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Abstract In this paper we study relationships between the
linear complexities of a sequence when treated as a sequence
over two distinct fields. We obtain bounds for one linear
complexity in the form of a constant multiple of the other,
where the constant depends only on the fields, not on the
particular sequence.
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1. Introduction

Cryptographic stream ciphers use pseudorandom sequences
to scramble messages. The security of a stream depends on
the unpredictability of the sequence. In many cases there is
a natural way in which we can think of the sequence entries
as elements of an algebraic ring. For example, the entries
in a binary sequence can be thought of as elements of the
field with two elementsF2. It is common that stream cipher
designers demonstrate that their systems are secure against
attacks that exploit such obvious algebraic interpretations.
However they often ignore less natural algebraic interpre-
tations that may lead to more successful attacks. Typically
a binary sequence is shown to have high linear complexity
over F2, which shows it is secure against the Berlekamp-
Massey attack. However, it is possible that if we interpret
the sequence as a sequence over some other finite field, even
with a different characteristic, then it in fact has much lower
linear complexity and can be attacked. For example, for the
sequences calledgeometric sequencesby Chan and Games
[1], such a vulnerability was demonstrated by the author [2].
A geometric sequence is formed by applying a functionf
from a finite fieldFq of odd characteristicp toF2. Chan and
Games showed that geometric sequences have linear com-
plexity close to their period. But we can also consider a bi-
nary sequence to be a sequence overFp that just happens to
have no entries other than 0 and 1. The author showed that
these sequence in fact have small linear complexity overFp

(and in factp can be found by the attacker with high proba-
bility).

Any binary sequence can be treated as a sequence over
any ring and cryptanalyzed as such. Thus in principal if we
are to believe in the security of a sequence we at least must
believe it has high linear complexity with respect to every
ring. In practice we need only be concerned with small rings,
since the algebra in large enough rings would be complex
enough to slow an attack. More generally, ifS is a sequence
over a ringR, we would like to understand the linear com-
plexity ofS when we treat it as a sequence over another ring
via some mapping between the rings. In this paper we ex-
plore this question for certain rings.
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Fig. 1 Reinterpretation by lifting and reducing.

2. Basics
In this section we define terms and describe more precisely
the problem we are concerned with. Throughout this section
R denotes a commutative algebraic ring.

Definition 2.1: Let S be an infinite sequence with entries
in R.

1. S is linearly recurrentif, for some integert and coeffi-
cientsc0, · · · , ct−1 ∈ R we have

sn+t = ct−1sn+t−1 · · ·+ c0sn, n = 0, · · · .

Such an equation is called arecurrence overR. The
integert is thelengthof the recurrence.

2. The smallest length of a recurrence satisfied byS is
called thelinear complexity ofS overR, denoted by
LR(S).

See Lidl and Niederreiter’s book on finite fields for
background on linearly recurrent sequences [4]. See Lang’s
book on algebra for background on rings [3].

If I is an ideal inR, then we can reduce the elements
of sequenceS moduloI to obtain a sequenceSI overR/I.
This reduced sequence is necessarily also linearly recurrent
since every recurrence overR satisfied byS reduces to a
recurrence overR/I satisfied by the reduced sequence. It
follows thatLR/I(SI) ≤ LR(S). The purpose of this paper
is to obtain lower bounds forLR/I(SI) in terms ofLR(S)
for certain ringsR. By transitivity we obtain lower bounds
for LR/I(SI) in terms ofLR/J(SJ), whereJ is a second
ideal inR.

We can also start with a sequence overR/I and attempt
to reinterpret it as a sequence overR/J . The cryptanalyst
hopes that this reinterpretation results in a much lower linear
complexity, resulting in vulnerability of the stream cipher.
If this is done by lifting the sequence toR, then reducing
moduloJ , our methods may give useful bounds on the extent
to which the linear complexity decreases. See Figure 1.

The case whenR is the ordinary integers was treated by



Shparlinski and Winterhof [5]. They proved the following
theorem.

Theorem 2.2: Let R = Z be the integers. Letm ≥ 2 and
h ≥ 1 be integers. Then for any sequenceS = s0, s1, · · · of
integers withsi ≤ h for i = 0, 1, · · ·, we have

LZ/(m)(S(m)) ≥
1

2 log2(m)
min{LZ(S),m/h− 1}.

Note that in many cases this is a very weak bound. For
example, if a sequence is defined naturally as a sequence
overZ/(m), then it is likely thath = m− 1. In this case the
lower bound is less than 1, so the result says nothing.

In this paper we consider the case whenR is an algebra
over a finite field. We prove a similar bound, but one that
is much sharper in the sense that the second termm/h − 1
is missing. The techniques we use are similar to Shparlinski
and Winterhof’s.

3. Main Theorem
Throughout this section letF be a finite field withq ele-
ments, and letR be a commutativeF -algebra. IfI is an ideal
in R anda, b ∈ R, then we saya is congruent tob modulo
I, or a ≡ b (mod I), if a − b ∈ I. This is equivalent to
saying thata andb have the same image inR/I. We refer to
the cardinality of a basis forR/I overF as thedegree ofI,
denoteddeg(I).

Again letI be an ideal inR. LetB be a basis forR/I
overF , and letB′ be a subset ofR that maps one to one and
ontoB under reduction byI. LetU be theF -linear span of
B′. ThenU is a complete set of representatives forR/I (that
is,U that maps one to one and ontoR/I under reduction by
I). We say thatU is a linear set of representatives forR/I.

Theorem 3.1: Let I ⊆ R be an ideal withdeg(I) = e <
∞. Let U ⊆ R be a linear set of representatives forR/I.
Let S = s0, s1, · · · , be a sequence overR such thatsi ∈ U
for all i. Then

LR/I(SI) ≥
LR(S)
e

.

Proof: Let

sn+t ≡ ct−1sn+t−1 + · · ·+ c0sn (mod I),
n = 0, 1, · · · ,

be any recurrence of lengtht = LR/I(SI) satisfied byS.
We can iterate the recurrence arbitrarily many times. Thus
for any integerk ≥ 0 we have

sn+k ≡
t−1∑
j=0

cj,ksn+j (mod I), n = 0, 1, · · · , (1)

for somecj,k ∈ R, and we can takecj,k ∈ U . Let Ck =
(c0,k, · · · , ct−1,k) ∈ Rt.

Let r = et+ 1 and consider the functionΓ from F r to
Rt defined by

Γ(a0, · · · , ar−1) =
r−1∑
k=0

akCk.

This is anF-linear function from a vector space of dimen-
sion r to a vector space of dimensionet < r, so it has a
nontrivial kernel. That is, there is some(a0, · · · , ar−1) 6=
(0, · · · , 0) such that

∑r−1
k=0 akCk = 0. Let u ≤ r be the

largest integer such thatau 6= 0. Using equation (1) we find
that

u∑
k=0

aksn+k ≡
u∑

k=0

ak

r−1∑
j=0

cj,ksn+j (mod I)

=
r−1∑
j=0

sn+j

u∑
k=0

akcj,k

= 0,

for everyn = 0, · · · , N − u− 1. That is,
u∑

k=0

aksn+k ∈ I.

However,
u∑

k=0

aksn+k ∈ U, n = 0, 1, · · · .

It follows that
u∑

k=0

aksn+k = 0, n = 0, 1, · · · .

Therefore

sn+u =
u−1∑
k=0

(−a−1
u ak)sn+k = 0, n = 0, 1, · · · .

ThusLR(S) ≤ u ≤ r − 1 = et soLR(S)/e ≤ LR/I(SI),
as claimed. 2

We can interpret this theorem as saying that If we have
a sequenceT with entries inR/I, then if we lift the sequence
to an arbitrary linear set of representatives forR/I inR, then
the linear complexity of the lifted sequence will be no more
thane times the linear complexity ofT .

SupposeU ⊆ V are a finite dimensionalF -subspaces
of R. Let I be an ideal such thatU is a linear set of rep-
resentatives moduloI, and letJ be an ideal such thatV is
a linear set of representatives moduloJ . If S is a sequence
overR/I, then we can treatS as a sequence overR/J by
lifting to U ⊆ V and reducing moduloJ . The following
corollary is immediate.

Corollary 3.2: If I andJ are as in the preceding paragraph,
then for any sequenceS overR/I we have

LR/I(SI) ≥
LR/J(SJ)

deg(I)
.

A simple general case occurs whenR = F [x], the poly-
nomial ring in one variable. This ring is a principal ideal
domain, so we can writeI = (f), wheredeg(I) = deg(f)
(in the usual sense). We can take forU the set of polynomi-
als of degree less thane. ForJ we can take any other ideal
J = (g) whereg has degree at leaste. Theorem 3.1 then
says the following.



Theorem 3.3: Let f ∈ F [x] be a polynomial of degreee >
0. Let S = s0, s1, · · · , be a sequence overF [x] such that
deg(si) ≤ e for all i. Then

LR/(f)(S(f)) ≥
LR(S)
e

.

From this we obtain the specialization of Corollary 3.2.

Corollary 3.4: If f and g are polynomials inF [x] and
deg(g) ≥ deg(f), then for any sequenceS of polynomials
overF of degree less thandeg(f) we have

LR/(f)(S) ≥
LR/(g)(S)

deg(f)
.

The bound given by Theorem 3.1 is tight in the sense
that there are sequences that meet this bound. For example,
letR = F [x] as above. The sequence with one period equal
to

1, 1, x, 1, 0, x+ 1, x+ 1, 1, x+ 1, 0, x, x, x+ 1, x, 0

is an m-sequence overF4 = F2[x]/(x2 + x + 1), hence its
linear complexity overF4 is 2. It is straightforward to see
that its linear complexity overF2[x] is 4. In fact the shortest
recurrence it satisfies overF2[x] is sn+4 = sn+1 + sn.

More generally, letq be prime andf be an irreducible
polynomial of degreee overF . LetS be an m-sequence with
periodqek − 1 with entries inFqe = F [x]/(f). Suppose we
identify Fqe with the set of polynomials of degree less than
e over F . Using this identification, letT : Fqe → F be
the function defined by evaluation at 0 (that is,T (g) is the
constant term ofg). ThenT is F -linear and it follows that
the image ofS underT is an m-sequence with entries inF
and periodqek − 1. Hence its linear complexity overF is
ek.

Now interpretS as a sequence of elements ofR =
F [x]. Any linear recurrence with coefficients inR satisfied
by S induces a linear recurrence of the same length satisfied
by T (S) since evaluation of polynomials at 0 is a ring ho-
momorphism fromR to F — it is just reduction modulox.
HenceLR(S) ≥ ek. That is, in this case

LR/(f)(S(f)) ≤
LR(S)
e

.

It follows that we have equality.
One might wonder how common it is to find a reinter-

pretation of a sequence over one finiteF -algebra as a se-
quence over anotherF -algebra as in Theorem 3.1. LetR1

andR2 be two finiteF -algebras withm = dim(F1) ≤
dim(F2) = n. Let τ : R1 → R2 be any injectiveF -linear
function. Then any sequenceS overR1 can be interpreted
as a sequence overR2. We claim that this reinterpretation
arises from the setting of Corollary 3.2, so that the given
bound applies.

Let γ1, · · · , γm be a basis forR1 over F . Let R =
F [x1, · · · , n]. Let δi = τ(γi) for 1 ≤ i ≤ m, and complete
this to a basisδ1, · · · , δn for R2 overF . Then there are ring
homomorphismsφ : R → R1 andψ : R → R2 defined
by φ(xi) = γi if 1 ≤ i ≤ m, φ(xi) = 0 if m < i ≤ n,

andψ(xi) = δi if 1 ≤ i ≤ n. The idealsI = ker(φ) and
J = ker(ψ) with the linear sets of representativesU , the
F -linear span ofx1, · · · , xm, andV , theF -linear span of
x1, · · · , xn satisfy the conditions of Corollary 3.2 as desired.

The situation whenF = F2 is especially interesting.
Let T be any finitely generatedF2-algebra andψ : F2 → T
be any function (not necessarily linear). IfS is a sequence
overF2, we want to compare the linear complexity ofS and
ψ(S). If we replaceψ(x) by ψ(x)− ψ(0), then we obtain a
function that is necessarilyF2-linear. The effect on the linear
complexity ofψ(S) is to increase or decrease it by at most
1. This is because addition ofc amounts to addingc/(1−x)
to the generating function, so the degree of the denomina-
tor in the rational representation of the generating function
changes by at most 1. Now we want to connectF2 andT
by anF2-algebraR. Suppose thatT = F2[a1, · · · , an]/K
for some idealK. Let R = F2[x0, x1, · · · , xn], I =
(x0 − 1, x1, · · · , xn), andJ = (x0 − ψ(1)) + K. Then
F2 = R/I, T = R/J , andU = {1} is a linear set of repre-
sentatives forR/I. LetV be any linear set of representatives
for R/J containing 1. It follows that the hypotheses of The-
orem 3.1 hold withe = 1. Therefore, ifψ(0) = 0

LT (ψ(S)) ≤ LF2(S).

For arbitraryψ we obtain

LT (ψ(S)) ≤ LF2(S) + 1.

4. Conclusion
We have given explicit bounds relating the linear complexi-
ties of a sequence over one finite dimensionalF -algebra and
its image in another finite dimensionalF -algebra via anF -
linear transformationτ . We showed that these linear com-
plexities are within a constant factor (depending only on the
rings, not the sequence) of each other.

We leave as an open problem the question of what hap-
pens whenτ is non-linear.
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