(Ek) = 1 +Rm(Fk−1). (13)

Thus
Rm(C ′) ≤ 1 +Rm(Fk−1) +Rm(Fr). (14)

Moreover, the 1-covering radius ofC ′ is 1, so for anym,

Rm(C ′) ≤ 1 +Rm(Fn). (15)

Also, if Ok is the set of odd weight vectors of lengthk, then
Rm(Ok × Fr) = Rm(Ek × Fr).

Theorem 9:Let n ≥ 2. If n is even, thenR4(C ′) = n/2+1.
If k = 0 andr is odd, thenR4(C ′) = (n+ 1)/2. If k > 0 is
even andr is odd, thenR4(C ′) = (n+ 3)/2. If k is odd and
r = 0 or if k = 1 andr is even, thenR4(C ′) = (n+ 3)/2. If
k ≥ 3 is odd andr ≥ 2 is even, thenR4(C ′) = (n+ 1)/2.
Proof: The case whenk = 0 follows from [4] since then
C ′ = Fn. So assumek > 0. It follows from [4] thatR4(C ′) ≥
R2(Ek) +R2(Fr) = 1 + d(k − 1)/2e+ dr/2e.

For any set of 4 vectors of length at least4 there is a pair
of coordinates in which only 3 distinct binary pairs occur. Let
n ≥ 4, and letx1, · · · ,x4 be vectors of lengthn. Suppose
that only 3 binary pairs occur in coordinatesi and j. Let k′

be k minus the number ofi and j that are less than or equal
to k, and letr′ be r minus the number that are greater thank.
For any vectory, let y′ be the length 2 vector consisting of
the ith andjth coordinates ofy, and lety′′ be the remaining
coordinates. Letc0 be a vector of length 2 withd(c0,x′

`) ≤ 1.
If the weight of the part ofc0 that lies among the firstk
coordinates ofC ′ is even, letC ′′ = Ek′ ×Fr′

. Otherwise let
C ′′ = Ok′ × Fr′

. In either case,R4(C ′′) = R4(Ek′ × Fr′
).

Let c1 ∈ C” have distance at mostR4(Ek′ ×Fr′
) from every

x′′
` , and letc be the vector withc′ = c0 andc′′ = c1. Then

c has distance at most1 + R4(Ek′ × Fr′
) from everyx`. It

follows that

R4(Ek × Fr) ≤ 1 +R4(Ek′
× Fr′

).

Let n be even. Repeating this eventually reduces to one
of the cases(k, r) = (2, 0), (1, 1), or (0, 2). The 4-covering
radius in each of these cases is 2. Thus the original 4-tuple of
n-vectors can be covered in radius(n−2)/2+R4(E1×F1) =
n/2 + 1 by C ′. This upper bound equals the lower bound.

Similarly, whenk is even andr is odd we can reduce to one
of the cases(k, r) = (2, 3) or (2, 1) and do a similar analysis.

Now let k be odd andr be even. Ifk ≥ 3 and r ≥ 2,
then the series of reductions can be arranged to end with
E3 × F2, which has 4-covering radius equal to 3. This
gives R4(C ′) ≤ (n + 1)/2. If r = 0, then C ′ = En

and R4(C ′) = (n + 3)/2 follows from R4(C ′) = 1 +
R4(Fn−1) and previous work [4]. Finally, letk = 1. Then
either {10r, 10r/21r/2, 11+r/20r/2, 1r+1} (if r ≡ 2 mod 4)
or {10r, 10r/2−11r/2+1, 1r/20r/2+1, 1r+1} (if r ≡ 0 mod 4)
cannot be covered byC ′ in radius(n+ 1)/2. 2

Theorem 10:If n is even, thenn/2+1 ≤ R6(C ′) ≤ n/2+
2. If k is even andr is odd, thenR6(C ′) = (n + 3)/2. If k
is odd andr is even, then(n+ 1)/2 ≤ R6(C ′) ≤ (n+ 3)/2.
Proof: The upper bounds follows from equation (14) and
[3]. The lower bounds follows from the fact thatR6(C ′) ≥
R3(Ek)+R2(Fr). In theory we could use the same reduction
approach as for the 4-covering radius, but in practice the base
case is infeasible. 2

Now we return to boundingK4,C′
(n, t) andK6,C′

(n, t). As
usual we are most interested in codes with minimal covering
radii. Let n be even,C ⊂ C ′, and suppose thatR4(C) = t =
n/2 + 1. IgnoringC ′, the bound we obtain from Corollary 2
is

|C| ≥ 2n(
n

n
2 −1

)
+

(
n
n
2

)
+

(
n

n
2 +1

)K2(n,
n+ 1

2
) (16)

∼ π1/2n1/2

23/2
K2(n, n/2 + 1).

We can also think ofC as a subcode ofC ′. If we constrain
the vectorx in equation (4) to be inC ′, then we obtain the
perhaps better inequality∑

(d1,···,ds)∈∆

AC
d1,···,ds

(x) ≥ Km−2s,C′
(n, t). (17)

In the current case this leads to the bounds

|C| ≥ 2n−1

AC′

n/2−1 +AC′

n/2 +AC′

n/2+1

K2,C′
(n, n/2 + 1) (18)

and

|C| ≥ 2n−1K2,C′
(n, n/2 + 1)(

n
n/2

)
+ 2

(
n

n/2+1

)
−AC′

n/2−1 −AC′

n/2 −AC′

n/2+1

. (19)

For example, whenn = 6, the bound in equation (16) is
1.28K2(n, n/2 + 1). If k = 2, then the bound in equation
(18) is1.45K2,C′

(n, n/2+1) and the bound in equation (19)
is 1.14K2,C′

(n, n/2 + 1). However, ifk = 4, then the bound
in equation (18) is1.23K2,C′

(n, n/2 + 1) and the bound in
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equation (19) is1.33K2,C′
(n, n/2+1). One of the new bounds

is no worse than the bound in equation (16).
Now we consider subcodes ofC ′ whose 6-covering radii

are minimal. For simplicity we letn be even andk = n/2.
SupposeC ⊆ C ′ andR6(C) = n/2+1. Whenever we prove a
bound|C0| > dK2(n, t) or |C0| > dK2,C′

(n, t) for a subcode
C0 ⊆ C ′ whose 4-covering radius ist by any of the methods
above, we also have a bound|C| ≥ d2K2(n, t) or |C| ≥
d2K2,C′

(n, t).
We can also obtain a bound more directly. LetD =

{0n, 1n, 0k1k, 1k0k}. For anyx, y, andz, there is ac ∈ C
with d(c,w) ≤ n/2 + 1 for all w ∈ (x + D) ∪ {y, z}. Let
Cx be the set ofc ∈ C such thatd(c,w) ≤ n/2 + 1 for
all w ∈ x + D. ThenR2(Cx) ≤ n/2 + 1 andCx ⊆ C ′, so
|Cx| ≥ K2,C′

(n, n/2 + 1). We can sum this inequality over
all x ∈ Fn, x ∈ C ′, or x 6∈ C ′.

To obtain bounds on|C|, in each case we must determine
what weights of codewords can occur inCx. This depends
on various numeric properties ofk. For example, suppose
k ≡ 0 mod 4. If x ∈ C ′, then (i, j) ∈ {(k/2, k/2 −
1), (k/2, k/2), (k/2, k/2 + 1)}. If x 6∈ C ′, then (i, j) ∈
{(k/2 + 1, k/2), (k/2 + 1, k/2)}. The latter gives the larger
bound from Theorem 3,

|C| ≥ 2n−1

2
(

k
k
2

)(
k

k
2−1

)K2,C′
(n, k + 1).

Similar calculations can be made in the other cases.

VI. CONCLUSIONS

We have given a strong upper bound for the casem = 2,
so we now knowK2(n, t) within a factor of 2. For larger
m, however, we only know lower bounds onKm(n, t). These
bounds are asymptoticallyΩ(n(m+2)/4) whent−n/2 is fixed,
and we conjecture that in fact,Km(n, t) is Θ(n(m+2)/4) when
t− n/2 is fixed.

We have also extended these techniques to the problem of
finding lower bounds on the size of the smallest subcode of a
given linear code with a givenm-covering radius. Even when
m = 1 this is a new question. Perhaps the most surprising
result here is that we obtain constraints on optimal codes with
small covering radius – they can only have parity checks of
restricted types.

There are many refinements of techniques related to the
method of linear inequalities that have been used to obtain
bounds for codes with small ordinary covering radius [2], [8].
It is possible that these refinements will further improve the
results in this paper.
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