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Spectral Methods for Cross-Correlations of
Geometric Sequences

Andrew Klapper,Member, IEEE,and Claude Carlet

Abstract— Families of sequences with low pairwise shifted
cross-correlations are desirable for applications such as CDMA
communications. Often such sequences must have additional
properties for specific applications. Several ad hoc constructions
of such families exist in the literature, but there are few systematic
approaches to such sequence design. In this paper we introduce
a general method of constructing new families of sequences with
bounded pairwise shifted cross-correlations from old families
of such sequences. The bounds are obtained in terms of the
maximum cross-correlation in the old family and the Walsh
transform of certain functions.

Index Terms— Autocorrelation, CDMA, Cross-correlation, Se-
quences, Walsh Transform.

I. I NTRODUCTION

To build efficient CDMA communications systems one
needs large families of easily generated sequences with low
pairwise shifted cross-correlations. It is often desirable that
these sequences have various additional properties. It is thus
useful to have many families of sequences whose pairwise
cross-correlations are known to be low.

Several classes of sequences whose correlation properties
have been studied are described by applying a functiong on
a finite field to successive powers of a primitive element. In
several cases the function is best described as a composition
of functions,g = f◦h, whereh maps from a large field to
an intermediate subfield, andf maps from the intermediate
field to a subfield of the intermediate field. Sometimesh is
a trace function andf is arbitrary [13]. In other casesf is a
trace function andh is chosen from a suitable family [9], [11],
[17]. In the case of GMW sequences,h is a power of a trace
function [9]. In the case of generalized GMW sequencesf is
the trace ofAx + Bxp+1 for someA andB [20]. In the case
of No sequences andd-form sequences,h is a homogeneous
function of degreed over the intermediate field [11], [17]. In
this paper we generalize this setting and describe a spectral
method of transferring bounds on cross-correlations for one
family to another.

Let p be prime and letq = pn be a power ofp. Let H be
a set of functions fromFqe to Fq such that ifa ∈ F ∗

q and
h(x) ∈ H, then there existB ∈ Fqe and h′ ∈ H such that
ah(x) = h′(Bx) for all x ∈ Fqe . Let F be a set of functions
from Fq to Fp and letα be a primitive element inFqe . For
any f ∈ F , h ∈ H, let Sf,h = s0, s1 · · · with si = f(h(αi)).
Its period dividesqe − 1. We are interested in the maximum
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cross-correlations within such a familySF,H = {Sf,h : f ∈
F , h ∈ H}.

II. M AIN RESULTS

Let S = s0, s1, · · · and T = t0, t1, · · · be sequences over
Fp with period L and τ be an integer. Letζ be a complex
primitive pth root of unity. The cross-correlation ofS andT
with shift τ is

CS,T (τ) =
L−1∑
i=0

ζsi−ti+τ .

It is more convenient to work with functions on finite fields.
Thus if g1, g2 : Fpr → Fp, then fora 6= 0 we define

Cg1,g2(a) =
∑

z∈Fpr

ζg1(z)−g2(az).

If α ∈ Fpr is primitive andS = s0, s1, · · · andT = t0, t1, · · ·
with si = g1(αi) and ti = g2(αi), then

Cg1,g2(α
τ ) = CS,T (τ) + ζg1(0)−g2(0).

Functionsg1 and g2 are equivalentif for some a ∈ Fpr we
have g1(x) = g2(ax) for all x. If G is a set of pairwise
inequivalent functions onFpr , then we say thatG hasshifted
correlations bounded byK if for every g1, g2 ∈ G, we have
|Cg1,g2(a)| < K unlessg1 = g2 anda = 1.

LetH andF be families of functions as in the introduction.
For h1, h2 ∈ H andf1, f2 ∈ F let

Γf1,h1,f2,h2 = Cf1
◦h1,f2

◦h2(1).

For u, v ∈ Fq, let

Nh1,h2(u, v) = |{z ∈ Fqe : h1(z) = u, h2(z) = v}|.

Then

Γf1,h1,f2,h2 =
∑

z∈Fqe

ζf1(h1(z))−f2(h2(z))

=
∑

u,v∈Fq

ζf1(u)−f2(v)Nh1,h2(u, v).

We can express this in terms of matrices. LetNh1,h2 be thep2n

by 1 matrix whose(u, v)th entry isNh1,h2(u, v). Let Bf1,f2

be the 1 byp2n matrix whose(u, v)th entry isζf1(u)−f2(v).
Then

Γf1,h1,f2,h2 = Bf1,f2Nh1,h2 . (1)
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Now let tr be the trace function fromFq to Fp. We want
to relateΓf1,h1,f2,h2 to the set ofΓtr,h′

1,tr,h′
2

whereh′1 andh′2
vary in H. In particular, forx, y ∈ Fq, let

Φh1,h2(x, y) =
∑

z∈Fqe

ζtr(xh1(z))−tr(yh2(z))

=
∑

u,v∈Fq

ζtr(xu−yv)Nh1,h2(u, v).

Let A be thep2n by p2n matrix whose((x, y), (u, v))th entry
is ζtr(xu−yv) and let Ph1,h2 be thep2n by 1 matrix whose
(x, y)th entry isΦh1,h2(x, y). Then we haveP = ANh1,h2 .
Furthermore,A is invertible and

A−1 =
1

p2n
A

whereA denotes the complex conjugate. Thus

Nh1,h2 =
1

p2n
APh1,h2

and by equation (1),

Γf1,h1,f2,h2 =
1

p2n
Bf1,f2APh1,h2 . (2)

Also, we have

1
p2n

(Bf1,f2A)(x,y)

=
1

p2n

∑
u,v∈Fq

ζf1(u)−f2(v)−tr(xu−yv)

=
1

p2n

∑
u∈Fq

ζf1(u)−tr(xu)
∑
v∈Fq

ζ−(f2(u)−tr(yv))

=
f̂1(x)f̂2(y)

q2
,

where f̂(x) =
∑

u∈Fq
ζf(u)−tr(xu) is the Walsh transform of

the functionf .
Theorem 1:If h1 andh2 are functions fromFqe to Fq and

f1 andf2 are functions fromFq to Fp, then

Γf1,h1,f2,h2 =
1
q2

∑
x,y∈Fq

f̂1(x)f̂2(y)Γtr,xh1,tr,yh2 . (3)

When x = y = 0, we haveΓtr,xh1,tr,yh2 = qe. Thus we
want this term to vanish. This happens if we assume that
f̂(0) = 0 for everyf ∈ F . When this happens we say thatf
is a balanced function. It follows that the terms wherex = 0
or y = 0 vanish as well.

Now let T = {tr}. We want the remaining nonzero terms
to be nontrivial correlations of functions in the family{tr◦h :
h ∈ H}. If h1 = ch2, then Γtr,xh1,tr,xch2 = Γtr,xch2,tr,xch2

is the cross-correlation of a function with itself, and all such
Γtr,xh1,tr,xch2 equalqe. Thus we must know that the sum of
the coefficients of all such terms in equation (3) is zero. That

is,

0 =
∑
x∈Fq

f̂1(x)f̂2(xc)

=
∑
x∈Fq

∑
u∈Fq

ζf1(u)−tr(ux)
∑
v∈Fq

ζ−(f2(v)−tr(vxc))

=
∑

u,v∈Fq

ζf1(u)−f2(v)
∑
x∈Fq

ζtr((−u+cv)x)

= q
∑
v∈Fq

ζf1(cv)−f2(v).

This must hold as long asf1 6= f2 or c 6≡ 0, 1 mod qe − 1.
This amounts to saying thatf1 andf2 have ideal shifted cross-
correlations. But it follows from Welch’s bound that this is
only possible ifF consists of a single function with ideal
autocorrelation.

Finally, we must assume that this is the only way that
tr(xh1(z)) and tr(xh2(z)) can be equivalent.

Corollary 1: Suppose that
1) if h1, h2 ∈ H, andh2 is not a nonzero scalar multiple

of h1 and x and y are nonzero, thentr(xh1(z)) and
tr(yh2(z)) are inequivalent;

2) {tr◦h : h ∈ H} has shifted cross-correlations bounded
by K;

3) F = {f} wheref is balanced and has ideal autocorre-
lations.

Let
M =

∑
x∈Fq

|f̂(x)|.

Then {f◦h : h ∈ H} has shifted correlations bounded by
(M/q)2K ≤ qK.

Proof: According to relation (3), it remains to see that
M ≤ q3/2. We can think of the Walsh transform off as a
point in realq dimensional space. Parseval’s theorem says that∑

x∈Fq

|f̂(x)|2 = q2.

Thus the point defined by the Walsh transform is on the sphere
with radiusq. We can take absolute values of the coordinates
and thus assume the point is in the positive hyper-quadrant.
Thus we want to find the maximumz such that the hyperplane
x1 + · · ·+ xq = z has nonempty intersection with the sphere
of radiusq. This must be thez such that the corresponding
hyperplane is tangent to the sphere, and thus the (unique)

intersection point satisfiesx1 = x2 = · · ·xq
def= x. Thus

qx2 = q2, x = q1/2, andM = q3/2 as needed.
There are many families of sequences that arise from func-

tions of the formtr◦h whose correlations are known. Corollary
1 can be applied immediately to these sequences for any
appropriate functionf . For example, forf(x) = tr(Ax1+pj

),
the rank off has been fully analyzed (see, e.g., [10], [12]).
Such known results can now be used to obtain new families
with known bounds on their shifted correlations.

The new results can also be used to improve existing bounds
for some families. For example, Sun, Klapper, and Yang [20]
studied sequences of the form in the current paper withH =
{trqe

q (Ax+Bx1+p) : A,B ∈ Fqe , B 6= 0}, wheretrqe

q denotes
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the trace function fromFqe to Fq. When p is odd andf is
an arbitrary balanced function, they showed that the set{f ◦
h : h ∈ H} has maximum shifted correlations bounded by
(q2 − 1)qe/2 if ne is odd and bounded by(q2 − q)qe/2 if ne
is even.

However, if we takef = tr, then the correlations are of
form

S(A,B) =
∑

x∈Fqe

ζtrqe

p (Ax+Bx1+p).

Such exponential sums were studied by Carlitz [6] and were
used by Sun, Klapper, and Yang to obtain their results. It
follows from Carlitz’s work that

S(A,B) ≤
{

pqe/2 if ne is even
qe/2 if ne is odd

Therefore the family{trqe

p (Ax + Bx1+p) : A,B ∈ Fqe , B 6=
0} has correlations bounded by the same values. It follows
from Corollary 1 that the family{f◦h : h ∈ H} has maximum
shifted correlations bounded bypqe/2+1 if ne is even, and by
qe/2+1 if ne is odd, an improvement by a factor of aboutq
over the previous bound.

For some choices off we may have further improvements.
The bound in Corollary 1 is strongest ifM is small. Recall that
the Holder-Schwartz inequality says that for any real vectors
(a1, · · · , ar) and (b1, · · · , br) we have

|
r∑

i=1

aibi| ≤

(
r∑

i=1

a2
i

)1/2( r∑
i=1

b2
i

)1/2

.

By Parseval’s theorem (see the proof of Corollary 1) and the
Holder-Schwartz inequality withax = 1 if f̂(x) 6= 0, ax = 0
if f̂(x) = 0, andbx = f̂(x), we have

q2 =
∑
x∈Fq

|f̂(x)|2

≤ q
∑
x∈Fq

|f̂(x)|

= qM

≤ q2N
1/2
f

whereNf = |{x : f̂(x) 6= 0}|. Thus

q ≤ M ≤ qN
1/2
f . (4)

Alternatively, we can use the Weil’s bound: if a polynomial
f(x) in one variablex ∈ Fq has degreer relatively prime to
q, then [21] ∣∣∣∣∣∣

∑
x∈Fq

(−1)f(x)

∣∣∣∣∣∣ ≤ (r − 1) q1/2.

The condition onr can in fact be relaxed [5], [14]. Iff is not
affine, this leads to the bound

M ≤ (r − 1) q1/2 Nf . (5)

This gives a better bound than equation (4) when(r−1)2Nf <
q.

SupposeM is minimal. That isM = q. Then∑
x∈Fq

|f̂(x)|2 = q
∑
x∈Fq

|f̂(x)|.

Thus for everyx we have|f̂(x)|2 = q|f̂(x)|. That is,f̂(x) = 0
or |f̂(x)| = q. But by Parseval’s theorem,|f̂(x)| = q for at
most one value ofx. It follows from the inversion formula that
f(z) = tr(az)+ c for some constantsa andc, which gives us
essentially the original family.

III. C ONSTRUCTIONS OFGOOD FAMILIES

We can obtain nearly optimal bounds if we can choose
f so it has few nonzero Walsh coefficientŝf(x). However,
despite the inversion formula these coefficients cannot be
chosen arbitrarily. For example, Parseval’s theorem must hold.
One way to obtain good examples is to choosef to be
linearly equivalent to ak-resilient (that is, balanced andkth
order correlation immune [19]) function for largek. This is
equivalent to saying that for allx with Hamming weight at
most k, f̂(x) = 0 [22]. This guarantees that the sum of the
absolute values of the Walsh coefficients is small. It follows
that for suchf

M ≤ q|{x : f̂(x) 6= 0}|1/2 ≤ q

(
n−k−1∑

i=0

(
n

i

))1/2

.

Corollary 2: Suppose that

1) if h1, h2 ∈ H, h2 is not a nonzero scalar multiple
of h1, and x and y are nonzero, thentr(xh1(z)) and
tr(yh2(z)) are inequivalent;

2) {tr◦h : h ∈ H} has shifted cross-correlations bounded
by K;

3) f has ideal autocorrelations and isk-resilient.

Then {f◦h : h ∈ H} has shifted correlations bounded by
(
∑n−k−1

i=0

(
n
i

)
)K.

Unfortunately, while there are several constructions ofk-
resilient functions (see for example the constructions due to
Siegenthaler [19], Camion, Carlet, Charpin, and Sendrier [1],
Carlet [4], and Maitra and Sarkar [18]), it remains as an
open problem to findk-resilient functions with ideal shifted
autocorrelations andk > 2. It may very well be that no such
functions exist, which would render Corollary 2 uninteresting.

Another approach is to use functions known to have ideal
autocorrelations and to find a bound on the sum of the absolute
values of their Walsh coefficients. In what follows, letK
be a bound on the pairwise cross-correlations in a family
of functions {tr◦h : h ∈ H}, and let C denote the bound
we obtain on the pairwise cross-correlations in a family of
functions{f◦h : h ∈ H} by boundingM .

As a first method, chooseν such thatgcd(ν, q−1) = 1 and
γ ∈ Fq. If a 6= 1, then we have∑

x∈Fq

ζtr(xν−(ax)ν) =
∑
x∈Fq

ζtr((1−aν)xν) = 0.

Thus the Boolean functionf(x) = tr(γxν) has ideal autocor-
relations. In the binary case, the support off is aSinger cyclic
difference set. There are several cases that can be considered.
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Supposen is odd. Ifν is chosen so that
∑

x∈Fq
ζtr(xν+ax) ∈

{0,±p(n+1)/2} (in the binary case this meansf is almost
bent), then by Parseval’s relation we have

p2n =
∑
a∈Fq

f̂(a)2 = Nfpn+1.

Thus Nf = pn−1, andM = Nf · p(n+1)/2 = p(3n−1)/2. For
such a functionf , we obtain a family of functions with pair-
wise cross-correlations bounded byC ≤ pn−1K = (q/p)K.
The casesν = 2i +2j , ν = 2(n−1)/2 +3 andν = 22k−2k +1
(gcd(k, n) = 1) give almost bent functions (cf. e.g. [2], [3]).

When p = 2, there is a method for constructing the
functions we need due to Maschietti [15]. Letκ be an integer
such thatgcd(κ, 2n−1) = 1 and the maph : x 7→ x+xκ is 2
to 1. ThenFq \ {x + xκ;x ∈ Fq} is the support of a function
f with ideal auto-correlation. Singer sets withν = γ = 1
correspond toκ = 2. For n ≥ 5 odd we can takeκ = 6 (the
so-called Segre case). Forn ≥ 7 odd we can takeκ = σ + τ
or κ = 3σ + 4, whereσ = (n + 1)/2 and τ = 2(n+1)/4 if
n ≡ 3 mod 4 andτ = 23(n−1)/4+1 if n ≡ 1 mod 4.

Such a functionf is balanced by the fact thath is 2 to 1.
We also have, for every nonzeroa

f̂(a) =
∑

x/∈Sf

(−1)tr(ax) −
∑

x∈Sf

(−1)tr(ax) = 2
∑

x/∈Sf

(−1)tr(ax)

whereSf is the support off . Thus, again by the fact thath
is 2 to 1,

f̂(a) =
∑
x∈Fq

(−1)tr(a(x+xκ)) = ĝ(b),

whereg(x) = tr(xκ) andb = a(κ−1)/κ. So the functions this
method produces give the same values for

∑
a∈Fq

|f̂(a)| as
for Singer sets.

Again, if p = 2, there is a method due to No et al. [16]. The
functionf is the indicator of the set{xd +(x+1)d; x ∈ Fq},
wheregcd(d, 2n − 1) = 1 and where the mapx 7→ xd + (x +
1)d is 2 to 1. The functionf is then balanced and, for every
nonzeroa

f̂(a) =
∑
x∈Fq

(−1)tr(a(xd+(x+1)d)) =
∑
x∈Fq

(−1)tr(xd+(x+b)d),

wherea = bd.
Let n be even and letk be such that3k ≡ 1 mod n andd =

22k−2k +1 (called a Kasami exponent). Then, as was shown
by Dillon and Dobbertin [8],f has ideal autocorrelation and
its Walsh transform is zero outside the setU = {x3; x ∈ F ∗

2n}
whose cardinality is(2n − 1)/3. By equation (4), we obtain∑

a∈Fq

|f̂(a)| ≤ 2n

√
2n − 1

3
<

23n/2

√
3

.

A final method arises from a theorem proved by Dillon.
Theorem 2 (Dillon [7]): Let d = 4k − 2k + 1 (a so-called

Kasami exponent) where1 ≤ k < n andn/ gcd(k, n) is odd.
Let f(x) = tr(xd). Then χ̂f (a) equals 0 (with multiplicity
2n − 2n−e) or ±2(n+e)/2 wheree = gcd(n, k).

It is well known (and easy to see) that2r + 1 is relatively
prime to2n − 1 if n/ gcd(r, n) is odd. Under the hypotheses

of Dillon’s theorem (also called Welch’s theorem),d =
(23k +1)/(2k +1). Also, n/ gcd(3k, n) dividesn/ gcd(k, n),
so n/ gcd(3k, n) is odd and23k + 1 is relatively prime to
2n− 1. It follows thatd is relatively prime to2n− 1, sof(x)
has ideal autocorrelations. It follows from Dillon’s theorem
that M = 2(3n−e)/2. For such a functionf , we obtain a
family of functions with pairwise cross-correlations bounded
by C ≤ 2n−eK = (q/2e)K. This can be made as small as
possible by takingn = 3 · 2r for somer. In this case we have
a family of functions with pairwise cross-correlations bounded
by C = 22r+1

K.
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