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Spectral Methods for Cross-Correlations of
Geometric Sequences

Andrew Klapper,Member, IEEEand Claude Carlet

Abstract—Families of sequences with low pairwise shifted cross-correlations within such a family” " = {S/" . f ¢
cross-correlations are desirable for applications such as CODMA F 1, ¢ H}.
communications. Often such sequences must have additional
properties for specific applications. Several ad hoc constructions

of such families exist in the literature, but there are few systematic II. MAIN RESULTS
approaches to such sequence design. In this paper we introduce
a general method of constructing new families of sequences with Let S = so,s1,--- andT = to,t1,--- be sequences over

bounded pairwise shifted cross-correlations from old families F,, with period L and 7 be an integer. Le{ be a complex

of such sequences. The bounds are obtained in terms of theprimitive pth root of unity. The cross-correlation ¢f and 7'
maximum cross-correlation in the old family and the Walsh

: X with shift 7 is
transform of certain functions.
L—1
Index Terms— Autocorrelation, CDMA, Cross-correlation, Se- C . $i—tipr
quences, Walsh Transform. s.r(7) = Z :
i=0
|. INTRODUCTION It is more convenient to work with functions on finite fields.

To build efficient CDMA communications systems ong "US i 91,95 : Fypr — Fp, then fora # 0 we define

needs large families of easily generated sequences with low C (a) = Z (91(x)=g2(az)
pairwise shifted cross-correlations. It is often desirable that 92
these sequences have various additional properties. It is thus _ o
useful to have many families of sequences whose pairwitfga € Fr is primitive andS = so, s1,--- andT" = to, 1, -
cross-correlations are known to be low. with s; = g1(a') andt; = g2(a), then
Several classes of sequences whose correlation properties

. . . . T — 91(0)—g2(0)
have been studied are described by applying a fungfiom Co1,9:(@7) = Cs,1(7) + ¢ =
a finite field to successive powers of a primitive element. |8 nctionsg, and g, are equivalentif for some a € F, we
several cases the function is best described as a composifigpe g1(z) = go(az) for all z. If G is a set of pairwise
of functions,g = f°h, where/ maps from a large field t0 jhequivalent functions ofF,-, then we say thag hasshifted

an intermediate subfield, anfl maps from the intermediate . ejations bounded bys if for every gi, g2 € G, we have
field to a subfield of the intermediate field. Sometintess Cyy 4. (a)| < K unlessg; = g, anda = 1’
1,92 .

a trace function and' is arbitrary [13]. In other casefis @ | o3y and F be families of functions as in the introduction.
trace function and is chosen from a suitable family [9], [11], g, hi he € H and fi, f» € F let

[17]. In the case of GMW sequencéds,s a power of a trace

function [9]. In the case of generalized GMW sequengés Tt hy foshe = Cprony f2ons (1)

the trace ofAx + BxP+! for someA and B [20]. In the case

of No sequences and-form sequences) is a homogeneous For u, v € Fy, let

function of degreel over the intermediate field [11], [17]. In - ) _ _

this paper we generalize this setting and describe a spectral Niany (1 0) = [{2 € Fye 1 (2) = u, ha(2) = v}
method of transferring bounds on cross-correlations for ongen
family to another.

zE€Fyr

Let p be prime and ley; = p" be a power ofp. Let H be Ltihafohe = Z ¢Nrha(@)=f2(ha(2))
a set of functions fromF,. to F, such that ifa € F,; and ZEFe
h(z) € H, then there exisB € F,c andh’ € H such that _ Z H@=RO N, 4y )
1,12 ’ °

ah(xz) = W' (Bz) for all z € F.. Let F be a set of functions
from F;, to F,, and leta be a primitive element irFy.. For

any f € F,h e H, let S/ = 59,5, --- with s; = f(h(a?)). We can express this in terms of matrices. gt 5, be thep®”
Its period dividesg® — 1. We are interested in the maximumby 1 matrix whose(u, v)th entry iS Ny, 4, (u,v). Let By, i,

be the 1 byp®” matrix whose(u, v)th entry is¢/1(W)=/2(),
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Now let tr be the trace function fron#, to F,. We want is,
to relatel’' s, n,,f,,n, to the set ofl'y,. u 4. n, Whereh; andhy
vary in H. In particular, forz,y € F,, let

S hi@)falac)

el
Oy (2y) = Z ¢tr(ahi (2)=tr(yha()) _ Z Z ¢ fr(w)=tr(uz) Z ¢~ (2(0)=tr(vac))
zE€F e rzeF, ueF, vEF,
= Y eI, (). = 3 (h@Re) §T ctrl(cwrens)
u,vEFy u,vEF z€Fy
. = gq Z Cfl(C’U)—fg('U).
Let A be thep®™ by p?* matrix whose((x, y), (u, v))th entry ey

is ¢tr(*u=vv) and let Py, », be thep®” by 1 matrix whose
(z,y)th entry is®p,, 5, (z,y). Then we haveP = AN}, p,.
Furthermore,A is invertible and

This must hold as long ag, # f> or ¢ # 0,1 mod ¢© — 1.
This amounts to saying thgt and f> have ideal shifted cross-
correlations. But it follows from Welch’s bound that this is

P 1 = only possible if 7 consists of a single function with ideal
T pn autocorrelation.
Finally, we must assume that this is the only way that
where 4 denotes the complex conjugate. Thus tr(zhi(z)) andtr(zha(z)) can be equivalent.

Corollary 1: Suppose that

1) if h1,he € H, andhy is not a nonzero scalar multiple
of h; and z and y are nonzero, themr(zhy(z)) and
tr(yha(z)) are inequivalent;

1 —
Nhhhz = ﬁAPhhhz

and by equation (1), 2) {tr°h : h € H} has shifted cross-correlations bounded
1 by K;
Uty by foshe = 5 By, 2 APhy - ) 3) F ={f} wheref is balanced and has ideal autocorre-
lations.
Let
Also, we have n
M=% |f(@).
1 — zEFy
= (B2 A @) : :
D Then {f°h : h € H} has shifted correlations bounded by
_ 1 T (hf) -ty (M/q)*K < qK.
p2n Bt Proof: According to relation (3), it remains to see that
1 T M < ¢*/2. We can think of the Walsh transform ¢f as a
= = Z ¢hw—tr(av) Z ¢~ () —tr(yv)) point in realq dimensional space. Parseval's theorem says that
ueF, veF, ~
IR " > If@)? = ¢
_ fl(m)fé(y) z€Fy
2 b)
q Thus the point defined by the Walsh transform is on the sphere

~ ) —tr(au) with radiusg. We can take absolute values of the coordinates

where f(z) = 3¢, ¢ is the Walsh transform of g thys assume the point is in the positive hyper-quadrant.

the functionf. Thus we want to find the maximumsuch that the hyperplane
Theorem 1:If hy andh, are functions fromf. to Fy and ;. 4 ... ¢ r, = z has nonempty intersection with the sphere

J1 and f, are functions from#, to F;,, then of radius¢. This must be the: such that the corresponding
) hyperplane is tangent to the sphere, and thus the (unique)
Ctyhyfohe = 5 Z ﬁ(m)ﬁ(y)l“tr,mhl,tr,m- (3) intersection point satisfies; = 22 = -z, el . Thus
T yer, qr? = ¢2, © = ¢/2, and M = ¢*/? as neededs

Whenz = y = 0, we havel's, zp, tryn, = ¢°. Thus we  There are many families of sequences that arise from func-
want this term to vanish. This happens if we assume théns of the formieh whose correlations are known. Corollary
f(0) =0 for every f € F. When this happens we say that 1 can be applied immediately to these sequences for any
is a balanced function. It follows that the terms where- 0 appropriate functiorf. For example, forf (z) = tr(Az't?"),
or y = 0 vanish as well. the rank of f has been fully analyzed (see, e.g., [10], [12]).

Now let 7 = {¢r}. We want the remaining nonzero termsSuch known results can now be used to obtain new families
to be nontrivial correlations of functions in the famifyr°h :  with known bounds on their shifted correlations.

h € H}. If hqy = che, thenTy uny trwchs = Lirwchs traochs The new results can also be used to improve existing bounds
is the cross-correlation of a function with itself, and all sucfor some families. For example, Sun, Klapper, and Yang [20]
Lir why trzeh, €Qualg®. Thus we must know that the sum ofstudied sequences of the form in the current paper hith

the coefficients of all such terms in equation (3) is zero. Th@trgc (Az+Bx'*P): A, B € Fye, B # 0}, wheretrgc denotes
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the trace function from¥F,- to F;,. Whenp is odd andf is SupposeM is minimal. That isM = ¢. Then
an arbitrary balanced function, they showed that the{get

S N
h : h € H} has maximum shifted correlations bounded by D@ =g 1f@)].
(¢% — 1)¢*/? if ne is odd and bounded bgy? — ¢)¢*/2 if ne v€Fy veky
IS even. _ Thus for every: we havel f(z)|? = q|f(z)|. That is, f(z) =0
However, if we takef = tr, then the correlations are of 5, If(z)| = q. But by Parseval's theoremyf(z)| = g for at
form At Bl most one value of. It follows from the inversion formula that
S(A,B)= > ¢ir (AetBr), f(z) = tr(az) + ¢ for some constants andc, which gives us
TE€Fge essentially the original family.
Such exponential sums were studied by Carlitz [6] and were
used by Sun, Klapper, and Yang to obtain their results. It Ill. CONSTRUCTIONS OFGOOD FAMILIES
follows from Carlitz's work that We can obtain nearly optimal bounds if we can choose
pg/? if ne is even f so.it has fgw nonzero Walsh coefficienf@:.). However,
S(A,B) < /% if neis odd despite the inversion formula these coefficients cannot be

chosen arbitrarily. For example, Parseval’s theorem must hold.

Therefore the family{tr? (Az + Ba'*?) : A, B € F,c,B# One way to obtain good examples is to chooketo be
0} has correlations bounded by the same values. It followsearly equivalent to a-resilient (that is, balanced anih
from Corollary 1 that the family{ foh : h € H} has maximum order correlation immune [19]) function for large This is
shifted correlations bounded ky*/?*! if ne is even, and by equivalent to saying that for alt with Hamming weight at
¢¢/>*1 if ne is odd, an improvement by a factor of abaut mostk, f(z) = 0 [22]. This guarantees that the sum of the
over the previous bound. absolute values of the Walsh coefficients is small. It follows

For some choices of we may have further improvementsthat for suchf
The bound in Corollary 1 is strongestif is small. Recall that N 1/2
the Holder-Schwartz inequality says that for any real vectors M < ql{z: flz) 0}‘1/2 <q < Z (T;)) .

(a1,---,a,) and(by,-- -, b,) we have i=0

Corollary 2: Suppose that

. . 1/2 s 1/2
|Zaibi| < <Zaf> (Z b?) : 1) if hi,he € H, ho is not a nonzero scalar multiple
i=1 i=1 =1 of hy, andz andy are nonzero, themr(xh;(z)) and

By Parseval’'s theorem (see the proof of Corollary 1) and the  tr(yh2(z)) are inequivalent;

~

Holder-Schwartz inequality with,, = 1 if f(z) #0, a, =0 2) {tr°h : h € H} has shifted cross-correlations bounded

~ o~

if f(z)=0,andb, = f(x), we have by K;
) S 3) f has ideal autocorrelations andksesilient.
7T = Z /()] Then {f°h : h € H} has shifted correlations bounded by
=efe (S " (K.
< q Z |f ()] Unfortunately, while there are several constructionskof
zEF, resilient functions (see for example the constructions due to
= qM Siegenthaler [19], Camion, Carlet, Charpin, and Sendrier [1],
< qul/z Carlet [4], and Maitra and Sarkar [18]), it remains as an
- ! open problem to findk-resilient functions with ideal shifted
where Ny = |{z : f(x) # 0}|. Thus autocorrelations ané > 2. It may very well be that no such
functions exist, which would render Corollary 2 uninteresting.
g<M< qN}”. 4 Another approach is to use functions known to have ideal

autocorrelations and to find a bound on the sum of the absolute

Alternatively, we can use the Weil's bound: if a polynomiajayes of their Walsh coefficients. In what follows, &
f(z) in one variabler € F, has degree relatively prime 10 he 5 pound on the pairwise cross-correlations in a family

g, then [21] of functions {tr°h : h € H}, and letC denote the bound
we obtain on the pairwise cross-correlations in a family of
Z (=) @| < (r — 1) ¢"/2. functions{f°h : h € H} by bounding)M.
=y As a first method, choose such thatged(v,¢g—1) = 1 and

v € Fy. If a #1, then we have
The condition on- can in fact be relaxed [5], [14]. If is not ) ) o
affine, this leads to the bound D it len)) = 3 girlmen)et) — g,
zEFy TzEFy
M < (r—1) ¢"? Ny. () : .
' Thus the Boolean functioffi(x) = ¢r(v2¥) has ideal autocor-
This gives a better bound than equation (4) when1)>N; < relations. In the binary case, the supportfdé aSinger cyclic

q. difference setThere are several cases that can be considered.
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Supposer is odd. If is chosen so that, ., ¢! T) ¢
{0, £p("+1/2} (in the binary case this mean is almost
ben), then by Parseval’s relation we have

P =Y fla)? = Nyt

acFy

Thus Ny = p"~', and M = N; - p(+1)/2 = pBn=1/2_ For

such a functionf, we obtain a family of functions with pair-

wise cross-correlations bounded by < p" 'K = (¢/p)K.
The casey = 21427, v =2(»~1/2 L 3andy = 22 —2F -1
(gcd(k,n) = 1) give almost bent functions (cf. e.g. [2], [3]).

of Dillon’s theorem (also called Welch's theoremj, =
(23% +1)/(2% +1). Also, n/ ged(3k,n) dividesn/ ged(k, n),

so n/ged(3k,n) is odd and23* + 1 is relatively prime to
2™ — 1. It follows thatd is relatively prime t&2"” — 1, so f(x)
has ideal autocorrelations. It follows from Dillon’s theorem
that M = 20B7=¢)/2_ For such a functionf, we obtain a
family of functions with pairwise cross-correlations bounded
by C < 2" °K = (¢/2°)K. This can be made as small as
possible by taking: = 3-2" for somer. In this case we have
a family of functions with pairwise cross-correlations bounded
by C =22 K.

When p = 2, there is a method for constructing the

functions we need due to Maschietti [15]. Lete an integer
such thayyed(k,2™ —1) =1 and the mafh : © — x4+ 2" is 2

to 1. ThenF, \ {z + z*;x € F,} is the support of a function

f with ideal auto-correlation. Singer sets with= ~v = 1
correspond tos = 2. Forn > 5 odd we can take: = 6 (the
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so-called Segre case). For> 7 odd we can takes = o + 7
or k = 30 + 4, wheres = (n +1)/2 and 7 = 2(n+D/4 jf
n =3 mod4 andr = 23(»~D/4+1 jf n =1 mod 4.

Such a functionf is balanced by the fact that is 2 to 1.
We also have, for every nonzeto

f(a) — Z (_1)tr(ax) _ Z (_1)tr(az) -9 Z (_ntr(am)
2¢5; z€Sy ¢Sy

where Sy is the support off. Thus, again by the fact that

is2to 1,
Z (_1)tr(a(m+z”’))
el

(1]
(2]

(3]
f(a) g(b),

(4]
whereg(z) = tr(z*) andb = a(*~1/*. So the functions this
method produces give the same values o .. [f(a)| as
for Singer sets.

Again, if p = 2, there is a method due to No et al. [16]. The[g)
function f is the indicator of the sefz? + (z+1)¢; z € F,},
whereged(d,2" — 1) = 1 and where the map +— 2 + (z + [7]
1)? is 2 to 1. The functionf is then balanced and, for every 8]
nonzeroa

fla) = Y7 (—1)irlem @ D) o N7 gyt

(5]

El

T€F, z€F, [10]
wherea = b, (11]
Letn be even and let be such thaBk = 1 modn andd = [y

22k _ 9k 11 (called a Kasami exponent). Then, as was shown
by Dillon and Dobbertin [8],f has ideal autocorrelation and

; 1
its Walsh transform is zero outside the 8et= {23; x € F}.} =
whose cardinality i2™ — 1)/3. By equation (4), we obtain

[14]
P < 22220
a)l < 2" < . 15
> fl = 3 7 [15]
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