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Abstract

We apply the framework of algebraic feedback shift registers to polynomial
rings over finite fields. This gives a construction of new pseudorandom sequences
(over non-prime finite fields), which satisfy Golomb’s three randomness criteria.

1 Introduction

The purpose of this paper is twofold: to study properties of a class of sequence generators
based on polynomial algebra that generalizes linear feedback shift registers, and to study
statistical properties of sequences over non-prime fields. The two purposes intersect when
we determine conditions under which the new generators produce sequences for which
certain statistics are ideal.

Sequences with various statistical randomness properties are important for many ar-
eas including radar, error correction, CDMA, cryptography, and Monte Carlo simulation.
Golomb [4] (Chapt. III Sect. 4), for example, identified several such properties for binary
sequences: the uniform distribution of subsequences, a distribution of lengths of runs of
ones and zeros that fits the expectation for random sequences, ideal autocorrelations,
and the shift and add property. In modern systems there is often an advantage to using
sequences over a nonbinary alphabet, typically of size 28 or 2w where w is the word size of
the architecture in use. It is thus natural to consider generalizations of these properties
to sequences over more general alphabets. Such generalizations are discussed in Section
2 and in Section 3 we see how sequences that are ideal with respoect to these properties
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can be generated by LFSRs. In Section 4 we see that Blackburn has completely char-
acterized the sequences with the shift and add property [1], extending work by Gong,
Di Porto, and Wolfowicz [5]. We show that this characterization can be extended to
a characterization of the sequences with both the shift and add property and uniform
distribution of subsequences.

In many cases it is important to have fast methods of generating sequences with
the desirable statistical properties. Sometimes it suffices to use maximal period linearly
recurrent sequences, or m-sequences. These sequences can be efficiently generated by lin-
ear feedback shift registers (LFSRs). Sometimes, however, it is desirable to have other
efficiently generated pseudorandom sequences. Recently the authors have studied a class
of efficient sequence generators called feedback with carry shift registers or FCSRs and
more generally algebraic feedback shift registers or AFSRs. These generators have alge-
braic mechanisms for analysis that parallel those of LFSRs — where LFSR sequences are
analyzed in terms of the sequence of coefficients in the power series expansion of certain
rational functions, FCSR sequences are analyzed in terms of the coefficient sequence of
certain p-adic numbers. We have also identified the maximal period FCSR sequences,
called `-sequences, and shown that they share many of m-sequences’ desirable properties
[15, 16, 7, 17]. These `-sequences have excellent randomness properties that are nearly
as good as those of m-sequences. In Section 5 we review the basic properties of FCSRs,
AFSRs, and `-sequences.

AFSRs are a class of sequence generators that subsumes both LFSRs and FCSRs.
Each class of AFSRs depends on a choice of an algebraic ring R and an element r ∈ R.
For LFSRs, R = F [x], the polynomial ring in one variable, and r = x. For FCSRs,
R = Z, the integers. In previous work we have studied properties of AFSRs based on
more general rings R with characteristic 0. The central purpose of this paper is to study
AFSRs based on R = F [x] again, but with r 6= x. The new sequences are generally
distinct from m-sequences (see Section 9), but have many of the same statistical proper-
ties as m-sequences: the distribution of fixed size subsequences is as uniform as possible,
the distribution of lengths of runs matches the expectation and, with an appropriate
definition, they have ideal autocorrelations. The basic properties of AFSR sequences
over polynomial rings are described in Section 6, and their randomness properties are
described in Section 7. The relationships between these sequences and Blackburn’s con-
struction and m-sequences are described in Sections 8 and 9. The question as to whether
such sequences exist in abundance is considered in Section 10, and an example is given
in Section 11.
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2 Pseudorandomness of Sequences

In this section we describe Golomb’s randomness postulates for sequences of elements in
a vector space over a prime field Fp.

2.1 Distribution of subsequences

For applications to cryptography and pseudo-Monte Carlo simulation, it is important
that there be no statistical bias in the occurrence of individual symbols or small blocks
of symbols in a sequence. Let F be a vector space of dimension e over the prime field
Fp. Throughout this section we assume that A is a periodic sequence of elements of F
with period N . Golomb’s first randomness postulate is the balance property.

Definition 2.1 If N = |F |k − 1, then the sequence A is balanced if each element a ∈ F
occurs |F |k−1 times except for a single element, which occurs |F |k−1 − 1 times.

More generally Golomb’s fourth randomness property says that all blocks of fixed
length occur as equally often as possible. A string b = (b0, b1, · · · , bt−1) of length t is an
ordered sequence of t elements bi ∈ F . An occurrence of the string b in (a single period
of) the sequence A is an index i ≤ N − 2 such that (ai, ai+1, · · · , ai+t−1) = b.

Definition 2.2 If N = |F |k, then the sequence A is a de Bruijn sequence of span k if
every string of length k occurs exactly once in (each period of) A.

In particular, if A is a de Bruijn sequence of span k, then the string b = (0, 0, · · · , 0)
of length k occurs exactly once in each period of A.

Definition 2.3 If N = |F |k−1, then the sequence A is a punctured de Bruijn sequence
of span k if A is obtained from a de Bruijn sequence by deleting a single 0 from the single
occurrence of the string (0, 0, · · · , 0) of length k in each period of A.

A run of length t in A is a string of t consecutive identical symbols that is not
contained in a longer string of consecutive symbols. For random sequences, if a run of
as, a ∈ F , begins at position i, then with probability (|F | − 1)/|F | the next symbol
differs from a, so the run has length 1. If to the contrary the next symbol is a, then the
symbol at position i+1 differs from a with probability (|F |− 1)/|F |, so the run starting
at position i has length two with probability (|F | − 1)/|F |2. Continuing in this way, we
see that the probability that a run in a random sequence has length t is (|F | − 1)/|F |t.
Golomb’s second randomness postulate says that the distribution of runs is as close as
possible to the expected distribution for random sequences.
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Definition 2.4 If N = |F |k − 1, then the sequence A satisfies the run property if the
number of runs of length m ≤ k−1 is |F |k−m−1, the number of runs of length k is |F |−1,
and there are no runs of length greater than k.

The following statistical properties of punctured de Bruijn sequences are well known.

Lemma 2.5 Let A be a punctured de Bruijn sequence of span k over F . Then

1. For any t ≤ k and for any string b of length t, the number of occurrences of b in (a
single period of) the sequence A is |F |k−t except for the single string (0, 0, · · · , 0)
of length t, and this string occurs |F |k−t − 1 times. In particular, A is balanced.

2. A has the run property.

Proof: Part (1) just counts the number of ways of completing b to a string of length
k. For part (2), first consider the case 1 ≤ m ≤ k − 2. A run of length t is a string of
the form xyy · · · yz where x and z are distinct from y. By part (1), for each such choice
of x, y, z there are |F |k−t−2 occurrences of this string, and there are |F |(|F | − 1)2 such
strings. If t = k − 1 then each string xyy · · · y with x 6= y occurs once. If y 6= 0 then for
exactly one of these values of x will there be another y immediately following this string.
So two values of x are forbidden and this gives |F | − 2 possible values for x for each
nonzero value of y, accounting for (|F | − 1)(|F | − 2) runs. If y = 0 then for no choice
of x will this string xyy · · · y be immediately followed by another y, so there are |F | − 1
allowable values for x. Therefore the total number of runs of length k − 1 is (|F | − 1)2.
Next, suppose t = k. For each y 6= 0 there is a single string of k consecutive y′s and it
occurs once in (each period of) A. This gives |F |−1 such runs; there is no run consisting
of k zeroes. Finally, if there were a run of length greater than k consisting of a single
symbol c ∈ F then there would be two (or more) occurrences of the string (c, c, · · · , c) of
length k, which is a contradiction. 2

Remark. A choice of basis for F over Fp gives a way of translating each a ∈ F into a
string ψ(a) over Fp of length e. Applying ψ to each symbol of A gives a sequence ψ(A)
over Fp whose period is e times the period of A. If A has one of the randomness properties
described in this section, then ψ(A) will not, in general, have the same property (both
because the period is wrong and we must be concerned with substrings that don’t align
with the ends of the Fp-ary representations of elements.
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2.2 Autocorrelations and shift and add

Autocorrelations are usually defined only for sequences over prime fields. To generalize
this notion, we briefly recall some standard facts about characters of finite Abelian
groups.

Definition 2.6 A character of a finite abelian group G is a group homomorphism from
G to the multiplicative group C∗ = C− {0} of the complex numbers C. That is, it is a
function χ : G → C∗ such that χ(a + b) = χ(a)χ(b) for all a, b ∈ G. Such a function is
nontrivial if χ(a) 6= 1 for some a.

Lemma 2.7 Let χ : G→ C∗ be a nontrivial character. Then
∑

g∈G χ(g) = 0.

Proof: Since χ is nontrivial, there exists h ∈ G with χ(h) 6= 1. Then

χ(h)
∑
g∈G

χ(g) =
∑
g∈G

χ(gh) =
∑
g′∈G

χ(g′)

so (1− χ(h))
∑

g∈G χ(g) = 0. 2

Definition 2.8 Let G be a finite abelian group.

1. Let A be a sequence of elements of G, with period N and let χ be a character of G.
The autocorrelation function of A with respect to χ is the function

AA,χ(m) =
N−1∑
i=0

χ(ai)χ(ai+m) =
N−1∑
i=0

χ(ai − ai+m).

2. A sequence A of elements of G, with period N has ideal autocorrelations if for
every nontrivial character χ of G and every m 6≡ 0 modN we have |AA,χ(m)| ≤ 1.

Part 2 of Definition 2.8 generalizes Golomb’s third randomness postulate.
Let A = (a0, a1, · · ·) be a periodic sequence of elements from the vector space F and

let Aτ = (aτ , aτ+1, · · ·) be its shift by τ steps. Let A + Aτ = (a0 + aτ , a1 + aτ+1, · · ·) be
the sequence obtained from termwise addition of A and Aτ .

Definition 2.9 The sequence A has the shift-and-add property if, for any shift τ , either
(1) A+ Aτ = 0 (the all-zeroes sequence) or (2) there exists τ ′ such that A+ Aτ = Aτ ′.
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This generalizes Golomb’s fifth randomness postulate. Similarly we can define the
shift and subtract property. More generally, if F is a vector space over a field E containing
Fp, then A satisfies the shift and add property with coefficients in E if, for any c, d ∈ E
and for any shift τ , either cA+dAτ = 0 or else there exists a shift τ ′ such that cA+dAτ =
Aτ ′ .

Lemma 2.10 The following are equivalent for a sequence A with characteristic p.

1. A has the shift and add property.

2. A has the shift and subtract property.

3. A has the shift and add property with coefficients in Fp.

Theorem 2.11 If A is a balanced sequence over the Fp-vector space F with period N =
|F |k − 1 and A has the shift and add property, then A has ideal autocorrelations.

Proof: Let χ : F → C∗ be a nontrivial (additive) character. By Lemma 2.7,

N−1∑
i=0

χ(ai) = |F |k−1
∑
b∈F

χ(b)− χ(0) = −1

Since by Lemma 2.10 A satisfies the shift-with-subtract property, for any shift τ 6≡
0 modT , there is another shift τ ′ such that ai − ai+τ = ai+τ ′ for all i. Hence

N−1∑
i=0

χ(ai)χ(ai+τ ) =
N−1∑
i=0

χ(ai − ai+τ ) =
N−1∑
i=0

χ(ai+τ ′) =
N−1∑
i=0

χ(ai) = −1.
2

3 LFSRs and M-sequences

Let F be a finite (Galois) field and let q1, q2, · · · , qk ∈ F . The linearly recurrent sequence
of order k with multipliers q1, q2, · · · , qk ∈ F and initial state (a0, a1, · · · , ak−1) is the
unique solution to the equations

aj = q1aj−1 + q2aj−2 + · · ·+ qkaj−k

for j ≥ k. Such a sequence may be described in three different ways. First, it is the
output from a linear feedback shift register (LFSR) of length k with multipliers qi ∈ F
and initial entries a0, a1, · · · , ak−1 ∈ F , as illustrated in Figure 1. The ⊕ box denotes
addition in F .
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ak−1 ak−2 · · · a1 a0

��
��
q1 ��

��
q2 ��

��
qk−1 ��

��
qk· · ·

⊕

- -

�
�

�
�

Figure 1: A Linear Feedback Shift Register

The connection polynomial q ∈ F [x] associated with this recurrence or LFSR is the
polynomial

q(x) = q0 +
k∑

i=1

qix
i

where q0 = −1. The second description is the well known fact [4] that the sequence
a0, a1, · · · is also the coefficient sequence of the power series expansion

p(x)/q(x) = a0 + a1x+ a2x
2 + · · · (1)

of the rational function p(x)/q(x) with denominator q(x) and numerator

p(x) =
k−1∑
j=0

j∑
i=0

qiaj−ix
j. (2)

Finally, there are “exponential” representations for the sequence. In general we can
express

aj = T (axj) (3)

for some a ∈ L = F [x]/(q(x)), where T : L → F is an F -linear function, the easiest of
which is given by

T (
d−1∑
i=0

cix
i) = c0

where d = deg(q). This function may also be expressed as T (p) = pmodx, for any
polynomial p(x) ∈ L, so equation(3) becomes aj = axj modx. If q(x) is irreducible then
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L may be identified with the unique field extension of F having degree d. In this case
equation (3) becomes the more familiar

ai = TrL/F (aαi)

where α ∈ L is a choice of root of q(x).
A linearly recurrent sequence of order k is eventually periodic and its period is at

most |F |k − 1. A linearly recurrent sequence of order k whose period is |F |k − 1 is called
a maximal length sequence or m-sequence. It is well known that this maximal period
is achieved precisely when the connection polynomial q(x) is a primitive polynomial
(that is, any root of q(x) is a generator for the multiplicative group of the Galois field
with |F |k elements). These sequences are of great interest in part because they can be
generated very efficiently, and in part because they have excellent randomness properties
(cf. Chapter 8 of Lidl and Niederreiter’s book [20]).

Theorem 3.1 Let A be an m-sequence over the finite field F . Then A is a punctured
de Bruijn sequence and has the shift and add property. Hence A is balanced, has the run
property, and has ideal autocorrelations.

4 Characterization of Shift and Add Sequences

Zierler [24] stated that the sequences over a finite field with the shift and add property
are exactly the m-sequences. His proof is correct for sequences over a prime field Fp,
but is incorrect for sequences over non-prime fields. Gong, Di Porto, and Wolfowicz gave
the first counterexamples [5]. Subsequently, Blackburn gave a correct characterization,
which we now describe.

Let A = (a0, a1, · · ·) be an m-sequence of span k with entries in a finite field F = Fpe

where p is a prime number. Then, as we have seen, there is a primitive element α ∈ Fpek

and a nonzero element a ∈ Fpek such that for every i we have

ai = Trpek

pe (aαi).

Conversely, every such sequence is an m-sequence. Note that the function T (x) =

Trpek

pe (ax) is Fpe-linear. Every Fpe-linear function from Fpek to Fpe is of the form

T (x) = Trpek

pe (ax) for some constant a ∈ Fpek , hence the m-sequences are exactly the
sequences A of the form ai = T (αi) for some Fpe-linear function from Fpek to Fpe and
some primitive element α ∈ Fpek .
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The fact that such a sequence A has the shift and add property can be easily proved
from this representation. A shift of A by τ positions is the sequence whose ith element
is T (αi+τ ). The term-by-term sum of A and this shift is the sequence whose ith term is

T (αi) + T (αi+τ ) = T ((1 + ατ )αi).

If 1 + ατ 6= 0, then 1 + ατ = ατ ′ for some τ ′, so the ith term of the sum is T (αi+τ ′).
That is, it is another shift of A. However, we have only used the Fp-linearity of T , not
the full Fpe-linearity. Thus we have the following theorem.

Theorem 4.1 If α ∈ Fpek is primitive and T is an Fp-linear function from Fpek to Fe
p,

then the sequence whose ith element is T (αi) has the shift and add property.

Blackburn then showed that in fact every sequence with period pek − 1 and entries
in Fe

p that has the shift and add property can be written this way.

Theorem 4.2 Let A be a sequence with period pek − 1 and entries in Fe
p. Suppose that

A has the shift and add property. Then there exists a primitive element α ∈ Fpek and an
Fp-linear function T from Fpek to Fe

p so that the ith element of A is T (αi).

Thus each pair (T, α) as in Theorem 4.2 gives rise to a sequence over Fpe with the
shift and add property. We next ask when a second such pair (S, β) gives rise to the
same sequence. That is, when

T (αi) = S(βi) (4)

The function Trpe

p ◦T is Fp-linear, so there exists an element u ∈ Fpek so that Trpe

p ◦T (a) =

Trpek

p (ua). Similarly, there is a v ∈ Fpek so that Trpe

p ◦T (a) = Trpek

p (va). If equation (4)
holds, then also

Trpek

p (uαi) = Trpek

p (vβi)

for all i. As i varies from 0 to ∞, the sequence of values on the left hand side forms an m-
sequence whose minimal polynomial is the minimal polynomial of α over Fp. Similarly,
the values on the right hand side give an m-sequence whose minimal polynomial is the
minimal polynomial of β over Fp. Thus α and β are Galois conjugates, β = αpj

for some

j. Since α is primitive, it follows that T (x) = S(xpj
) for all x. Equivalently, S(x) =

T (xpek−j
) for all x. Conversely, if T is any Fp-linear function from Fpek to Fpe , then

S(x) = T (xpek−j
) is also Fp-linear, and the pair (S, αpj

) gives rise to the same sequence

as the pair (T, α). Since the various powers αpj
are all distinct for j = 0, 1, · · · , ek − 1,

each pair (T, α) is one of ek pairs that give rise to the same sequence. This allows us to
count the sequences with the shift and add property.
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Theorem 4.3 There are

(pek − 1)(pek − p) · · · (pek − pe−1)ϕ(pek − 1)

ek

nonzero sequences over Fpe with period pek − 1 and the shift and add property, where ϕ
is Euler’s function.

Proof: There are ϕ(pek−1) primitive elements α. Thus there are ϕ(pek−1)/(ek) Galois
conjugacy classes of these elements. We can choose T by first fixing a bases for Fpek

and Fpe over Fp, then picking an e by ek matrix with entries in Fp and rank e. Such
a matrix is uniquely determined by a choice of a nonzero first row, for which there are
pek − 1 choices, then a choice of a second row that is not in the Fp-span of the first row,
for wich there are pek − p choices, and so on. This gives the desired count. 2

We can further identify the sequences with the shift and add property that are punc-
tured de Bruijn sequences by writing elements in terms of a basis β1, · · · , βe for Fe

p over
Fp. If A = (a0, a1, · · ·) is any sequence with the shift and add property, then ai = T (αi)
for some primitive element α ∈ Fpek and Fp-linear function T . We have

ai =
e∑

j=1

Tj(α
i)βj,

where Tj : Fpek → Fp is Fp-linear. Thus there exist elements uj ∈ Fpek so that Tj(x) =

Trpek

p (ujx). As was suggested to us by an anonymous referee, we can characterize the
punctured de Bruijn sequences with the shift and add property in terms of the uj.

Theorem 4.4 Let A have the shift and add property. Then A is a punctured de Bruijn
sequence if and only if

V = {ujα
i : 0 ≤ j < k, 0 ≤ i < e}

is a basis for Fpek over Fp.

Proof: The sequence A is a punctured de Bruijn sequence if and only if each nonzero
k-tuple of elements of Fe

p occurs exactly once in each period of A, and the zero k-tuple
does not occur. Since the period of A is pek − 1, this is equivalent to each such k-
tuple occurring at most once in A, and the zero k-tuple not occurring. Since A has the
shift and add property, each k-tuple occurs at most once if the zero k-tuple does not
occur. Indeed, if the shift and add property holds, then so does the shift and subtract
property. If any k-tuple occurs twice, then we can shift A by the distance between the
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two occurrences, then subtract A from this shift to obtain an occurrence of the all zero
k-tuple.

The all-zero k-tuple occurs if and only if for some n we have an = an+1 = · · · =
an+k−1 = 0. That is,

Trpek

p (ujα
i+n) = 0

for 0 ≤ j < k and 0 ≤ i < e. The set

αnV = {ujα
i+n : 0 ≤ j < k, 0 ≤ i < e}

is a basis for Fpek over Fp if and only if V is. A linear function is zero on a basis if and
only if it is identically zero. But the trace function is not identically zero. Thus, if V is
a basis, then A is a punctured de Bruijn sequence.

Conversely, if
e−1∑
i=0

k−1∑
j=0

cijujα
i = 0

with each cij in Fp and not all zero, then for any n,

e−1∑
i=0

k−1∑
j=0

cijTr
pek

p (ujα
i+n) = 0.

That is, the Fp-coordinates of all k-tuples satisfy a common linear relation. Hence not
all nonzero values of k-tuples can occur and A is not a punctured de Bruijn sequence. 2

5 FCSRs and AFSRs

A class of pseudo-random sequences that is analogous to LFSR sequences but is based
on addition with carry was developed by the authors of this paper and independently by
Couture and L’Ecuyer [2, 3, 13, 14, 15]. Let M be a positive integer, and identify the
ring Z/(M) with the integers {0, 1, 2, · · · ,M−1}. Fix multipliers q1, q2, · · · , qk ∈ Z/(M),
an initial state a0, a1, · · · , ak−1 ∈ Z/(M) and an initial memory (or “carry”) tk−1 ∈ Z.
The multiply with carry sequence or feedback with carry shift register (FCSR) sequence
is the unique solution to the with-carry linear recurrence

aj +Mtj = q1aj−1 + q2aj−2 + · · ·+ qkaj−k + tj−1

for j ≥ k. This means that the right side of the equation is to be computed as an
integer σ ∈ Z. Then aj is the remainder after dividing σ by M , and tj is the whole
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number quotient bσ/Mc = (σ− aj)/M . We write aj = σmodM and tj = σ divM . This
psuedo-random sequence has three descriptions which are parallel to those of the LFSR
sequence. First, it is the output of a feedback with carry shift register or FCSR (see [15]).
The connection integer associated with this FCSR is the number

q = q0 +
k∑

i=1

qiM
i ∈ Z,

where q0 = −1. Second, it is the coefficient sequence in the M -adic expansion (cf. [9, 15])
of the rational number

u/q = a0 + a1M + a2M
2 + · · · (5)

with denominator q and with numerator

u =
k−1∑
j=0

j∑
i=0

qiaj−iM
j − tMk. (6)

The sequence is strictly periodic if and only if −q ≤ u ≤ 0. Third, in analogy with
equation (3) the sequence may be expressed as

aj = (aδj mod q) modM (7)

where δ = M−1 is the inverse of M in Z/(q) and a ∈ Z/(q) is an element which depends
on the initial state [9, 15]. This notation means that the quantity aδj mod q is represented
as an integer in the range {0, 1, · · · , q − 1} and then this integer is reduced modulo M .

For any initial value, the memory t will quickly enter a certain range w− ≤ t ≤ w+

(cf. [9, 15]) where it will remain thereafter. So an FCSR is a finite state machine and
in particular, every FCSR sequence is eventually periodic. Its period is a divisor of the
order of M modulo q and hence a divisor of ϕ(q). (Here, ϕ denotes Euler’s function; in
particular, if p is prime then ϕ(p) = p − 1.) An FCSR sequence with maximal period
ϕ(q) is called an `-sequence. A necessary and sufficient condition for the existence of an
`-sequence based on a given connection integer q is that q is a power of a prime, and M
is a primitive root modulo q.

LFSR sequences and FCSR sequences admit a common generalization, the algebraic
feedback shift register (AFSR) sequences [17]. A class of AFSR sequences is based on
a triple (R, r, S), where R is an integral domain (that is, a ring with no zero divisors),
r ∈ R, and S is a subset of R which is a complete set of representatives for R/(r). An
AFSR in this class is then determined by a choice of multipliers q0, q1, · · · , qk ∈ R such
that q0 is invertible modulo r. The AFSR is a (not necessarily finite) state device whose
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Figure 2: Algebraic Feedback Shift Register.

states are tuples (a0, a1, · · · , ak−1; t) with each ai ∈ S (the “cell entries”) and t ∈ R (the
“memory”). It changes states as follows. There are unique elements ak ∈ S and t′ ∈ R
such that

−q0ak + rt′ = t+
k∑

i=1

qiak−i. (8)

(This fact is reproven below when R is a Euclidean domain.) Then the new state is
(a1, a2, · · · , ak; t

′). The resulting sequence a0, a1, a2, · · · of elements in R/(r) is called an
AFSR sequence. We refer to equation (8) as a linear recurrence with carry over R/(r).
The element q =

∑k
i=0 qir

i ∈ R is called the connection element. These ingredients
may be expressed in terms of a (possibly infinite) state machine (see Figure 1) which is
analogous to the LFSR and FCSR.

Even at this level of generality there is an analog to the power series representations
(1) and (5). Let

Rr = {
∞∑
i=0

air
i : ai ∈ S, i = 0, 1, · · ·}

be the r-adic ring of formal power series. There is a natural ring homomorphism from
R to Rr which is one-to-one if

∞⋂
i=1

(ri) = (0) (9)

that is, if no nonzero element of R is divisible by every power of r. This homomorphism
extends to the set of fractions u/q with u, q ∈ R and q invertible modulo r. We refer to the
representation of an element u/q in Rr as its r-adic expansion. If equation (9) is satisfied,
then this representation is unique. An AFSR sequence a0, a1, · · · with connection element
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q is the sequence of coefficients in the r-adic expansion

u/q =
∞∑
i=0

air
i (10)

of the fraction u/q where

u =
k−1∑
j=0

j∑
i=0

qiaj−ir
j − tk−1r

k. (11)

The proof [17] of this fact is a calculation which goes back, originally, to the proof [4]
of equation (2) in the case of LFSRs, to the proof [13, 15] of equation (6) in the case of
FCSRs, and to [13] in the case of d-FCSRs.

The third expression for the AFSR sequence is a direct generalization of equations
(3) and (7); see Theorem 3.1 and Theorem 10 of [17].

Theorem 5.1 ([17]) Let A be periodic. Let U denote the set of elements v ∈ R such
that v/q corresponds to a shift of A. Suppose no two elements of U are congruent modulo
q and let V be a complete set of representatives modulo q containing U . Then

ai = v(sr−i mod q) mod r, (12)

for some v ∈ R/(r) and s ∈ R/(q). As in equation (7) this means that the element
sr−i ∈ R/(q) is first lifted to the set V , then reduced modulo r, then multiplied by
v ∈ R/(r).

An LFSR over a field F is an AFSR with R = F [x], r = x, S = F , q0 = 1, each
qi ∈ F , and with initial memory t = 0. An FCSR is an AFSR with R = Z, r = M ∈ Z,
S = {0, 1, · · · ,M − 1}, q0 = 1, and each qi ∈ S. In both these cases the ring R is a
Euclidean domain, so any element σ ∈ R has a unique expression

σ = Ar +B (13)

where B ∈ S, in which case we write B = σ(mod r) and A = σ(div r). Therefore
equation (8) may be rewritten

ak = −σ (mod r) and t′ = σ (div r) (14)

where σ =
∑k

i=1 qiak−i + t ∈ R. (This determines ak since q0 is invertible in R/(r).)
In these cases the memory remains within a certain finite set, so the AFSR in Figure 1
may be considered a finite state machine. With each clock cycle the entries in the cells
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shift one step to the right. The cell contents ai may be thought of as elements of the
ring R/(r), but when computing the contents σ of the box Σ, (with each clock cycle)
they should be thought of as elements of S ⊂ R. Then ak = −σ(mod r) is fed into the
leftmost cell while t′ = (σ + ak)/r is fed back into the memory.

There exist AFSRs (R, r, S) for which the output sequence a0, a1, · · · is aperiodic and
for which the memory t does not remain bounded. The authors have studied several
generalizations of the FCSR architecture, each of which may be described as an AFSR
sequence for appropriate R, r, and S [6, 9, 10, 11, 12, 18, 19]. In many cases it is known
that the resulting maximal length sequences have good correlation and distribution prop-
erties.

6 AFSRs Based on Polynomial Rings

Let F be a finite (Galois) field. Then there is a prime number p and an integer d such
that F ∼= Fpd . Let R = F [x] be the polynomial ring in one variable, and let r ∈ F [x]
be a polynomial of some degree e. The division theorem for polynomial says that F [x]
is a Euclidean domain: for any polynomial σ(x) ∈ F [x] there are unique polynomials
A(x), B(x) such that deg(B) < e and σ(x) = A(x)r(x) + B(x). Let S ⊂ F [x] be
the collection of all polynomials of degree less than e, so B(x) ∈ S. The statement
B(x) = σ(x) mod r(x) (or simply, B = σmod r) reflects the fact that the set S is a
complete set of representatives for the quotient ring F [x]/(r). The set S is closed under
addition, but not under multiplication. For the remainder of this paper we study AFSR
sequences based on (R, r, S).

Let q(x) ∈ R = F [x] be a polynomial that is relatively prime to r(x). Then the
image of q in R/(r) is invertible, and the image of r is invertible in R/(q). Since R is a
Euclidean domain we may write

q(x) =
k∑

i=0

qir
i (15)

for some k, where qi ∈ S (for i = 0, 1, · · · , k), where qk 6= 0, and where q0 is invertible
modulo r. We consider the possible output sequences from an AFSR based on (R, r, S)
with multipliers q0, q1, · · · , qk ∈ S. Thus, such a sequence is generated by the finite state
machine illustrated in Figure 1.

To be pedantic, we use a paragraph to repeat the salient properties of the AFSR,
in this special case. The machine has multipliers (q0, q1, · · · , qk) and “state vector”
(a0, a1, · · · , ak−1), where each qi, aj ∈ R/(r) = F [x]/(r(x)) may be identified with a
polynomial in S of degree less than e. Given the initial state (a0, a1, · · · , ak−1) with
initial memory tk−1 ∈ F [x], the next state is computed from the linear recurrence with
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carry (8). That is, set σ(x) =
∑k

i=1 qi(x)ak−i(x)+ tk−1(x) ∈ F [x]. Then equation (8) can
be rewritten

ak = γσ(mod r) and tk =
σ + q0ak

r
(16)

where γ = −q−1
0 (mod r) ∈ F [x]/(r). By equations (10) and (11), the output sequence

a0, a1, · · · is precisely the coefficient sequence of the r-adic expansion of the rational
function

u(x)/q(x) =
∞∑
i=0

air
i (17)

whose denominator q(x) is determined as in equation (15) by the multipliers q0, q1, · · · , qk
and whose numerator

u =
k−1∑
j=0

j∑
i=0

qiaj−ir
j − tk−1r

k (18)

is determined by the initial state vector (a0, a1, · · · , ak−1). (Conversely, every rational
function u(x)/q(x) with denominator q can be expressed uniquely as an r-adic number
as in equation (17).)

Proposition 6.1 Let u(x) ∈ F [x]. The coefficient sequence A = (a0, a1, · · ·) of the r-
adic expansion of u(x)/q(x) in equation (17) is eventually periodic. It is strictly periodic
if and only if the degree of u is less than the degree of q. In this case the (minimal)
period of A is the multiplicative order of r modulo q, that is, the smallest positive integer
N such that rN = 1 in the finite (multiplicative) group (R/(q))∗ of invertible elements in
R/(q).

Proof: If the state is (aj−k, · · · , aj−1; tj−1), then by equation (16), the degree of σ is at
most max(2(e− 1), deg(tj−1)). The degree of q0aj is at most 2(e− 1). Thus the quotient
tj = (σ + q0aj)/r has degree at most max(e − 2, deg(tj−1) − e). Thus from any initial
state with memory tk−1, the degree of the memory decreases monotonically in at most
(deg(tj−1) − e + 2)/e steps until the degree of the memory is at most e − 2, and this
bound persists from then on. Thus A is eventually periodic.

Suppose that A is strictly periodic, say with period M . Then

u

q
= (

M−1∑
i=0

air
i)

∞∑
i=1

rMi =

∑M−1
i=0 air

i

1− rM
.

The degree of the numerator in this last expression is strictly less than Me, the degree
of the denominator. Thus the degree of u is less than the degree of q, which proves the
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first half of the first statement. Moreover, the equation

u(1− rM) = q
M−1∑
i=0

air
i

implies that rM ≡ 1 mod q, so the multiplicative order N of r divides the period M of A.
Conversely, suppose that deg(u) < deg(q). Let N denote the multiplicative order of

r modulo q, so 1− rN = sq for some polynomial s. It follows that u/q = (su)/(1− rN),
and deg(su) < Ne. Thus we can write su =

∑N−1
i=0 bir

i with bi ∈ S. It follows that
aj = bj mod N for all j, so A is strictly periodic, of period N . In particular, the minimal
period of A divides N . 2

Corollary 6.2 Given an AFSR with multipliers q0, q1, · · · , qk and initial state vector
(a0, a1, · · · , ak−1), there exists a value t of the memory such that the output sequence is
strictly periodic. If qk ∈ F (that is, if deg(qk) = 0) then this value of t is unique. In this
case, t = 0 if and only if

deg
k−1∑
i=0

aiqk−i−1 ≤ e− 1. (19)

Proof: Given the initial state vector (a0, a1, · · · , ak−1) let us consider the effects of dif-
ferent values t of the memory on the degree of the polynomial u(x) in equation (18). Let
H(x) denote the double sum in equation (18). By the division theorem for polynomials,
there exists a unique polynomial t ∈ F [x] such that

H(x) = t(x)rk + J(x)

with deg(J) < deg(rk) = ke ≤ deg(q) since qk 6= 0. Taking this t = tk−1 for the memory
gives a state of the AFSR whose output sequence is the r-adic expansion of u/q, where
u = H − trk = J has degree < deg(q). So by Proposition 6.1 the output sequence is
strictly periodic. This proves that such a t always exists.

Now suppose qk has degree 0. Then deg(q) = ek. We wish to prove that t is unique.
Given the initial state vector (a0, a1, · · · , ak−1) suppose there are two values, t 6= t′ for the
memory such that the output sequence is strictly periodic. Let u, u′ be the corresponding
polynomials from equation (18). Then deg(u), deg(u′) < ek by Proposition 6.1. However
u− u′ = (t′ − t)rk which has degree ≥ ek and this is a contradiction.

Now suppose equation (19) holds. The terms of highest degree in the double sum of
equation (18) are

rk−1
k−1∑
i=0

aiqk−i−1
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which has degree

ek − e+ deg
k−1∑
i=0

aiqk−i−1 < ek = deg(q)

by assumption. However the term trk has degree ek. So any nonzero value for t will
result in deg(u) ≥ deg(g) and the output sequence will fail to be strictly periodic, by
Proposition 6.1. The converse is similar. 2

It also follows from Proposition 6.1 that if u/q and v/q have periodic r-adic expan-
sions, then u and v are not congruent modulo q. Hence by Theorem 5.1 there is an
exponential representation for A.

Corollary 6.3 If A is periodic, then

ai = v(sr−i mod q) mod r, (20)

for some v ∈ R/(r) and s ∈ R/(q). This means that the element sr−i ∈ R/(q) is first
represented by an element of R with degree less than the degree of q, then reduced modulo
r, then multiplied by v ∈ R/(r).

Definition 6.4 Let F be a finite field, and let r, q ∈ F [x] be relatively prime. Denote
by Sr,q the collection of sequences A = (a0, a1, · · ·) of elements in F [x]/(r) that are the
coefficient sequences of the r-adic expansions of those rational functions u(x)/q(x) such
that deg(u) < deg(q).

7 Randomness of Polynomial Based AFSRs

Throughout this section A = (a0, a1, · · ·) is an (r, q)-adic `-sequence of the sort considered
in Section 6. Thus F = Fpd is a finite Galois field, r(x) ∈ F [x] is a polynomial of degree
e, and as in (15),

q(x) =
k∑

i=0

qi(x)r(x)
i (21)

is a polynomial of degree g which is relatively prime to r(x). We may consider A to be
a sequence of elements ai ∈ K = F [x]/(r).

According to Proposition 6.1 the period of the sequence A is the multiplicative order
of r modulo q. This is maximal if F [x]/(q) is a field (i.e., q is irreducible) and if r is a
primitive element in this field (which is not the same as being a primitive polynomial
in F [x]). To obtain a punctured de Bruijn sequence we also need to have a sequence of
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period |K|k − 1 for some k, which implies that |F |ek = |F |g, or k deg(r) = deg(q). By
(21) we see that then deg(qk) = 0.

Definition 7.1 Let r, q ∈ F [x] be relatively prime, with degrees e and g respecitvely. A
sequence A ∈ Sr,q is an (r, q)-adic `-sequence if g = ek for some integer k and if A has
period |F |g − 1, or equivalently, if q is irreducible and r is primitive modulo q.

Such a sequence A is necessarily the r-adic expansion of a rational function u(x)/q(x)
with deg(u) < deg(q) = ek, and there are |F |ek − 1 possible nonzero choices for u.
Therefore, for any nonzero u(x) ∈ F [x] with deg u < deg q the coefficient sequence of
the r-adic expansion of u(x)/q(x) is a shift of the sequence A. Conversely, any shift of
the sequence A is the coefficient sequence of the r-adic expansion of u(x)/q(x) for some
polynomial u with deg(u) < deg(g).

Theorem 7.2 Let r, q ∈ F [x] be relatively prime with degrees e and g = ek respectively,
suppose q is irreducible and r is primitive modulo q. Then the resulting (r, q)-adic `-
sequence A is a punctured de Bruijn sequence. Consequently this sequence satisfies the
first two of Golomb’s randomness postulates.

Proof: The sequence A = (a0, a1, · · ·) is the output of an AFSR with multipliers
q0, q1, · · · , qk. Suppose a string b = (b0, b1, · · · , bk−1) of length k occurs in A after
some number of iterations. Consider the state of the AFSR at this point. The val-
ues b0, b1, · · · , bk−1 are the contents of the registers. By Corollary 6.2 there is a unique
value t for the memory such that the output of the AFSR with this initial state vector
b and initial memory t is a strictly periodic sequence. Since the sequence is, in fact,
periodic from this point, the memory must have this value t. It follows that the string b
can occur at most once in any period of A — otherwise the sequence would repeat upon
the next occurrence of b, and its period would be less than |F |ek − 1. However, there
are |F |ek possible strings b, and the string b = (0, 0, · · · , 0) cannot occur in A (otherwise
A would consist only of zeroes). Consequently every nonzero string b of length k occurs
exactly once in a single period of A. 2

In [4], Golomb used the shift-and-add property of binary m-sequences to show they
have ideal autocorrelations, and thus satisfy his third randomness postulate. His methods
have since been extended to many different sorts of pseudo-random sequences. Next we
do the same for (r, q)-adic `-sequences, verifying Golomb’s third randomness postulate.

Theorem 7.3 Let r, q ∈ F [x] be relatively prime polynomials as in Section 6. Let A be
an (r, q)-adic `-sequence. Then A has the shift and add property with coefficients in F .
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Proof: The sequence A is the coefficient sequence in the r-adic expansion of some ra-
tional function u(x)/q(x) where deg(u) < deg(q). According to the comments preceding
Theorem 7.2, for any integer τ , the τ -shift of A, Aτ , is the coefficient sequence for some
rational function u′(x)/q(x), where deg(u′) < deg(q). Let v(x) = cu(x) + du′(x). Since
deg(v) < deg(q) the coefficient sequence for v(x)/q(x), which is cA + dAτ , is a shift of
the sequence A. 2

Corollary 7.4 The sequence A has ideal autocorrelations.

Proof: By Theorem 7.2 and Lemma 2.5, A is balanced. By Theorem 7.3, A has the
shift and add property. Thus by Theorem 2.11, A has ideal autocorrelatons.

2

Moreover, since every punctured de Bruijn sequence with the shift and add property
arises from Blackburn’s construction, we have the following corollary to Theorem 7.3.

Corollary 7.5 There exists a primitive element α ∈ Fpdek and an Fp-linear function
T : Fpdek → Fpd [x]/(r) so that ai = T (αi).

In fact this is also a corollary to Corollary 6.3. In this setting Fpd [x]/(q) is isomorphic
to Fpdek . In this field r is primitive so it plays the role of α. The function that maps a
to v(samod q) mod r is Fp-linear, so this palys the role of T .

It is natural then to ask whether all punctured de Bruijn sequences with the shift
and add property are (r, q)-adic `-sequences. We believe that they are not. However, in
another paper we consider AFSRs based on rings of the form Fpd [x1, · · · , xn]/I where I
is an ideal. It is shown there that in fact all punctured de Bruijn sequences with the
shift and add property are indeed `-sequences in this setting.

8 Implementation Issues

For many applications it is essential that the pseudorandom sequences used be generated
quickly. In this section we study the complexity of generating punctured de Bruijn
sequences with the shift and add property.

Suppose we have such a sequence A = (a0, a1, · · ·) over Fpe with period pek − 1. We
can realize A as ai = T (αi) where T : Fpek → Fpe is Fp-linear and α is a primitive element
of Fpek . Suppose that also A is an (r, q)-adic `-sequence with r, q ∈ Fp[x], deg(r) = e,
deg(q) = ek, and q =

∑k
i=0 qir

i with deg(qi) < e, q0 invertible modulo r, and qk = 1.
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We assume that r is a primitive element in Fp[x]/(q). Hence in particular Fp[x]/(q) is a
field, so can be identified with Fpek .

We think of addition and multiplication in Fp as atomic operations. For any n we let
M(n) denote the worst case time complexity of multiplication of polynomials over Fp of
degree less than n. Then M(n) is also the worst case time complexity of multiplication in
Fpn . Using divide and conquer gives M(n) ∈ O(nlog2(3)). Using fast Fourier transforms
gives M(n) ∈ O(n log(n)). The worst case time complexity of addition in Fpn is O(n).

We compare three methods for generating punctured de Bruijn sequences over an
Fp-vector space F .

LFSR with Linear Output: We can use an LFSR with length ek and entries in Fp,
or an LFSR with length k and entries in Fpe to generate powers of α and apply T
to the successive states of the LFSR. In the first case the state change operation
takes ek multiplications and ek − 1 additions in Fp. The function T is realized by
an ek by e matrix over Fp, so takes e2k multiplications and e(e − 1)k additions.
Thus it takes a total of 2e2k +O(ek) operations to generate one symbol of A.

In the second case, the state change takes k multiplications in Fpe . The cost of
computing T is the same as in the previous paragraph since we have to interpret
the state as a vector over Fp in general. Thus the cost of generating one symbol is
2e2k +O(M(e)k), which is slightly worse.

Interleaving: By choosing a basis for Fpe over Fp, we can think of A as the interleaving
of e m-sequences of span ek over Fp. Each m-sequence can be generated by a
LFSR of length ek with entries in Fp. The state change for such an LFSR takes
ek multiplications and ek − 1 additions in Fp, and the output takes one operation
(output the rightmost cell). Thus the total cost from all the LFSRs for generating
one symbol of A is 2e2k. This is essentially the same complexity as in the previous
case.

(r, q)-Adic `-Sequences: We can generate A with an AFSR of length k based on Fp[x]
and r with connection element q. The state change requires at most k multiplica-
tions of polynomials over Fp of degree less than e, plus 2k additions of polynomials
over Fp of degree less than e. Then the total cost is M(e)k + 2ek.

The first and third methods can be sped up by precomputing tables for small chunks.
E.g., in the first method think of a vector of length k as a vector of k/8 bytes of length
8 and precompute the inner products of all pairs ofl bytes. In the third method think
of each polynomial of degree e as a sum of polynomials of degree less than 8 times
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appropriate powers of x8 and precompute all products all pairs of polynomials of degree
less than 8. This gives the same speedup for both methods.

It’s possible that we can save some of the redundant work of the parallel LFSRs in
the second method (all LFSRs are the same, they just have different start states). But
this appears possible only if the phases of the LFSRs are close. Otherwise the storage
costs become large.

In general all methods are faster in special cases. In the first method T may have
many entries in Fp or even many zero entries. In the second method the LFSRs may
have many zero coefficients or the phases may be close. In the third method the AFSR
may have many zero coefficients or more generally the degrees of the coefficients qi(x)
may be low. It is not clear to what extent we can force these things to happen.

If the sequence generation is to be implemented in software and p = 2, then we can
speed up the second method as long as e is at most the word size (typically 32 bits or 64
bits). We use ek words and store the state of the first LFSR in the least significant bits
of the words, the state of the second LFSR in the next least significant bits, and so on.
Since the state change is the same for all LFSRs and the coefficients are zeros and ones,
the new bit for each LFSR is computed as the exclusive or of some fixed set of state bits.
Thus we can compute all the new bits simultaneously by taking the bitwise exclusive or
of a fixed set of words. We then shift the words by one position. The total time required
is apparently at most 2ek word operations. However, this analysis is not always correct.
In some architectures the bitwise exclusive or of words is not actually implemented as
an atomic operation in the hardware and its actual cost must be considered.

9 Relation with M-sequences

The (r, q)-adic `-sequences shares many of the properties of m-sequences. In this section
we show that, except in trivial cases, such a sequence A is never an m-sequence, and we
give sufficient conditions to guarantee that A cannot be obtained from an m-sequence
by a linear change of variable.

Let F = Fpd . Fix r(x), q(x) ∈ F [x] relatively prime, of degrees e and g = ek
respectively, with q irreducible and with r primitive modulo q. The resulting (r, q)-adic
`-sequence has period |F |ek − 1. Its entries are in the ring K = F [x]/(r), which has
pde elements. By equation (12), there exists s ∈ F [x]/(q) and v ∈ F [x]/(r) so that the
sequence is given by

ai = v(sr−i mod q) mod r, (22)

appropriately interpreted, as in Theorem 5.1. (Different choices of s correspond to cyclic
shifts of the sequence.) On the other hand, there exist m-sequences of the same period.
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Let E ∼= Fpde be the degree e extension of the field F ∼= Fpd . Let L ∼= Fpdek be the
degree k extension of E. Let

q′(y) = −1 + q′1y + · · ·+ q′ky
k ∈ E[y]

be an primitive polynomial of degree k with coefficients q′i ∈ E. That is, any root r′ of
q′ is a primitive element of L). Let TrL/E : L → E denote the trace mapping and let
s′ ∈ L. Then the sequence B = (b0, b1, · · ·) given by

bi = TrL/E(s′(r′)−i) (23)

is a typical m-sequence of span k (and period |E|k − 1) with entries in E.
There exists an isomorphism of fields, L ∼= E[y]/(q′), although there is not a unique

such choice of isomorphism, or even a best such. If such a choice of isomorphism is made
then r′ may be interpreted as a polynomial with deg(r′) = 1 < deg(q′) and equation (23)
becomes

bi = TrL/E(s′(r′)−i mod q′). (24)

There also exists an isomorphism of fields L ∼= F [x]/(q) where q(x) is given by (21), but
there is no best such choice of isomorphism. In any case, equations (22) and (23) or (24)
look very similar. One important difference between them is that the symbols bi ∈ E
are in the field E while the symbols ai ∈ K = F [x]/(r) are in a ring. Both E and K are
vector spaces over F of the same dimension, e. If r(x) ∈ F [x] is chosen to be irreducible
then K is also a field, isomorphic to E, but again there is no best choice of isomorphism.

In any case, one is led to the following questions: Given the (r, q)-adic `-sequence
A = (a0, a1, · · ·), does there exist an m-sequence B = (b0, b1, · · ·) with entries in E and
a (set theoretic) mapping φ : K → E, so that B = φ(A)? (This means that bi = φ(ai)
for all i.) Such a mapping φ, if it exists, is necessarily a one to one correspondence.
One might ask the same question, but requiring φ : K → E to be an F -linear vector
space isomorphism. We are unable at his time to answer the first question, but we next
answer the second question in the negative. In fact, an m-sequence is just a special of an
`-sequence in which the parameter r′ has degree 1. Thus we prove a more general result
without this assumption, then specialize to m-sequences.

Theorem 9.1 Let r, q ∈ R = Fpd [x] with deg(r) = e, deg(q) = g = ek, and with r
primitive modulo q. Let A be a sequence with connection element q so that A is an
(r, q)-adic `-sequence. Let r′, q′ ∈ R′ = Fpd′ [x] with deg(r′) = e′, deg(q′) = g′ = e′k′, and
with r′ primitive modulo q′. Let A′ be a sequence with connection element q′ so that A′

is an (r′, q′)-adic `-sequence. If e 6= e′ and R′/(r′) is a field, then A′ is not the image of
A by an Fp-linear isomorphism with φ(1) = 1.
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Proof: We have |R/(r)| = pde, |R′/(r′)| = pd′e′ , |R/(q)| = pdek, and |R′/(q′) = pd′e′k′ .
Suppose there is an Fp-linear isomorphism φ from R/(r) to R′/(r′) that maps A to A′

and satisfies φ(1) = 1. Then d′e′ = de. Moreover, A and A′ must have the same period,
so d′e′k′ = dek, and hence k′ = k. We define the function ρ : R/(q) → R/(r) by

ρ(
k−1∑
i=0

hir
i) = h0

if each hi is in S = {a : deg(a) < e}. This function is not a homomorphism, but is
Fpd-linear.

Let E be the set of periodic sates of the AFSR with connection element q, and let Γ
be the state change operation on this AFSR. We define the function σ : R/(q) → E as
follows. For any h ∈ R/(q), there is a unique t ∈ R so that (ρ(h), ρ(r−1h), · · · , ρ(r1−kh); t)
is a periodic state. Let σ(h) = (ρ(h), ρ(r−1h), · · · , ρ(r1−kh); t). Then for any h we have
σ(r−1h) = Γ(σ(h)). Also, if ν : E → R/(r) is the output function for the AFSR, then
ν(σ(h)) = ρ(h). This is an injective model in the language of our earlier paper [8].

We have another such setup for the AFSR with connection element q′: a function
ρ′ : R′/(q′) → R′/(r′); E ′, the set of periodic states of the AFSR; Γ′, the state change
operation; a function σ′ : R′/(q′) → E ′ defined by

σ′(h) = (ρ′(h), ρ′((r′)−1h), · · · , ρ((r′)1−k′h); t′)

for some t′ and satisfying σ′((r′)−1h) = Γ′(σ′(h)) for any h ∈ R′/(q′), and ν ′(σ′(h)) =
ρ′(h) where ν ′ : E ′ → R′/(r′) is the output function for the AFSR.

There is also a function π : E → E ′ such that the output starting at state π(α) ∈ E ′

is the image under φ of the output starting at state α ∈ E. Therefore π(a0, · · · , ak−1; t) =
(φ(a0), · · · , φ(ak−1); t

′) for some t′.
Define µ : R/(q) → R′/(q′) by µ = (σ′)−1◦π◦σ. Then for every h, µ(r−1h) =

(r′)−1µ(h), from which it follows that µ(rh) = r′µ(h). By induction we have µ(ri) =
(r′)iµ(1) for every i. Also, µ is Fp-linear since each of the component functions is.

Let S = {u ∈ R : deg(u) < e} and let S ′ = {v ∈ R′ : deg(v) < e′}. Let u ∈ S. Then
we have σ(urk−1) = (0, · · · , 0, ρ(u); t) for some t. Thus

π(σ(urk−1)) = (0, · · · , 0, φ(ρ(u)); t′) for some t′.

= σ′(v(r′)k−1), (25)

where v ∈ S ′ and ρ′(v) = φ(ρ(u)) (such a v must exist). Thus µ(urk−1) = v(r′)k−1.
Suppose u = 1. Then ρ′(v) = φ(ρ(u)) = 1 so v = 1 and µ(rk−1) = (r′)k−1. But
µ(rk−1) = (r′)k−1µ(1), so µ(1) = 1 and µ(ri) = (r′)i for all i. For any nonzero u, v ∈
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R/(q), we have u = ri and v = rj for some i, j (r is primitive), so µ(uv) = µ(rirj) =
(r′)i+j = µ(ri)µ(rj) = µ(u)µ(v). Therefore µ is a field isomorphism. Also, it follows from
the above discussion that if u ∈ S and v is as in equation (25), then µ(urk−1) = v(r′)k−1,
so µ(u) = v. In particular, µ(S) = S ′.

Now suppose that d′ > d. Since d′ divides dek, the field Fpd′ is contained in
Fpdek = R/(q). The former field is also contained in S ′. By uniqueness, we have
Fpd′ = µ−1(Fpd′ ) ⊆ S. Therefore there exists u ∈ S − Fpd such that every power of
u is also in S. But any such u is a polynomial of degree at least 1, and some power of
it has degree greater than or equal to e and less than ek. Such a power is not in S, a
contradiction. Similarly, d > d′ is impossible. 2

Corollary 9.2 Let r, q ∈ R = Fpd [x] with deg(r) = e > 1, deg(q) = g = ek, and with
r primitive modulo q. Let A be a sequence with connection element q so that A is an
(r, q)-adic `-sequence. Then A is not the Fp-linear image of an m-sequence.

Proof: Suppose that A = φ(A′) (term by term) where A′ is an m-sequence. Suppose that
φ(b) = 1. define φ′(c) = φ(bc). Then φ′ is an Fp-linear isomorphism since by definition,
the elements of an m-sequence are in a field. We have φ′(1) = 1. The sequence B
obtained by multiplying each element of A′ by b−1 is an m-sequence since it satisfies the
same linear recurrences as A′. Thus A is the Fp linear image of an m-sequence by an
isomorphism that maps 1 to 1, contradicting Theorem 9.1. 2

In [5], Gong, Di Porto, and Wolfowicz constructed pseudo-noise sequences by applying
an invertible Fp-linear map to each element in an m-sequence over Fpf . Corollary 9.2
gives sufficient conditions that an (r, q)-adic `-sequence cannot be so obtained.

10 Existence

It is not immediately apparent that (r, q)-adic `-sequences that are not m-sequences are
abundant. In order to find such sequences we fix the field F = Fpd and search for a
pair of polynomials r, q ∈ F [x] such that q is irreducible and r is primitive modulo q. In
order to get a de Bruijn sequence we will also require that g = deg(q) is a multiple of
e = deg(r).

First recall the theorem of Pappalardi and Shparlinski [23]: Let F be an algebraic
closure of F . Suppose r is not a k-th power of a function h ∈ F [x], for any k which
divides |F |g − 1. Then the number N(r, F, g) of irreducible polynomials q ∈ F [x] of
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degree g for which r is primitive satisfies∣∣∣∣∣N(r, F, g)− ϕ(M − 1)

g

∣∣∣∣∣ ≤ 3eg−12ν(M−1)
√
M

where M = |F |g, where ϕ denotes Euler’s ϕ function and where ν(k) denotes the number
of distinct prime divisors of k. This implies the existence of many pairs (r, q) such that
r is primitive mod q. For example, if F = F2 and g = 13 it says that for any e ≤ 42
there exist r with deg(r) = e and r primitive mod q. If g ≥ 75 then for every divisor e
of g there exist polynomials r of degree e that are primitive mod g.

In fact, primitive polynomial pairs (r, q) are considerably more abundant than the
above estimates predict. By computer search we have found the following for F = F2:
Fix g ≤ 22. Suppose r ∈ F [x] is a polynomial of degree e < g and suppose r is not
a power of a polynomial r 6= hn where n divides g. Then there exists an irreducible
polynomial q of degree g such that r is primitive mod q unless r = x4 + x and g = 6.
In other words, there is a single unacceptable pair (r, g) in this range! (In this case, the
above estimate says |N(r, F, g)− 6| ≤ 64 so N = 0 is, indeed, a possibility.)

A class of examples which may be easily analyzed is the following. Let q(x) ∈ F [x]
be a primitive polynomial of degree g = ke. Let r(x) = xe. Then r is primitive modulo
q if and only if e is relatively prime to |F [x]/(q)| − 1 = |F |g − 1. This is satisfied, for
example, if g is relatively prime to |F |g − 1. For example, if F = F2 and r(x) = x2 we
may take q to be any primitive polynomial of even degree. If such a q contains any terms
of odd degree then some qi has positive degree, so the resulting (r, q)-adic `-sequence
A is not an m-sequence. If F = F2 and r(x) = x3 we may take q to be any primitive
polynomial whose degree is an odd multiple of 3. If such a q contains any terms of
degree not divisible by 3, then some qi has positive degree, so the sequence A is not an
m-sequence.

11 Example

In this section we let p = 2 and d = 1. If deg(r) = 1, then we obtain m-sequences. The
case r(x) = x amounts to the standard analysis of m-sequences by power series. The
case r(x) = x+ 1 is equivalent by a change of basis.

Suppose that r has degree 2. Then for any choice of q we obtain sequences with
elements in K = F2[x]/(r) = {0, 1, x, x + 1}. If r(x) = x2 + x + 1, which is irreducible
over F2, we have K = F4, but for all other rs of degree two the ring K is not a field. If we
let r(x) = x2+x+1 and use the connection element q(x) = x4+x3+1 = r2+xr+x, then
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it can be shown that r is primitive modulo q and one period of the (r, q)-adic `-sequence
A we obtain is a cyclic shift of

1, 1, x, x, x+ 1, x, 0, x, 1, x+ 1, x+ 1, 1, 0, x+ 1, 0. (26)

All other (r, q)-adic `-sequences obtained by different choices of r of degree 2 and q
of degree 4 with r primitive modulo q are obtained from the sequence (26) by some
combination of shifts, reversals, and permutations of the alphabet {0, 1, x, x+ 1}.

However, the sequence with one period equal to

1, 1, x, 1, 0, x+ 1, x+ 1, 1, x+ 1, 0, x, x, x+ 1, x, 0

is an m-sequence over F4, and all other m-sequences of span 2 over F4 are obtained from
this sequence by some combination of shifts, reversals, and switching x and x+ 1. This
illustrates the fact that the new set of sequences is disjoint from the set of m-sequences.
In fact there is no set theoretic isomorphism φ : F4 → F4 so that φ(A) is an m-sequence,
for the sequence A contains a string x, 0, 1, 0, x and there is no analogous string in any
of these m-sequences.
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