Linear Complexity of Finite Field Sequences over Different Fields
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Abstract In this paper we study relationships between the
linear complexities of a sequence when treated as a sequence
over two distinct fields. We obtain bounds for one linear
complexity in the form of a constant multiple of the other,
where the constant depends only on the fields, not on the
particular sequence.
key words: Linear complexity, stream cipher, finite field,
pseudorandom sequence.
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. Fig.1 Reinterpretation by lifting and reducing.
1. Introduction

Cryptographic stream ciphers use pseudorandom sequences Bgsics

to scramble messages. The security of a stream depends on,, . . . . .
g y P e% this section we define terms and describe more precisely

the unpredictability of the sequence. In many cases there X . .
a natural way in which we can think of the sequence entrie e problem we are concerned with. Throughout this section
denotes a commutative algebraic ring.

as elements of an algebraic ring. For example, the entri
in a binary sequence can be thought of as elements of ti®Befinition 2.1: Let S be an infinite sequence with entries
field with two element&',. It is common that stream cipher in R.
designers demonstrate that their systems are secure against = , , )
attacks that exploit such obvious algebraic interpretations. 1+  iS linearly recurrentif, for some integer and coeffi-
However they often ignore less natural algebraic interpre- ~ Ci€NtSco, -+, ¢;—1 € Rwe have
tations that may lead to more successful attacks. Typically
a binary sequence is shown to have high linear complexity
over Fy, which shows it is secure against the Berlekamp- ~ Such an equation is calledracurrence ovetR. The
Massey attack. However, it is possible that if we interpret  integert is thelengthof the recurrence.
the sequence as a sequence over some other finite field, eve
wlth a dlﬁerent.characterlstlc, then it in fact has much lower called thelinear complexity ofS over R, denoted by
linear complexity and can be attacked. For example, for the La(S)
sequences callegeometric sequencdsyy Chan and Games '
[1], such a vulnerability was demonstrated by the author [2].  See Lidl and Niederreiter's book on finite fields for
A geometric sequence is formed by applying a functfon background on linearly recurrent sequences [4]. See Lang's
from a finite fieldF, of odd characteristip to F». Chanand book on algebra for background on rings [3].
Games showed that geometric sequences have linear com- If [ is an ideal inR, then we can reduce the elements
plexity close to their period. But we can also consider a bi-of sequence& modulo! to obtain a sequencg; overR/I.
nary sequence to be a sequence &gthat just happens to This reduced sequence is necessarily also linearly recurrent
have no entries other than 0 and 1. The author showed thaince every recurrence ovét satisfied byS reduces to a
these sequence in fact have small linear complexity 8yer recurrence oveR/I satisfied by the reduced sequence. It
(and in factp can be found by the attacker with high proba-follows thatLy,;(S7) < Lr(S). The purpose of this paper
bility). is to obtain lower bounds fok,;(Sr) in terms of L (S)

Any binary sequence can be treated as a sequence over certain ringsRk. By transitivity we obtain lower bounds
any ring and cryptanalyzed as such. Thus in principal if wefor Ly,;(S;) in terms of L, ;(S), where.J is a second
are to believe in the security of a sequence we at least musteal in R.
believe it has high linear complexity with respect to every We can also start with a sequence oRgd and attempt
ring. In practice we need only be concerned with small ringsto reinterpret it as a sequence over.J. The cryptanalyst
since the algebra in large enough rings would be complekopes that this reinterpretation results in a much lower linear
enough to slow an attack. More generallySifs a sequence complexity, resulting in vulnerability of the stream cipher.
over a ringR, we would like to understand the linear com- If this is done by lifting the sequence #, then reducing
plexity of S when we treat it as a sequence over another ringnoduloJ, our methods may give useful bounds on the extent
via some mapping between the rings. In this paper we exo which the linear complexity decreases. See Figure 1.
plore this question for certain rings. The case whe is the ordinary integers was treated by

Sptt = Ct—18n4t—1-"*+CoSp, N =0,---

5. The smallest length of a recurrence satisfiedShis



Shparlinski and Winterhof [5]. They proved the following This is anF-linear function from a vector space of dimen-

theorem.

Theorem 2.2: Let R = Z be the integers. Let» > 2 and
h > 1 be integers. Then for any sequerte- sg, sy, - - - of
integers withs; < hfori =0,1,---, we have

LZ/(m)(S(m)) mlH{Lz(S),m/hf ].}

1
> -
~ 2logy(m)

Note that in many cases this is a very weak bound. For
example, if a sequence is defined naturally as a sequence

overZ/(m), then itis likely that = m — 1. In this case the
lower bound is less than 1, so the result says nothing.
In this paper we consider the case wiieis an algebra

sion r to a vector space of dimensien < r, so it has a
nontrivial kernel. That is, there is sonfeg, - -, a,—1) #
(0,---,0) such thaty";_} a,Cx = 0. Letu < r be the
largest integer such that, £ 0. Using equation (1) we find
that

u
§ A Sn+k =

k=0

u r—1
Z ak Z CjkSn+j (modT)
k=0  j=0

r—1 u
§ Sn+j E aECj k
7=0 k=0

0,

over a finite field. We prove a similar bound, but one that;,, everyn = 0,---,N —u — 1. Thatis

is much sharper in the sense that the second ey — 1

is missing. The techniques we use are similar to Shparlinski

and Winterhof's.

3. Main Theorem

Throughout this section let’ be a finite field withqg ele-
ments, and lek be a commutativé'-algebra. Ifl is an ideal
in R anda,b € R, then we say: is congruent t& modulo
I,ora =b (modI), if a—b € I. This is equivalent to
saying that andb have the same image /1. We refer to
the cardinality of a basis faR/I over F' as thedegree ofl,
denotedleg(7).

Again let] be an ideal inR. Let B be a basis foR/I
over F', and letB’ be a subset ok that maps one to one and
onto B under reduction by. LetU be theF-linear span of
B’. ThenU is a complete set of representatives Ry (that
is, U that maps one to one and oy I under reduction by
I). We say thaU is alinear set of representatives fdt/I.

Theorem 3.1: LetI C R be an ideal withdeg(I) = e <
oco. LetU C R be a linear set of representatives @y 1.
LetS = sg,s1, - -, be a sequence ovét such thats; € U
forall i. Then

LR(S).

Lpy(Sr) > .

Proof: Let

Sntt = Ct—18n4t—1 + -+ cosy (mod I),
n —_— O, 17 ... y

be any recurrence of length= Ly ,;(Sr) satisfied bysS.

We can iterate the recurrence arbitrarily many times. Thu

for any integelk > 0 we have

t—1

Snik = ZCLkSn.H (mod I), n=0,1,---,
Jj=0

@)

for somec;,, € R, and we can take;; € U. LetC; =
(Cok, - ct-1,6) € R

Letr = et + 1 and consider the function from F" to
R defined by

r—1
I(ag, -, ar—1) = Z arCy.
k=0

u
Z ApSp+k € 1.
k=0

However,

u
Zakanrk elU, n=0,1,---.
k=0

It follows that
u
Zakanrk =0, n=0,1,---
k=0

Therefore
u—1
Sn4u = Z(_a/glak‘)sn+k‘ =0, n=0,1,---.
k=0
ThusLr(S) <u <r—1=-etsoLgr(S)/e < Lg/1(Sr),
as claimed. O

We can interpret this theorem as saying that If we have
a sequenc® with entries inR/I, then if we lift the sequence
to an arbitrary linear set of representatives®i in R, then
the linear complexity of the lifted sequence will be no more
thane times the linear complexity of".

Supposd/ C V are a finite dimensionat’-subspaces
of R. Let I be an ideal such thdf is a linear set of rep-
resentatives moduld, and letJ be an ideal such that is
a linear set of representatives modulolf S is a sequence
over R/I, then we can trea$ as a sequence ovél/J by
lifting to U C V and reducing moduld’. The following
gorollary is immediate.

Corollary 3.2: If I andJ are as in the preceding paragraph,
then for any sequencgover R/I we have

Lrys(Ss)
deg(I)

A simple general case occurs whBn= F'[z], the poly-
nomial ring in one variable. This ring is a principal ideal
domain, so we can writé = (f), wheredeg(I) = deg(f)

(in the usual sense). We can take fdthe set of polynomi-
als of degree less than For J we can take any other ideal
J = (g) whereg has degree at least Theorem 3.1 then
says the following.

Lg/1(Sr) >



Theorem 3.3: Let f € F[z] be a polynomial of degree>
0. LetS = sp,s1,---, be a sequence ovét[z]| such that
deg(s;) < eforalli. Then
Lr(S)

o

Lrin(Sin) =

andy(z;) = §; if 1 < ¢ < n. The ideals] = ker(¢) and

J = ker(¢)) with the linear sets of representativés the

F-linear span ofry,-- -, z,,, andV, the F-linear span of

x1,- -+, T, satisfy the conditions of Corollary 3.2 as desired.
The situation wherF" = F is especially interesting.

Let T be any finitely generateB,-algebra and) : F; — T

From this we obtain the specialization of Corollary 3.2.be any function (not necessarily linear). dfis a sequence

Corollary 3.4: If f and g are polynomials inF[z] and
deg(g) > deg(f), then for any sequenc® of polynomials
over F of degree less thateg( f) we have

LR/(Q)(S)

Lryp(S) = dce(l)

overF,, we want to compare the linear complexity®and
P(9). If we replacey(x) by ¥ (x) — 1(0), then we obtain a
function that is necessarily,-linear. The effect on the linear
complexity ofi(S) is to increase or decrease it by at most
1. This is because addition emounts to adding/(1 — x)

to the generating function, so the degree of the denomina-
tor in the rational representation of the generating function

The bound given by Theorem 3.1 is tight in the sensechanges by at most 1. Now we want to connBgtand T

that there are sequences that meet this bound. For exampls; anF,-algebraR. Suppose thal’ = Fslaq, - -
let R = F[z] as above. The sequence with one period equdbr some ideal K.

to
1,1,2,1,0,z+ 1,2+ 1,1, 24+ 1,0,z,x, .+ 1,2,0

is an m-sequence ovély; = Fy[x]/(2% + = + 1), hence its

: va’n]/K
Let R = Fg[xo,l‘l, cee ,Jin], I =

(ko — L,z1,- -, xy), andJ = (zg — (1)) + K. Then
Fy,=R/I,T = R/J,andU = {1} is a linear set of repre-
sentatives foRR/I. LetV be any linear set of representatives
for R/J containing 1. It follows that the hypotheses of The-

linear complexity ovelF, is 2. It is straightforward to see Orem 3.1 hold withe = 1. Therefore, ify)(0) = 0

that its linear complexity oveFs[z] is 4. In fact the shortest
recurrence it satisfies ov&:[z] iS s, 44 = Sp41 + Sn-
More generally, lety be prime andf be an irreducible

polynomial of degree over F'. Let.S be an m-sequence with

periodg®* — 1 with entries inF . = F[z]/(f). Suppose we

identify F;. with the set of polynomials of degree less than

e over I, Using this identification, lef” : F,e — F be
the function defined by evaluation at 0 (thatTg) is the
constant term of;)). ThenT is F-linear and it follows that
the image ofS underT is an m-sequence with entries in
and periodg®* — 1. Hence its linear complexity over is
ek.

Now interpretS as a sequence of elements Bf =
F[z]. Any linear recurrence with coefficients R satisfied

Lr((S)) < Lr,(S).
For arbitrary) we obtain
Lr(y(8)) < Lr,(S) + 1.

4. Conclusion
We have given explicit bounds relating the linear complexi-
ties of a sequence over one finite dimensidfialgebra and
its image in another finite dimensionAlalgebra via arnf'-
linear transformation. We showed that these linear com-
plexities are within a constant factor (depending only on the
rings, not the sequence) of each other.

We leave as an open problem the question of what hap-

by S induces a linear recurrence of the same length satisfig@ens whemr is non-linear.

by T'(S) since evaluation of polynomials at O is a ring ho-

momorphism fromR to F' — it is just reduction modula:.
HenceLy(S) > ek. That s, in this case

Lr(S)

Lryp)(Sipy) < ——

It follows that we have equality.

One might wonder how common it is to find a reinter- 2]

pretation of a sequence over one finffealgebra as a se-
guence over anothdr-algebra as in Theorem 3.1. L&Y
and R, be two finite F-algebras withm = dim(F;) <
dim(Fy) = n. LetT : Ry — R, be any injectiveF-linear
function. Then any sequenc¢eover R; can be interpreted

as a sequence ovét,. We claim that this reinterpretation [4]
arises from the setting of Corollary 3.2, so that the given

bound applies.

Let v1,---,vm be a basis forR; over F'. Let R =
Flzq,---,n]. Letd; = 7(v;) for 1 < i < m, and complete
this to a basigy, - - -, d,, for Ry, over F'. Then there are ring
homomorphismg : R — R; andvy : R — R, defined
by ¢(x;) = v if 1 < i <m, ¢(x;)) =0if m < i <n,
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