
On the Existence of Secure Keystream Generators

Andrew Klapper∗

Department of Computer Science
779H Anderson Hall

University of Kentucky
Lexington KY 40506-0046

http://www.cs.engr.uky.edu/∼klapper/andy.html

Abstract

Designers of stream ciphers have generally used ad hoc methods to build
systems that are secure against known attacks. There is often a sense that
this is the best that can be done, that any system will eventually fall to a
practical attack. In this paper we show that there are families of keystream
generators that resist all possible attacks of a very general type in which a
small number of known bits of a keystream are used to synthesize a gener-
ator of the keystream (called a synthesizing algorithm). Such attacks are
exemplified by the Berlekamp-Massey attack. We first formalize the notions
of a family of finite keystream generators and of a synthesizing algorithm.
We then show that for any function h(n) that is in O(2n/d) for every d > 0,
there is a family B of periodic sequences such that any efficient synthesiz-
ing algorithm outputs a generator of size h(log(per(B))) given the required
number of bits of a sequence B ∈ B of large enough period. This result is
tight in the sense that it fails for any faster growing function h(n). We also
consider several variations on this scenario.

Index Terms – Binary sequences, keystream generators, security, cryptography,
stream ciphers.

∗This research funded in part by NSF grant #NCR-9400762. Part of this work was carried
out while the author was visiting the Isaac Newton Institute, Cambridge University, Cambridge,
UK. Parts of this paper have appeared in the proceedings of Eurocrypt ’96, Zaragoza, Spain.

1

1 Introduction

A stream cipher is often used when it is necessary to encrypt large amounts of data
very quickly. It is considered secure if knowledge of a small number of bits of the
keystream cannot be used to recover the entire keystream (a “known plaintext”
attack).

Historically, the design of stream ciphers has been largely a matter of finding
ad hoc methods of foiling existing cryptanalytic attacks. Designers often feel that
seeking a truly secure and efficient stream cipher is hopeless, that the best they
can do is design a system that resists known attacks. The purpose of this paper
is to explore the possibility that there exist families of stream ciphers that resist
cryptanalysis by very large classes of attacks. We use asymptotic complexity rather
than Shannon theory as the basis for notions of security. A family of stream ciphers
is secure against all efficient attacks of a certain general type if all such attacks
require asymptotically large numbers of bits of the keystream.

The attacks we are concerned with use a small number of known bits of a
keystream to synthesize a fast generator for the keystream. For example, if the
keystream can be generated by a linear feedback shift register (or LFSR) of length
n, then 2n bits of the sequence suffice for the Berlekamp-Massey algorithm to
determine the LFSR that generates the keystream [15]. The ingredients that make
this attack of concern are as follows.

1. A class of fast devices (LFSRs) that generate all possible eventually periodic
sequences.

2. A polynomial time algorithm A and a polynomial p(n) such that if a sequence
can be generated by a device of size n, then p(n) bits of the sequence suffice
for A to determine the device.

A great deal of energy has gone into the design of (nonlinear) feedback registers
that resist the Berlekamp-Massey attack, often by ad hoc methods (see for example
[6, 10, 11, 18, 19]). Also, several similar attacks exist based on other types of
keystream generators [12, 14].

In this paper we show that there is a family of efficiently generated sequences
that resist all such attacks. However, the techniques used to show their existence,
while recursive, give no practical method for finding such a family. The essen-
tial idea here is that whatever sequence is predicted by a cryptanalytic algorithm
given a short prefix, there is an efficiently generated sequence with the same pre-
fix that is distinct from the predicted sequence. We also consider the case where

2

the cryptanalytic algorithm is only expected to approximate the keystream. We
use previously known results on the covering radii of Reed-Muller codes to show
that there is an efficiently generated sequence whose Hamming distance from the
predicted sequence is large.

We want to be clear that we are only describing sequences that are secure
against a large class of attacks. We do not claim that these sequences are usable in
secure stream ciphers, even if we had a practical construction for generators of the
sequences. In fact, the sequences described have m-sequences as large prefixes and
hence would leave large prefixes of messages insecure if they were used in stream
ciphers.

The existence of provably secure sequence generators was studied previously by
Yao [21] and by Blum and Micali [2]. Their models and results were different, how-
ever. First, their sequence generators were arbitrary polynomial time computable
generators (in the size of the seed). We use a much more restrictive model: se-
quences are generated by finite state machines whose state change functions can be
computed by fast circuits. Second, the attacks considered by Yao and by Blum and
Micali required the availability of all previously generated bits to predict the next
bit (by a so-called next bit test). The attacks considered here require that only a
small number (polynomially many in the size of the resulting generator) of bits be
available to generate all remaining bits. Third, the attacks consider by Yao and
by Blum and Micali were probabilistic while those considered here are determin-
istic. Fourth, the existence results they gave were based on unproved complexity
theoretic assumptions, such as the intractability of the discrete logarithm problem.
Our results hold independent of any such assumptions. Finally, the generators
we consider are far more efficient than those considered by Yao and by Blum and
Micali.

Maurer also considered the design of private key cryptosystems that resist all
attacks [16]. His point of view differed from ours in that the system he designed
required a globally accessible source of public randomness. Also, the notion of
security was probabilistic – the probability that an enemy could obtain information
was shown to be exceedingly small.

In Section 2 we abstract the notions of fast keystream generator and of efficient
algorithms for synthesizing such generators given a small number of initial bits.
In Section 3 we first show that there is a family of keystream generators that
admits no such synthesizing algorithm. We then show that an efficient, secure
family B of sequences exists. This family is secure in the sense that, for every
family of keystream generators F that admits a synthesizing algorithm, the size
of the smallest generator in F that outputs a given sequence B in B grows at

3

a superpolynomial rate in the size of the smallest efficient generator for B. In
Section 4 we show that the bounds in Section 3 are optimal. In Sections 5 and
6 we consider two variants: the case where the cryptanalyst is only required to
generate a fraction of the keystream; and the case where the number of bits the
cryptanalyst has access to is linear in the size of the smallest generator.

2 Definitions

In this section we describe keystream generators, the basic objects of study of this
paper, and notions of security for families of keystream generators. These are finite
state machines with output, whose states are given by bit vectors.

Definition 2.1 A (keystream) generator is a 4-tuple (S, F, g, s0) such that

1. S is a finite set (the states);

2. F : S → S is a function (the state change function);

3. g : S → {0, 1} is a function (the output function); and

4. s0 is an element of S (the initial state).

A keystream generator outputs an infinite eventually periodic binary sequence
by iterating the state change function and applying the output function to the
sequence of states: g(s0), g(F (s0)), g(F (F (s0))), · · ·.

In the sequel, because we are concerned with the size and speed of a generator,
we assume that S is a set of n bit vectors x̄ = (x0, · · · , xn−1) for some n. In this
case we say that the generator has length n. We further generally use generators
whose output functions are of the form g(x̄) = x0. In this case the generator is
completely determined by F and s0, and we often abuse the notation by identifying
the generator with the pair (F, s0) or simply F if the state is irrelevant. Note that
a generator of length n with a more general output function can always be replaced
by one of length n + 1 with this special form of output function with no increase
in the complexity (by any reasonable measure of complexity).

In algorithms dealing with descriptions of such state change functions, we as-
sume that the functions are described by circuits using bounded fan-in, unbounded
fan-out gates. We usually use binary (fan-in two) AND gates (denoted ∧), binary
XOR gates (denoted ⊕), and NOT gates (denoted ¬). Such circuits can be en-
coded as binary strings [1]. The size of a generator F is the minimum number of

4

gates in a circuit that computes the function F . The depth of a generator F is the
depth of the minimum depth circuit that computes F .

One might wonder whether there is a single efficient generator whose output
resists all cryptanalytic attacks based on knowledge of the first few bits of the
sequence. To see that this cannot be, suppose B is such a sequence, generated by
F . The algorithm that outputs F whenever the known plaintext bits coincide with
a prefix of B is always successful against B (although it does badly against other
sequences). Thus we turn to asymptotic security and families of sequences.

A family of (keystream) generators, F , is an infinite collection of keystream
generators. We let Fn denote the set of keystream generators in F of length n. If
B is an infinite eventually periodic binary sequence, then the F -span of B, denoted
λF(B), is the least integer n such that B can be output by a generator in Fn (or
∞ if there is no such n). We denote the period of B by per(B).

We are concerned with generators whose state change functions can be com-
puted quickly. Let δ(n) be the maximum over all F in Fn of the depth of F . We
say F is

1. fast if δ(n) ∈ O(log(n)).

2. short if whenever F ∈ F generates sequence B, then λF(B) isO(log(per(B))).

Note that for a fast family the sizes (numbers of gates) of the generators in F are
polynomial in the lengths of the generators, since a depth δ circuit with fan-in at
most two has at most 2δ gates. In fact, in all but one case in this paper, the sizes
of fast families of generators described are linear in the lengths of the generators.
For a fast short family, the depth of the smallest generator of a sequence B is
O(log(log(per(B))), and the size is a polynomial in the log of the period.

Our basic concern is whether, given a small number of bits of a sequence B, we
can efficiently synthesize the smallest generator in F that outputs B.

Definition 2.2 1. Algorithm T is an F -synthesizing algorithm if, when given
the input b0, · · · , bk−1, T outputs the encoding of a generator (F, s) ∈ F such
that the first k output bits of F with initial state s are b0, · · · , bk−1.

2. T is effective if:

(a) It runs in polynomial time in k; and

(b) There is a polynomial p(n) such that if λF(B) = n < ∞, on input
b0, · · · , bk−1 with k ≥ p(n), T outputs an (F, s) ∈ F of length n that
generates all of B.

5

3. A family F of generators is synthetic if there is an effective F-synthesizing
algorithm.

Fact 2.3 The family of Linear Feedback Shift Registers and the family of Feedback
with Carry Shift Registers [14] are synthetic families.

We say that a family of sequences is secure with respect to a family of generators
if there is either no way to synthesize the best generator in the family for a given
sequence, or the length of the best generator grows quickly with the period of the
sequence.

Definition 2.4 Let B = B1, B2, · · · be a sequence of binary sequences of increasing
periods. Let

ΛF ,B(n) = λF(Bn).

Then B is F -secure if either

1. F is not synthetic; or

2. For every k > 0, we have

ΛF ,B(n) ∈ Ω(log(per(Bn))k).

In either case, for large enough n the shortest generator in F generating Bn

cannot be found effectively.
Observe that we have required a synthesis algorithm to find the smallest genera-

tor in the family F that outputs B. One might more generally consider algorithms
that output generators whose length is only close to minimal. However, any family
that is secure against all attacks of the restricted type must also be secure against
all attacks of this more general type. Suppose T is such an algorithm, synthesizing
generators in a family F . Assume that with enough (poynomially many) bits of a
sequence, T outputs a generator that generates the correct sequence and that the
length of this generator is at most polynomial in the length of the minimal such
generator. Let F ′ be the set of generators that is actually output by T on various
inputs. Then T is also an F ′-synthesizing algorithm. The F -span and F ′-span of
a sequence are polynomially related, so the F ′-security of a family of sequences
implies it is secure against T in the more general sense.

In describing the growth rates of functions, we say a function f(n) is subexpo-
nential if for every d > 0,

f(n) ∈ O(2n/d).

6

It is superpolynomial if for every k > 0,

f(n) ∈ Ω(nk).

A family is secure against F if the F -span of its sequences is superpolynomial in
the logs of their periods. In fact, we show that for any subexponential function
h(n), there are families whose F -spans are greater than h(log(period)). It is well
known that there are subexponential superpolynomial functions.

3 Existence of Secure Keystream generators

In this section we prove the existence of families of keystream generators that resist
all synthesis attacks. We prove this in the strong sense that for every attack, all
but finitely many sequences in the constructed family resist the attack.

Theorem 3.1 Let h(n) be any subexponential function. There exists a sequence
of binary periodic sequences B = B1, B2, · · · such that

a. B can be generated by a family F of fast short generators such that the length
of the generator of Bm is at most twice the log of the period of Bm;

b. For every synthetic family F ′, if m is sufficiently large, then

ΛF ′,B(m) ≥ h(log(per(Bm))).

In particular, if we let h be superpolynomial, then B is F ′-secure for every family
F ′ of keystream generators.

Proof: For each synthesis algorithm T , let FT be the family of generators that
is output by T . Let F1,F2, · · · be an enumeration of the synthetic families FT

of generators such that each FT occurs infinitely often. Such an enumeration is
possible because the set of all algorithms is enumerable. (We must be careful here.
The set of all synthetic families of generators is not enumerable. Many families
have generators that are simply never output by the synthesis algorithm, so many
families correspond to the same algorithm. If, however, we restrict attention to
those families all of whose generators are actually output by the synthesis algo-
rithm, then there is at most one family per algorithm.) Let the corresponding
synthesis algorithms be T 1, T 2, · · ·.

7

We construct B in stages by a diagonalization argument. At the ith stage we
construct Bi to have appropriate properties with respect to F1, · · · ,F i. Let

p(n) = nd

be so that for 1 ≤ j ≤ i, T j synthesizes a generator in F j that outputs any sequence
S given

p(λFj(S))

bits of S.
Let t = dlog(i + 1)e. We construct Bi so that it has period

per(Bi) = 2k+1 + t− 1,

and can be generated by a generator of length k + t + 3 and depth

max(dlog(k + 1)e , dlog(t)e) + 3

for some k.
Let r be

1. larger than the period of any previous Bj;

2. larger than t; and

3. large enough that, for every k ≥ r, we have

2k/d > h(log(2k + t)).

Choose n and k so that

nd > 2r and 2k ≤ nd < 2k+1.

We construct i + 1 generators whose outputs are identical to one period of an
m-sequence for 2k+1−1 bits. The jth generator then outputs the binary expansion
of the integer j. This can be done by adding circuitry to the generator of the m-
sequence that checks for an all zero state, and, when found, switches to a separate
pure cycling register of length dlog(i + 1)e that has been loaded with the binary
expansion of j. The total length of this generator is

log(i + 1) + k + 3 ≤ 2k + 2

≤ 2 log(per(B))

= O(log(per(B))).

8

where B is the output sequence. (Note that two extra bits are needed for the
output and for a flag to tell which part of the generator is currently active). The
depth of the circuit is

O(log(k) + log log(i)) = O(log(k)).

Hence this is a fast short generator.
There must be at least one of these sequences, which we denote Bi, that satisfies

λFj(Bi) > n

≥ 2k/d

> h(log(2k + t))

= h(log(per(Bi)))

for 1 ≤ j ≤ i. This concludes stage i. 2

For sequences B generated by a short family F , λF(B) is O(log(per(B))).

Corollary 3.2 Let h(n) be any subexponential function. There exists a sequence
of binary periodic sequences B = B1, B2, · · · such that for every synthetic family
F ′,

λF ′,B(m) ∈ Ω(h(ΛF ,B(m))).

Corollary 3.3 There exist (uncountably many) nonsynthetic families of fast short
generators.

The constructions in Theorem 3.1 can be made recursive. That is, there is an
effective procedure which, given i, outputs a list of the generators in Fi in the first
case or Bi (or a generator of Bi) in the second case. Such a procedure, however,
is likely to be impractically slow.

4 Exponential Bounds Are Impossible

In this section we show that Theorem 3.1 is sharp in the sense that the function h
cannot be replaced by an exponential function. We first need a lemma.

Lemma 4.1 There is a polynomial time algorithm which, given 2p or more con-
secutive bits of a periodic sequence, outputs the period of the sequence. (If the
algorithm is given fewer than 2p bits, it may output anything.)

9

Proof: Suppose we are given 2k bits of a sequence. In time O(k2), we can find
the least p such that

bi = bi+p for all 0 ≤ i < 2k − p.

We claim that if q is the true period and k ≥ q, then p = q.
We have p ≤ q since q satisfies the above condition. Let j be any index and let

j = xq + y with 0 ≤ y < q. Then y < 2k − p so

bj = by

= by+p

= bj+p.

Thus q divides p and so q = p. 2

Theorem 4.2 Let h(n) = 2n/d be an exponential function, and let B = B1, B2, · · ·
be any sequence of periodic binary sequences. There exists a fast synthetic family
of generators F such that for every i,

λF(Bi) ≤ h(log(per(Bi))).

Proof: We construct the family F by describing a generator synthesis algorithm
T . F is then the set of generators output by T .

A k bit generator generated by T has the following form. The last k − 1 bits
operate independently of the first bit. The first bit is computed as a function of
the last k − 1 bits. Thus the generators are, in effect, nonlinear feedback registers
with nonlinear feedforward functions.

Algorithm T will produce a generator of length⌊
p1/d

⌋
when acting on a sequence of period p. Thus

λF(Bi) =
⌊
per(Bi)1/d

⌋
≤ h(log(per(Bi))).

Since the number of bits the algorithm can have access to is polynomial in λF(Bi),
we can assume T knows two complete periods of Bi. Using the algorithm promised
by Lemma 4.1, we first compute the period p.

10

The next step is to construct a fast keystream generator whose state sequence
has period p. This can be done, for example, by constructing a maximal period
LFSR of length k, with

2k−1 ≤ p < 2k.

Thus the period of this LFSR is 2k−1. Such a LFSR can be found by an exhaustive
search for a primitive polynomial of degree k. There are 2k ≤ 2p polynomials of
degree k, and each can be checked for primitivity in time quasi-linear in p. Thus
such a LFSR can be found in polynomial time. It can then be modified to switch
back to its initial state after p states by using a k-bit AND to check for the pth
state. We call the resulting generator G.

The construction is completed by finding a binary function on k bits that has
the bits of the sequence as values on the p states of G. This can be written as an
XOR of p terms, each an AND of k bits. Such an expression can be implemented
as a circuit of depth

dlog(p)e+ dlog(k)e .

Finally, the resulting generator is extended to length⌊
p1/d

⌋
by padding it with ⌊

p1/d
⌋
− k

dummy bits on the left. 2

5 Partial Attacks

For many purposes the attacks considered in the preceding sections are too weak.
A system is also vulnerable if an adversary can find a substantial number of bits
of the keystream. This is especially true if there is enough context in the message
to recover the remaining bits. If F is a family of generators, B is a sequence of
(eventual) period m, and 0 < r ≤ m, then λF ,r(B) is the size of the smallest
generator F in F whose output agrees with B on at least r bits of each period1 of
B.

1Some care must be taken here. The sequence B and the output sequence B′ of F may
have different periods, and in fact may not be strictly periodic, only eventually periodic. A
reasonable interpretation is that r/per(B) is less than or equal to the limit as n goes to ∞ of
|{i, 1 ≤ i ≤ n : bi = b′i}|/n.

11

Definition 5.1 Let T be an F-synthesizing algorithm and 0 < r(m) ≤ m. We say
that T is r(m)-effective for F if

1. It runs in polynomial time; and

2. There is a polynomial p(n) such that if B is a sequence with (eventual) period
m and n = λF ,r(m)(B), then on input b0, · · · , bk−1 with k ≥ p(n), T outputs
an F ∈ F of length n. If the sequence generated by F is B′, then for any k,

|{i, k ≤ i ≤ k + m− 1 : bi = b′i}| ≥ r(m).

F is r(m)-synthetic if there is an r(m)-effective algorithm for F .

Theorem 5.2 Let h(n) be subexponential and let

r(m) =
m

2
+O(m1/2).

There exists a family F of fast short generators such that for every r(m)-synthetic
family F ′, there are infinitely many generators F in F with output sequence B of
eventual period m satisfying

λF ′,r(m)(B) ≥ h(log(per(B))).

Proof: The goal is to find efficiently generated sequences with a large Hamming
distance from whatever sequence is produced by the algorithm we are trying to
diagonalize against. We do so by using Reed-Muller codes and well known results
from coding theory concerning the covering radii of these codes.

Let f(x̄) be a polynomial of degree at most d in n variables. Then the Reed-
Muller codeword associated with f is the length 2n Boolean vector whose com-
ponents are the 2n values of f . The Reed-Muller code of length n and degree d,
RM(n, d), consists of all these codewords.

The output from the generators we construct consist of an m-sequence of period
2k − 1 followed by a RM(n, d) codeword c for some k, n, and d. The parameter d
is independent of the stage of the diagonalization (but depends on r(m)). The first
step is to see that it is possible to construct a fast short generator that outputs
such a sequence. The generator consists of two parts: an LFSR that generates the
m-sequence, and a generator that outputs c. The overall generator can be made
to output the m-sequence, switch to the generator of c. This is accomplished by

12

detecting the last state of the LFSR with an AND of k bits. This takes depth
log(k). When c has been output, the generator then switches back to the LFSR
similarly.

The generator that outputs c can be constructed by starting with a generator
of length n and period 2n – modify a LFSR of period 2n− 1 so it outputs an extra
0 when it reaches the all zero state. This requires at most depth log(n) and one
extra bit of state. Now c can be generated by computing the value of the function
f on the state. Since the degree of f is bounded by d, it is a sum of at most a
polynomial in n number of monomials, each of degree at most d, and so can be
computed by a circuit of depth

O(log(polynomial(n))) = O(log(n)).

Thus we have a sequence of period 2n + 2k − 1 generated by a generator of length
n + k + 3 (two extra bits are usd for output and for switching between the two
modes of operation) and depth

O(log(n) + log(k)) = O(log(n + k + 3)).

Furthermore,

n + k + 3 ≤ 3 max(n, k)

≤ 3 log(2n + 2k − 1),

so this is a fast short generator.
Recall that the covering radius of a code C is the smallest integer ρ such that

every vector in the ambient space is within ρ of at least one codeword in C. In
the past 15 years or so, a large body of literature has been built up concerning
the covering radii of codes (see the excellent surveys [3, 5]). It is known that the
covering radius of the Reed-Muller code RM(n, d) for fixed k is at most

2n − t2n/2

2
,

where t depends only on d [4]. The constant t can be made arbitrarily large by the
choice of d. In our case, if

r(m) <
m

2
+ t′m1/2,

then we choose d so that t > 4t′ + 1.

13

Of course we really want sequences that are far from given sequences, but in
the Hamming metric, if c is close to b, then the complement c′ of c is far from b:
dist(c′, b) = 2n − dist(c, b) if the length of the code is 2n. The Reed-Muller code is
close under complementation (add 1 to f), so we see that there is a Reed-Muller
codeword whose distance from any given sequence of length 2n is at least

2n + t2n/2

2
.

As previously, for each r(m)-synthesis algorithm T , let FT be the family of
generators that is output by T . Let F1,F2, · · · be an enumeration of the syn-
thetic families of generators such that each FT occurs infinitely often. Let the
corresponding synthesis algorithms be T 1, T 2, · · · and assume T i is successful when
given

pi(λF i,r(m)(B))

bits of any sequence B. At the ith stage of the diagonalization we want to include
in F a fast generator F , as described above, with output B so that λF i,r(m)(B) is
large.

Let pi(x) < x`. Let k′ = 3k be large enough that

1.

h(k′) < 2k′/(4`) < (2k − 1)1/`

and

2.

m = 2k + 2k2 − 1

is larger than the period of any sequence generated by a generator already
incuded in F .

Let n = k2. Thus the generator constructed above generates an m-sequence of
period

2k − 1 > h(3k)`

> pi(h(3k))

> pi(h(log(22k + 2k − 1)))

> pi(h(log(m))).

14

Recall that if
r(m) ≤ m

2
+ t′m1/2,

and t > 4t′ + 1, we can pick d so that the covering radius of RM(n, d) is at most

2n + t2n/2

2
.

We then choose a Reed-Muller codeword c ∈ RM(n, d) so that whatever sequence
T i outputs given the 2k − 1 bits of the initial m-sequence, the last 2n bits disagree
with the codeword on at least

2n + t2n/2

2
>

2n + 2k − 1

2
+ (t− 1)2k−1

>
m

2
+ (t− 1)2k−1

>
m

2
+ t′(2n + 2k − 1)1/2

=
m

2
+ t′m1/2

bits. As we have seen, such a codeword always exists. Let B be the sequence one of
whose periods is the m-sequence followed by the codeword. We include the above
generator of B in F . Then

λF ′,r(m)(B) > h

(
log

(
2n + 2k − 1

2

))
> h(log(per(B))).

2

This result will be improved if easily generated codes with small covering radii
can be constructed. Coding theorists have studied covering radii for some years,
but good asymptotic bounds are difficult to obtain and they seem to have not
considered the question of generation of the codewords by short fast registers (al-
though there has been work on finding good codewords in polynomial time and
space [17]). It would also be desirable to find a sequence of sequences Bi so that Bi

resists the first i r(m)-synthetic attacks. Using our techniques, such a construction
would depend on finding easily generated codes with small multicovering radii, i.e.,
the smallest ` such that every set of i sequence is within distance ` of at least one
codeword [13]. Improved results along these lines will be the subject of a future
paper.

15

6 Linear Synthesis Attacks

In this section we discuss the effect on our results of restricting the power of the
synthesis algorithms.

As defined, synthesis algorithms depend on polynomial bounds. A synthesis
algorithm for a family F of generators must work correctly if the number of bits
available is at least a fixed polynomial in the F -span, and the running time must
be polynomially bounded in the number of bits available. If the degree of the
polynomial is large, however, it is questionable whether such an attack should be
considered strong enough to be of practical concern. By contrast, the Berlekamp-
Massey and the 2-adic rational approximation algorithms work correctly if at least
a linear number of bits are available. The former algorithm has quadratic running
time, while the latter has quasi-quadratic running time. An algorithm is said to
be a linear synthesis algorithm for a family F if it requires only a linear number
of bits in λF(B) to synthesize a generator in F that outputs B. Then F is said to
be linearly synthetic. Theorem 3.1 can be improved if we restrict our attention to
linear synthesis.

Theorem 6.1 Let h(n) ∈ o(2n). There exists a sequence of binary periodic se-
quences B = B1, B2, · · · such that

a. B can be generated by a fast family F of generators such that the length of
the generator of Bi is at most twice the log of the period of Bi;

b. Let F ′ be a linearly synthetic family. For every sufficiently large i we have

λF ′(Bi) ≥ h(log(per(Bi))).

Proof: The proof is similar to that of Theorem 3.1. The difference is that now the
polynomial bound p(n) on the number of bits needed for the ith linear synthesis
algorithm to be successful is a linear bound,

p(n) = an

for some a. We then choose r to be large enough that for every k ≥ r,

2k

a
≥ h(k + 3).

This is possible due to the asymptotic bound on h. The remainder of the construc-
tion is unchanged. 2

This result can then be shown to be tight.

16

Theorem 6.2 Let h(n) = Ω(2n). Let B = B1, B2, · · · be a sequence of periodic
binary sequences. There exists a fast linearly synthetic family of generators F such
that for every i,

λF(Bi) ≤ h(log(per(Bi))).

Proof: The proof is similar to that of Theorem 4.2. Let

h(n) > c2n

for n sufficiently large. The synthesis algorithm produces a generator of lengthbcpc
when acting on a sequence of period p. Thus

λF(Bi) =
⌊
c · per(Bi)

⌋
≤ h(log(per(Bi)))

By the definition of linear synthesis, it can have access to two entire periods of the
sequence. The remainder of the construction is identical to that in the proof of
Theorem 4.2, except that we must pad the generator to length bcpc. 2

7 Conclusions and Open Questions

We have described a general model for attacks on stream ciphers of a very general
type. Using this model, we have proved the existence of families of keystream
generators that resist all such attacks. The proof, however, does not give a prac-
tical construction. We hope to inspire researchers to search for such highly secure
keystream generators with more natural descriptions. The basic open question we
leave is whether practical constructions can be found for generator and sequence
families that satisfy the conclusions of Theorem 3.1.

One interpretation of the results here is that the common approach to stream
cipher design and analysis – describe a class of efficiently generated sequences
with large linear span, or even resistance to several cryptanalytic attacks – is
largely useless. Some researchers have improved this approach with refined security
measures such as the linear complexity profile [18] and sphere complexity [8]. In a
sense, security with respect to these measures means security for all “pieces” of a
sequence, but only against the Berlekamp-Massey attack. What is really needed is
a combination of these approaches and the approach in the current paper. To wit,
a family of practically generated sequences for which all pieces (in some sense) are
asymptotically secure against all possible attacks.

17

We have also considered only one class of attack on stream ciphers. Other
attacks are possible, for example probabilistic attacks such as correlation attacks
[20], differential cryptanalysis [7], and linear cryptanalysis [9]. It is desirable to
formalize such probabilistic attacks and (hopefully) prove the existence of classes
of keystream generators that universally resist them.

We have concentrated on the depth of circuits as a measure of feasibility. This
corresponds to time of evaluation. Size (number of gates) is also a concern as it
impacts area and hence cost. In all our theorems except Theorem 4.2 the sizes of
the resulting fast generators are linear in the lengths of the generators. In Theorem
4.2, the sizes of the fast generators are polynomial in their lengths. We leave open
the question as to whether one can achieve smaller sizes than these.

References

[1] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, Springer-Verlag,
Berlin, 1988.

[2] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudorandom bits, SIAM Journal on Computing, vol. 13 (1984), pp. 850-864.

[3] G.D. Cohen, M.G. Karpovsky, H.F. Mattson, Jr., and J.R. Schatz, Cover-
ing radius – survey and recent results, IEEE Trans. Info. Theory, vol. IT-31
(1985), pp. 328-343.

[4] G. Cohen and S. Litsyn, On the covering radius of Reed-Muller codes, Discrete
Mathematics, vol. 106-107 (1992), pp. 147-155.

[5] G.D. Cohen, S.N. Litsyn, A.C. Lobstein, and H.F. Mattson, Jr., Covering
Radius 1985-1994, Technical Report 94 D 025, Dept. Informatique,Ecole Na-
tionale Supérieure des Télécommunications, 1994.

[6] A.H. Chan and R.A. Games, On the linear span of binary sequences from finite
geometries, q odd, IEEE Trans. Info. Theory, vol. 36 (1990), pp. 548-552.

[7] C. Ding, The differential cryptanalysis and design of natural stream ciphers,
Fast Software Encryption: Proceedings of 1993 Cambridge Security Workshop,
R. Anderson, ed., Lecture Notes in Computer Science, vol. 809, Springer-
Verlag, Berlin, 1994, pp. 101-120.

18

[8] C. Ding, G. Xiao, and W. Shan, The Stability Theory of Stream Ciphers,
Lecture Notes in Computer Science, vol. 561. Springer-Verlag, Berlin, 1991.

[9] J. Golić, Linear cryptanalyis of stream ciphers, Fast Software Encryption:
Proceedings of 1994 Leuven Security Workshop, B. Preneel, ed., Lecture Notes
in Computer Science, vol. 1008, Springer-Verlag, Berlin, 1995, pp. 154-169.

[10] E.J. Groth, Generation of binary sequences with controllable complexity,
IEEE Trans. Info. Theory, vol. IT-17 (1971), pp. 288-296.

[11] E.L. Key, An Analysis of the structure and complexity of nonlinear binary
sequence generators, IEEE Trans. Info. Theory, vol. IT-22 (1976), pp. 732-
736.

[12] A. Klapper, The Vulnerability of geometric sequences based on fields of odd
characteristic, Journal of Cryptology, vol. 7 (1994), pp. 33-51.

[13] A. Klapper, The multicovering radii of codes, IEEE Trans. Info. Theory,
vol. 43 (1997), pp. 1372-1377.

[14] A. Klapper and M. Goresky, Feedback shift registers, 2-adic span, and com-
biners with memory, J. Cryptology, vol. 10 (1997), pp. 111-147.

[15] J.L. Massey, Shift register sequences and BCH decoding, IEEE
Trans. Info. Theory, vol. IT-15 (1969), pp. 122-127.

[16] U. M. Maurer, A provably-secure strongly-randomized cipher, Advances in
Cryptology – CRYPTO ’90, S. Vanstone, ed., Lecture Notes in Computer Sci-
ence, vol. 473, Springer-Verlag, Berlin, 1991, pp. 361-73.

[17] J. Pach and J. Spencer, Explicit codes with low covering radius, IEEE
Trans. Info. Theory, vol. IT-34 (1988), pp. 1281-1285.

[18] R. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, New
York, 1986.

[19] R.A. Rueppel and O.J. Staffelbach, Products of linear recurring sequences with
maximum complexity, IEEE Trans. Info. Theory, vol. IT-33 (1987), pp. 124-
129.

[20] T. Siegenthaler, Decrypting a class of stream ciphers using cipertext only,
IEEE Trans. Comp., vol. 34 (1985), pp. 81-85.

19

[21] A. Yao, Theory and applications of trapdoor functions, Proceedings, 23rd
IEEE Symposium on Foundations of Computer Science, 1982, pp. 80-91.

20

