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On Correlations of A Family of Generalized
Geometric Sequences

Wei Sun, Andrew Klapper, Yi Xian Yang

Abstract—In this paper we study families of generalized can be shown to be an increasing functionnoff n < P.
geometric sequences formed by applying a feedforward function Thus if we keep the period® fixed, then we observe a
to certain sums of decimated m-sequences with elements in airadeoff: the linear complexity is increased by increasing

finite field. We compute their correlation functions, which for ivalentlv. d . hile th lati
certain families turn out to be close to the square root of the (or, equivalently, decreasing), while the correlations are

period. The size of these families equals their period. We also decreased by decreasing
show that in the binary case the linear complexities of these In any case the parametemust be large for the correlations

sequences are much larger than those of cascaded geometriqp he reasonably small. For example, if we take 9 andn =
sequences, although in these cases the maximum correlations are s then the period is abo@'33, the correlations are at most

larger. . . S
g P1/2+2/9 P72 997 while the linear complexity is about
Index Terms—Generalized geometric sequence, Correlation 922 |f e takee = 9 andn = 45, then the period is about

function, Character, Linear complexity. 2405 the correlations are at mo®l/2+2/9 ~ p-72 ., 9292

while the linear complexity is abouw*>. While these values
I Introduction are not in a practical range, they are interesting in that it is

EQUENCES with good correlation properties and higHifficult to achieve even this by other means.

linear complexity are important in code division multiple- This case is compared to various previously studied families
access spread-spectrum communication systems and c@fpsequences in Table (1). In this table we consider only binary
tography. Geometric sequences are a very general classsefiuencesp(= 2). In each case the period 2 — 1. The row
sequences whose correlation properties and linear complexiteseled “Gen. Geom.” corresponds to the choice= 5 - 3
have been extensively studied. In this paper we use sevéfdlsomek. This maximizes the linear complexity.
results of Carlitz on exponential sums [1], [2] to study the

correlations of a general class of sequences wegealkralized . Size of Maximum ~ Maximum

geometric sequencedle also analyze the linear complexity of __Family t Family Correlation Linear Complexity
. . o t4+1

certain of these sequences. In all cases the sizes of the families Gold 2n +1 2t 41 1425 2t

of cyclically distinct sequences equal their periods. By varying
the choices of parameters we can achieve various combinations

42
Gold dn+2 201 14275 24

of maximum correlation and minimum linear complexity. The Kasami 2n 23 1423 st
sequences are determined in part by the choice of a primé&mall Set)
numbe.rp and pair of natural numbers and e defining field Kasami  dn+2 252t +1) 14052 <5t
extensions5 F' (p™) and GF(p"©) of GF(p). (Large Set)

For example, letn and e be odd integers. Leth = + t t/2) ot
nins---my With n; at least 3 andh, at least 5 be an ordered ~ E°" in 22 1+22 (1/2)27
factorization. We describe a family @f¢ — 1 sequences with No 2n 2% 1422 n(2" — 1)
period P = 2™¢ — 1, maximal correlation and shifted auto- ¢ ¢ B

TN 2kn 22 1422 > 3nk(3k — 1)n 2

correlation at mosg™¢/2(22" — 1) + 1, and linear complexity
nmgng--.n?‘l(ze)% In other words, when the period is (0,7)-QF  ne odd 2t 41 14275 ~ 1271 (e — 2)n—2
approximatelyP = 2"¢ — 1, the number of sequences in

the family is P, and the correlations are at magt/2+2/c, Sen-Geom.  ne 2-1  2P@N oD+l FegH/IT
If we take, sayn; = 5 andn; = 3 for j > 1 (these are TABLE |

a”OWable ChOICSS accordlng to Theorem 6)’ then the IineaPOMPARlsoN OFPROPERTIES OFFAMILIES OF SEQUENCES OFPERIOD
complexity is2 (6¢)2("/)"****" = 5(6P/n)2(n/)"* which -1
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Section VI we state the results on correlations in the case whern a later paper, Klapper, et al. [12] definedhscaded

p = 2 without proof (the proofs are similar to those when GMW sequencesThese are geometric sequences for which

is odd). In Section VIl we consider the linear complexity fothe function f is defined by choosing a tower of finite fields

certain generalized geometric sequences when 2. In the and alternately composing exponentiation functions and trace

last section we put these results together to build families fafnctions down the tower. The definition is described in detail

sequences with low correlations and large linear complexityn Section VII below. Klapper, et al, showed that cascaded
GMW sequences have ideal autocorrelations and fairly large

Il. DEFINITIONS linear complexities.

We begin by defining the sequences of interest. jLbe a In this paper we study correlation functions between two

prime number, e > 0 integers, and; = p". Let GF(q) be generalized geometric sequences based on the saamal k

a finite field withq elements. The trace functign?”(-) from in the case wherk = pA 1. We a]so calculate the linear
GF(¢°) into GF(q) is defined by complexity of generalized geometric sequences whea 2
and the functiory is defined as for cascaded GMW sequences.

trq qu x € GF(¢°).
[1l. RESULTS ONEXPONENTIAL SUMS
Let a be a primitive element irGF(¢¢). The sequencé’ In this section we recall several results on exponential sums
whoseith term is that will be useful in what follows. Let
Ui) = trd" (), Xq(z) = /P,

is a maximal length shift register sequence, or simply an m-€ GF(q), be a canonical character 6fF'(¢q) (with values
sequence, ovelF(q). Let r be a (possibly different) in the complex numbers).
prime number. Iff is an arbitrary function fronGF'(¢) to Lemma 1: [15] Let a € GF(q). Then

GF(r), then the sequencg; whoseith term is ¢ a0
. . e, 4 XqlaZ) = .
Sp(i) = F(UG)) = F(trd (o) IEGZW a(a7) { 0 if a0,

is called ageometric sequence based anThese sequences We use the following notation for exponential sums, where

have been studied by a number of authors [3], [8], [11]. % be GF(q):
Let S and T be anyr-ary sequences with period. If . 1

w = e*™/" is a complex primitiverth root of unity, then §(a,b) = Z Xq(az®"" + bz).

the (periodic) cross-correlation function §fand 7T is rear()
Whenb = 0 we defineS(a) = S(a,0).
s(8)+1(it7) Lemma 2: (Carlitz [2]) Let g = p™ andn = 2m.
Cs T Z w?

1) If a #0,b=0, then
forr=0,1,---,L—1.If § =T, thenCg r is the (periodic) (—1)mHlpm+l jf q("=D/(+1) = (_1)m
autocorrelation function of. Also, for such a functiory we S(a) = { (—1)mpm otherwise.
denoteF (u) = w/™ for u € GF(q), and we denote

2) If @ # 0,b # 0, then S(a,b) = 0 if aPa? +

I(f) = Z F(u), ax + b = 0 is unsolvable inGF(q) and S(a,b) =
u€GF(9) (=1)"p™ xq(azo"*! + bao) otherwise, wherery is an

the imbalance off. Note that ifr # p, thenI(f) cannot be arbitrary solution inGF'(q) of the equatlompxp +ax+
zero. bP? = 0.

Suppose thaf; and S, are geometric sequences based on Itis known that ifala=1/(P+1) £ (_1)™ then the equation
a and o, respectively, W|thgcd(k ¢ —1)=1. Klapper et aPaP’ +az +bP = 0 has a unique solution. §(a—1/(+1) =
al, [11] gave correlations of; and S, whenk = p' and (—1)™, thenaPa?” +az+b° = 0 is solvable inGF(q) if and
k = q% + ¢°. In the same paper, a more general class ohly if
sequences was defined as follows. ForB € GF(¢¢), the B
sequences ;%) whoseith element is (a=be7

Sf(A,B)(Z,) _ f(trge(Aai + Baki)) Q) J

is called ageneralized geometric sequence basedvand x. ~ -emma 3: (Carlitz [2]) Letq = p*,n = 2m + 1.
The problem of calculating correlations of these sequencesl) If a # 0 andb = 0, then

was left open. Sun and Yang [20] solved the problem in

the case wherk = p'. In the case wherk = ¢% + ¢°,

Klapper [8] and Sun and Yang [21] calculated the cross- and
correlation functions between generalized geometric sequences

and geometric sequences.

3

27 2
=0, a'7P=—¢"L

I
=)

S(1) = (_1)m(P—1)/2,L'(p—1)2/4p(2m+1)/2.
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2) If a #0 andb #£ 0, then
S(a,b) = xq(awe"* + bro)S(1)¢(a),

where is the quadratic character 6fF'(¢) and g is
the unique solution ilGF(q) to the equatioru?z?" +
ar + b’ = 0.

IV. Correlations of Generalized Geometric Sequences
When en =2m +1

In this section we assume that = p?>™t!. That is,
2m + 1. Let f and g be possibly nonlinear func-
), and

en
tions from GF(q) to GF(r), A,B,A’,B’ € GF(q

102

It follows from Lemma 1 that

Sp(AB) 5, (4B pe generalized geometric sequences basgf

on the samey andk. Then

q°—-2

Z S4B ()45, A (7).

=0

Csf(ATB)’Sg(A/,B/)

We also letF'(u) = w/ ™, G(v) = w9(). This section consists
of a proof of the following theorem.

Theorem 1:Let §;(45) 5 (45" pe generalized geomet-
ric sequences based on the sameand k, as defined in
equation (1). Assume thal, B, A’, B’ # 0, k = p + 1,

¢ =p"=p>F! and0 <17 < ¢°—2. Let 4; = A’a” and
By = B'aPth7,
1) If A/JA, € GF(q) and A1B = ABy, then
_ A
|CS<A,B>’S§A’,B'> (1) — ¢! Z F(U)G(Zlu)
s \ weGF(q)
+F(0)G(0)] < ¢**(¢* — q).

2) If A/A; € GF(q) and A; B # ABy, then

|Cs§,A~B),S§,A“B/> () —¢“*1(f)1(g)
q(€—3)/2

>N, (u,v) = Z Z Xq [ﬁtrge (Az + BxP™h) — &u
z€GF(q°) M E€GF(q)
-Xq[/\trg (Ar1z + ByaPt) — \u]
— Z Xq(—&u — Av) Z Xq[trge((Aﬁ + A )Nz
MNEEGF (q) z€GF(q°)
+H(BE + BiA)zP )]
= ) xe(=€u=) D xee((AG+ AN
\EEGF(q) z€GF(q°)
+(B§ + Bl)\)l‘erl)
N(u,v) = ¢2 Z Xq(—&u — Av)

N EEGF (q)
Z Xge (A€ + Ay Nz + (BE + ByA)aPth)

z€GF(q°)
= ¢ Y xe(—Eu—M)TH(EN).
N EEGF (q)
where
TA(6N) = D Xee (A& + ANz + (BE + Bih)aPth).

z€GF(q°)

There are two cases.

1) WhenB¢ + B1A =0, we have
[ i AE+AN=0
(&) _{ 0 if AE+ A\ #£0.

2) When B¢ + BiA # 0, we haveT,(¢,)\) = (B¢ +
BiA)S(1) if A&+ A =0andT;(§, ) = xqe[(AE +
A N)xo+(BE+BiN) 2P T (BE+ BN S(1) if A&+

+F(0)G(0)— L ((AB; — A1 B
( ) u UGXC;;( ) (45, ) A1\ # 0. wherez is the unique solution i/ F'(¢¢) to
(Alu N AU)) ( )G(U)‘ the equat|0n
q“/?(¢* —2q+1) if B/B; € GF(q) P P
B+ B1A) 2P 4+ (BE+ BiA)z + (A + A1 N)" = 0.
< {ERnTaEY RSO (Bt BYa 4 (Be+ B+ (AS+ A
wherep € {1, —1,14, —i}. Therefore,
3) If A/A, & GF(q), then
|CSf(A’B),Sg(A/'B/) (T) - qe_2I(f)I(g) + F(O)G(0)| N (u U) _ q_Q Z q@X (—fu _ )\’U)
. T ) - q
“*(¢* — q) !f B/B: € GF(q) A EEGF(q)
broof. F - (16/2(6{12 —1) if B/B1 ¢ GF(q). Aeiaiazo
roof: For anyr we have
’ £S(1) Y xa(—Eu— M)o(BE + B
Cssam 5,000 (1) = MR
Y. N(u,0)F(u)G(v) = F(0)G(0), e
u,wEGF(q) +S(1) Y xg(—&u— o)
where N, (u,v) denotes the number of solutions @F (¢°) BB b
to the equations Atz
| . +1 Xqe [(AE + A1 N)zo + (BE + BiA)zo" ]
trd (Az + BaP™) =u (BE + Bi)))

trd" (A'a" @ + B'a@PHD7 gty =y,

q AWy + Wy + W3).



IEEE TRANSACTIONS ON INFORMATION THEORY

A. Calculation ofl;

There are two cases fé¥/;.
1) If A/A, € GF(q), then

Moo= Y xa(fu )
X, EEGF (q)
B¢+B1A=0
AE+A]A=0

> xgl(Bu—v)N if A1B=AB

AEGF(q)

{ .

qe if AlB 7& ABl
qe+1 if A1B= AB;andB;u = Bv
0
q©

if AyB = AB;andBju 7é Bv
2) If AJA1 € GF(q), thenW = ¢°.

if A\B# AB.

B. Calculation of¥,

ForWy, if A#0, AJA; € GF(q), Aju # Av, andB1 A #
A1 B, then

Wa

SA) D xg(—€u— M)(BE + Bi)
Mcena)

S(1) Z Xq [(ﬁu—v) )\}

AeGF(q)
o[(n-40)
S(1)e (Bl - 12;3)
Ay
> | (G- o) 2 ey
AeGF(q)
AB; — A1B

s (S50 ).

where [15, Theorem 5.15]

def

D(Y,xq) = Z ¥ (u)xq(u)
ueGF(q)
B (—=1)—1q1/2 if p=1 (mod 4)
- (=1)"Ling'/? if p=3 (mod 4).

Note thaty(z/y) = ¢ (zy) for anyy # 0.
We havell, = 0 in all other cases.

C. Estimation ofiV3
Finally, we must computéVs. Let
V =1{(\§) € GF(q)*|B{ + BiA # 0, A + A\ £ 0} |
There are three possibilities faf.
1) If A/A, € GF(q) andB/B; € GF(q), then
o q2—q if ABl :AlB

2) If A/JA; € GF(q) and B/By ¢ GF(q), or A/A; &
GF(q) and B/B; € GF(q), thenV = ¢* —q.

3) If AJA, ¢ GF(q) and B/By ¢ GF(q), thenV =
¢ -1
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This leads to four cases of upper bounds [féf;|, where

S() > Xg(—&u— Av)xge[(AE + A1 N)zo

X\,EEGF(q)
BE&+B1AZ£O
A&+ AL AZO

+(BE + Bi\)zoP T (BE + By ))

|Ws

)

qe/2 g Xq(—&u — Av)xqe [(AE + A1 N)z0
X,E€EGF(q)
BE+ B A#£0
AE+A] A£OD

+(BE + BiN)zoP T (BE + Bi)),

SinCE‘S(lN — p(2m+1)/2 — pen/Q — qe/2.

1) If A/A1 € GF(q), B/Bl S GF(q), and AB; 7& A B,
then|Ws| < ¢*/2(¢> — 2¢ + 1).

2) If A/JA; € GF(q) and AB; = A;B, then |W;| <
7“*(¢* - q).

3) If A/JA; € GF(q) and B/B, ¢ GF(q), or AJA; &
GF(q) and B/B; € GF(q), then|Ws| < ¢¢/?(¢> — q).

4) If A/A; ¢ GF(q) and B/B; & GF(q), then |Ws| <
¢“*(¢* — 1).

D. Bounds for Cross-Correlations
In every case we have

[N (u,v) — g7 (Wy + W)

q % |Ws|

< €

for some error terne. It follows that

Cscams,anon(m) = a2 Y (Wit Wa)F(u)G(v)
u,vEGF(q)
+F(0)G(0)]
S D A (el ]
uw,vEGF(q)
= q_2 Z €
u,vEGF(q)

= €.

Of courselV; and W, depend oru andv.

Evaluating these sums in various cases completes the proof
of Theorem 1. ]

The bound onW3| appears to be rather weak — we have
simply assumed that every term in a sum of plus ones and
minus ones is a plus one, the worst possible case. It is quite
possible that tighter bounds hold. The given bound arises
from a sum involvingy,-, equation (2). We haveg,.(z) =
Xq(trd" (z)). This can be used to rewrite the right hand side
of equation (2) in the form

Wsl =a*?| D xq(C&+ DNY(BE+ Bi)),
Xfsz)\(go
which looks like a character sum of a type that has been
analyzed. However, the ternd$ and D depend oncy, which
in turn depends o and ), so there is no apparent way to
simplify this expression and obtain a tighter bound.
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V. Correlations of Generalized Geometric Sequences When B¢ + By A = 0, we have

When en = 2m q°, AE+AN=0
In this section we suppose thgit = p?>™. That is,en = 2m. &N = { 0, A4+ AN#0.
The section consists of a proof of the following theorem _
Theorem 2:Let S;(45), 5,4 be generalized geomet-, V'eNBE+ Bid # 0 and AC+ A:A =0, by Lemma 2 we
have
ric sequences based on the sameand k, as defined in I
i € = m m ool m
egnuanon 2(71n) Assume tha4,B,Ae’,B’ #0,k=p+ 1,q/ = T(e ) = (—1)mFlpm+l if (BE + BiA ) = (—1)™,
p = p°, and 0 < 7 < q — 2. Let A1 = A« (_]_)mpm, otherwise.
By = B'a®*tD7 and letA be as in equation (5). Then
1) If A/A, € GF(q) and AB; = A; B, then

|CS;A,B>,S§A',B'>(7') + F(0)G(0)

When B¢ + B1A # 0, and A¢ + A1\ # 0, we have
T.(&, ) # 0 if and only if the equation

(BE+ BiAPa? + (BE+ BNz + (AE+ ANP =0 (3)

A

—q¢¢! Z F(u)G (Alu) | is solvable inGF(¢°). If so, let z, be any solution. Then

uwEGF(q) T-(&,\) = 0 if (3) is unsolvable iINnGF(¢¢) and T, (£, \) =
< 2 — q). (=1)™p"xge ((AE + Ai\)zo + (BE + BiN)zh™) if (3) is

solvable inGF(¢°).
2) If eis even,A/A; € GF(q), AB; # A1 B, and(B; — It follows that
A1 B/A)@ =D/t £ (_1)m then
-2

- (= 1)"’ EI(N)I(g)

|Csf(A B) S(A/ BY) (T) (q

Ne(uo)=q2 | > g°xqg(—&u—v)

_( m 6/2 ! Z F A )+F(0)G(0)| \.EEGF(q)
uEGF(q) AeLaao
. + —1)™ Tty (—Eu — A
- 6/2( 2C]+1) if B/B1 c GF((]) Z ( ) p Xq( {u ’U)
=1 ¢2(¢® - q) if B/By & GF(q). BB
AE+AA=0
3) If eis even,A/A; € GF(q), ABy # A1B, and (B, — (Be+By )@ D/ D —(_ym
AlB/A)(q -1)/(p+1) — (_1)171’ then + Z (_1)mpqu(_§u _ )\”U)
Cnm s (7) = (@72 + (=1)"p 6/2—2>I<f>f<g> )
AE+ATA=0
—(=1)"pg** (p+1) Z F(u)G(=E) (Be+B )@= D/ 0+ 2 (_ym
u€GF(q) + Z (—1)mpque((A§ + Al/\)xo
—|—F(O)G(0)| X\EEGF(q)
BE+B1A#0
AE+A]AFO
¢“/*(¢> —2q+ 1) if B/B, € GF(q) pmemene
/(% — q) it B/B1 ¢ GF(q). H(BE + B )xg(—u— w))
4) If eis odd, A/A; € GF(q), and AB; # A, B, then = ¢ (Wi + (=10)™p™U;, + (=)™ p™(p+ 1)Uy
Jmg +(=1)"p"Us)
|Csf(A,B)7S(A/:B/)(T) - ( Z F A )
! w€GF(q) where
_(q672 _ (](673)/2 +(1+ (_1)m)q6/272)1(f)1(g) W, = Z leq(_§U — ),
< I2p+1) Y F)G) + F0)G(0)| )
Av#£Aju AE+ALA=0
A A
TG Ui = D Xel-€u— ),
X,E€EGF(q)
. BE+B1A#0
{ q¢?(¢> —2q+1) if B/B; € GF(q) Ag+A1A=0
¢“*(¢* — q) if B/B1 ¢ GF(q). Uy = > Xo(—€u — M),
5) If AJA, ¢ GF(g), then G
AE+A]A=0
|CSf<A'B),Sg(A’vB’> (1) — ¢ 2 1(f)1(g) + F(0)G(0)] (e By~ D/ (HD) _(_1ym
< ¢*(@?—1) if AB,=ABorB/Bi ¢ GF(q) Us = S xee (AL + ANz
- q“/*(q* —q) if AB; # A1 B and B/B; € GF(q). XEEGF(q)
Proof: For anyr, the correlations can be expressed in Stz
terms of N (u,v) andT; (£, A) whose definitions are the same @) solvable G F'(¢°)

as in Section IV. We proceed by a similar analysis. +(B¢ + Bl)\)ngrl)Xq(—{u — ).
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Wi has been calculated in Section 3. To simplify notation, let@ = B; — A;B/A. If m is even,
then equation (6) is equivalent to saying ti#t is a (p + 1)
power of an element af*F'(¢°). If m is odd, it is equivalent to
saying thatB\ is a(p+1)/2 power of an element ofF'(¢¢),
but not a(p + 1) power. Suppose is a primitive element in

A. Calculation ofU;
There are two cases féf,. WhenA/A; ¢ GF(q), we have

Uy = 0. WhenA/A, € GF(g), we have GF(¢°) andT = (¢° —1)/(¢ —1). We can write = 4* and
A A =+!T. Then equation (6) is equivalent to
U, — 3 Xquu_v)A} g q (6) is eq alent
NeGR(a) A { (p+1)d for somed if m is even
(AB;—A1 B)A#£0 b+IT =4 (p+1)d . @)
0 if AB, — A,B — for some oddd if m is odd.
= Z X {(Alu _ U)/\} if AB, # A\B We make use of the following lemma.
q .
ACT ()" A Lemma 4: For any natural numbers, e, andn,
0 if AB; =A,B p" =1\ [ p+1 if eiseven
— g1 if AB # ABandAyu= Av ged P+ LS )= 1 if ¢ is odd.
—1  if AB; # A,B and Aju # Av. Proof: We have
. (pen _ 1)/(pn _ 1) — p(e—l)n +p(e—2)n 4. +pn +1
B. Calculation ofUs (p+ 1)(ple=2n 4 ple=Hn 4 ... 4 1) if e is even
There are two cases fof,. WhenA/A; ¢ GF(q), we have - { (p+1)(ple=2m 4 ple=Hm ... L p) 41 if e is odd.
Uy = 0. When A/A; € GF(q), we consider the following The lemma follows -
equation in the unknowa. There are four cases to consider.
[(By — Ay BJA)N @ D/ — (_qym, (4) 1) Supposem and e are even. Then equation (7) has a

solution for a givenl if and only if (p + 1) dividesb.

There are two subcases. This is equivalent tg? being a(p + 1) power. Thus

1) If (B; — Ay B/A)@"~D/(p+1) ¢ GF(q), then equation

(4) is unsolvable iNGF(q), soUs = 0. 0 if AB, = A,B orfisnota(p+1) power
2) |f (Bl — AlB/A)(qe_l)/(p"rl) c GF(q), then equatlon UQ _ q— 1 |f ABl # AlB, A’U = Alu
(4) is equivalent to andgis a(p+ 1) power
-1 otherwise.
. A, e/ et
A@=D/ D) — (_qym . (31 - AB) , 2) Supposen is even and: is odd, so that is even and
n/2 is even. Therd” and(p+ 1) are relatively prime, so
and the number of solutions G F(q) of equation (4) for eachb there is at least one paiiy, dy) that satisfies
is equation (7). Every other pair that satisfies this equation
g1 1-g¢ has the form(ly + i(p + 1),do + <T’). Thus there are
A — ij (—1)™ <B1 _ th) o . 5) (¢—1)/(p + 1) choices of\ for which_equjation @
= A has a solution. They all have the forkgd“»*+1), where

§ = ~T is primitive in GF(q) and )y = d%. Also, for

where ¢ is a multiplicative character ofzF'(q) with anyy, y\o is a(p+ 1) power inGF(q¢¢) if and only if
degreed = gecd((¢* —1)/(p+1),¢ — 1). yBis a(p+ 1) power inGF(q¢). It follows that
Thus
A U2 =
Us = > Xq [(Alu - v) )\] : 0,if ABy = A,B
(SR 0 it AB £ A1 B and Av = A
(By—A; B/A)A@€ =1/ (p+1) —(_1ym p 1 A
I +1 -
we havel, =0 if AB; = A, B; Pt Z Xq {(Au —v)Aogz? , otherwise
z€GF(q)*
A (@ =D/p+D 0 if AB, = A\B
v = (v Gr) | (B~ 55 ) — (—1)my v 1 U
if AB) # A,B and AV = Aju; Pl it ABy # A1 B and Av = Ayu
n/2+1
—p -1 .
A = —_ if ABl 7é AlB, Av 7& Alu,
U = Z Xq [(Alu—v))\] p+1 ) '
AeGF(a) and(5tu —v)B is a(p+ 1) power
(B1—A1 B/ =D/ (P = ym p/?2—1 )
if AB; # A1B and Av # Aju. | otherwise.

It remains to analyze the condition . . .
y 3) Supposen is odd ande is even. Then equation (7) has

[(By — Ay B/A)A](@ /() — (_1)m, (6) a solution for a giver if and only if (p 4 1)/2 divides
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b and (p + 1) does not. This is equivalent t6 being a D. Bounds for Cross-Correlations

(p+1)/2 power but not ap + 1) power. Thus

0 if AB; = AiB, Bisnota(p+1)/2 powe

or fis a(p+ 1) power

Us = q—1 if ABl#AlB, Av = Au andﬂisa

As before, we have

"(u,v) — g 2(Wy + (=1)™p™ Uy + (=1)™ ™ (p + 1))
— (_1>mq—2me3 <e

(p+1)/2 power but not &ap + 1) powefyr some error term. It follows that

-1 otherwise.

4) Supposen ande are odd. Thus: is even andn/2 is
odd. Again, for eaclh there is at least one pafiy, do)
that satisfies the equatidn+ [T = d(p + 1)/2. Every
other pair that satisfies this equation has the fokmt
i(p+1)/2,do +iT). Since(p + 1) is even,T must be
odd. In particular, there is a solution withodd, so we
may assume, is odd. Every other solution to equation
(7) has the form(lp+i(p+1),do+2iT). As in the case
whenm is even ance is odd,

0 if AB; =AB
—1 .
]% it ABy # A1 B and Av = Ajuy,
pn/2+1 -1
—— if AB; 7& A1 B, Av 75 Aju, an
Uy = p+1
(4tu—wv)Bis a(p+1)/2 power
but not a(p + 1) power
_pn/2 -1 ]
——— otherwise.
p+1

Cs,a.m) 5, a5 (T) + F(0)G(0)

-2

— q Z (W1+(_1)7rzme1
u,vEGF(q)
H(=D)" ™ (p + DUs) F(u)G(v))|
< ¢7 D [FwG(v)|
u,vEGF(q)
= q_2 Z €.
u,vEGF(q)

Again, Wy, Uy, Us, ande depend on: andwv.

Computing the sums foi/; andU; is straightforward. For
, suppose first that is even. The only nonzero case is when

/Ay € GF(q) ands = By — A1 B/Ais not a(p+1) power.

this case we have

S FWGw) = ¢ 3 F)G(2u) - I(H)I(9).
A

u,v

Now suppose that is odd. The only nonzero case is when

AJA, € GF(q) and AB; # A;B. In this case we have

C. Estimation ofUs

To upper bound’s it is useful to first compute the following
cardinalities:

{(&.A) € GF(q)?|BE 4 BiA # 0, AS + Ay ) = 0}
[ g—1 if AJA; € GF(q) andAB, # A\ B
10 otherwise,
{(£&,\) € GF(q)*| BE + BiA = 0, AE + A1\ = 0}
[ q if AJA, € GF(q) and AB; = A1 B
|1 1 otherwise,
{(&,A) € GF(q)?|BE + Bih = 0, AL + A1\ # 0}
_{ qg—1 if B/BleGF(q) andABl#AlB
10

otherwise.
Thus
Us| < (&) € GF()*|BE+ BiX # 0, A& + Ai\ # 0,
and equation (3) is solvable G F(¢°)}|
< (& N) € GF(q)*| BE + BiX # 0, AE + A1\ # 0}

q2—2q+1 if A/Al EGF(Q),AB:L #AlB7
andB/B; € GF(q)
P —q if A/A, € GF(q),AB, # A, B,
andB/B; ¢ GF(q)
. q2 —q if A/Al S GF(q) andAB1 =AB
o q2—q if A/Al gGF(q),ABl #AlB,

and B/B; € GF(q)

-1 if AJA, ¢ GF(q), ABy # A1 B,
andB/B; ¢ GF(q)
q2 —1 if A/Al g GF((]) andAB1 = A B.

qg—1 A
> UF)G() = T 3 GG
(1) Fpg/2 — 1
P+l > FwG)
Av£Aju
(%”—“)(Bl—fﬁ%) a
(p + 1) power
(_1)mq1/2 _ 1
L — > F(u)G(v)
Av#EAju
(%“*U)(Blffil%) not
a(p + 1) power
qg—1 A
= PG
*(*1)mq1/2 Z F(U)G(v)
" Av#EAju .
(Fu—v)(B1—A13) a
(p + 1) power
(=)mg? -1
0 A; F(u)G(v)
v 11U
_ (a=(=D"e' A
= ( ] §F<u>G<Au>
_(_1)mq1/2 Z F(U)G(U)

Av£Aju
A
(FLu—v)(B1-418) a

(p + 1) power
(_1)mq1/2 -1
Tf(f)l(g)-

This completes the proof of Theorem 2. ]
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VI. CHARACTERISTIC TWO
A similar analysis can be given in the case when= 2.

The major change is that we must use different character sum

results [1]. We state the results here but omit the proofs.
Theorem 3:Suppose thap = 2. Let 5,45 5, ("5 pe
generalized geometric sequences based on the samed
k, as defined in equation (1). Assume thatB, A’, B’ # 0,
E=p+1, ¢ =p" =p>H and0 < 7 < ¢° — 2. Let
Al = A'a™ and B = B/Oé(p+1)7-.
1) If A/A, € GF(q) and A; B = ABj, then

o Ay
|CS;A,B>7S§A’,B/> () ¢! Z F(u)G(Iu)
’ weGF(q)

+F(0)G(0)| < g“t¥/2,
2) If A/A; € GF(q) and A; B = AB;y, then

|CS(A,B)’S£(JA’,B’)<T)_qe_l Z F(u)G(
s weGF(q)

+F0)G(O)] < ¢?(@ ).
3) If A,B # AB, then
Cyinm oo (1) = 4211 (g) + FOIG(O)]

q(e+3)/2 _|_q(e+1)/2 if A/A1 c GF(q)
andB/B; € GF(q),

AL
AU

< Q¢ if A/A; & GF(q)
andB/B; ¢ GF(q)
glet3)/2 otherwise.

Theorem 4:Suppose thatp 2 and e is even. Let

5;AB) g ("B he generalized geometric sequences based
on the samen and k, as defined in equation (1). Assume

that A, B,A’.B' # 0, k = p+1, ¢¢ = p** = p*", and
0<7<¢"—2. LetA; = A'a” and B, = B'aP+1)7,
1) If A/JA, € GF(q) and A1 B = ABy, then

Cygum g @) =0 Y FG(SEu) + POGO)

u€GF(q)
< 2¢°%(g?

2) If A/JA; € GF(q), AB; # A1B, andB + AB;/A; is
a nonzero cube, then

Cyam garmn (1) — a2 1(f)1(g)
f g

+ (=12 YT F(u)G(
if B/B; € GF(q)

uEGF(q)
2¢°/2(q* —2q + 1)
{ 2¢°/%(q* — q) if B/B1 ¢ GF(q).
3) If AJA, € GF(q), ABy # A1B, andB + AB; /A, is
not a cube, then
|Cs§,A~B),s§,A“B/> () —¢“*1(f)1(g)

A

_1\ymq,e/2—1 1

+ (=1)™3q g F(u)G(A
wEGF(q)

Ay

“Lu) + FO)G(O)

u) + F(0)G(0)]

2¢°*(¢* = 2¢ + 1)
2¢°/%(¢* — q)

if B/B, € GF(q)
if B/By ¢ GF(q).
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4) If A/A; ¢ GF(q), then

Cs,ca.m g, an.80 (T) = ¢ 2I(f)1(g9) + F(0)G(0)]
2¢°*(¢* —q) if B/B1 € GF(q)
and ABl ;é AlB

2¢°/%(¢> — 1) otherwise

Theorem 5:Suppose thatp = 2 and e is odd. Let
5;AB) g ("B he generalized geometric sequences based
on the samex and k, as defined in equation (1). Assume
that A,B,A",B" # 0, k = p+ 1, ¢¢ = p*™ = p*™, and
0<7<qg¢—2 LetA; = A'a” andB; = B'a®+t)7. Then

1) If A/JA, € GF(q) and AB; = A; B, then

<

_ A
(Coonm gparmn(r) =a D Fw)G (5

uweGF(q)

e/2(,2 _
R k')

3
2) If A/A; € GF(q), AB, # A, B, then

Cs,cam garon (T) = ¢“*I(f)1(g) + F(0)G(0)

SN Y PG
weGF(q)
St Y PG,

(11+%'17)(B+AA1 By)
a nonzero cube

éqe/Q

3 (¢° —29+1)

if B/B, € GF(q)

IN

4
2 /20,2
34 (¢° —q)

3) If A/A, € GF(q), then

(a5, 0.0 (7)) = € 21(f)1(g) + F(O)G(0))

if B/B; ¢ GF(q).

4, .
< 34 2(q> —q) if AB; # AyB and & € GF(q).
-q). = 4 .
2 gcf/Q(q2 —1) otherwise.
VIl. LINEAR COMPLEXITY

In this section we consider the linear complexity of certain
generalized geometric sequences. We denote\fy) the
linear complexity of a sequencé. Let p 2 and let
ni,na,--+,n; be natural numbers witm; at least 3. Let
n = mng---ny, g = 2, andg; = ¢, so in particular
q = q;- We also letrq, - --,r; be integers, withl < r; < n;,
let k; =1+ q;,, and definef : GF(q) — GF(2) by

(&) ).

If 5 is primitive in GF(q), then the sequenc& whoseith
termisT(i) = f(3%) is acascaded GMW sequenf¥?]. This
sequence has shifted autocorrelations equal tolt's linear
complexity is

f(z) = tri (trgf (- trit |

2, 4 ot—1t

MNT) =ningns - -nj

Au> + F(0)G(0)]
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(See [12]). In this section we consider the generalized gesxponents modula:;, so the sum of such terms ih(s, a)
metric sequencé whoseith term is equals the sum of such terms l{s’,a’). Similarly for the
e . terms that map tds; + 1,1+ s; +r1}. By induction,s = &
N\ — q 7 31 )
5(i) = f(trg (o’ + Ba™)) and it then follows that: = a’.

for someB # 0. Also, for convenience we write; ; = e. Consequently, the linear complexity fis the number of
Theorem 6:1f 2 < 7y < ny —2,1 < r; < n; —2 for pairs of functions(s, a), which is the quantity given in the
j=2,---,1—1,and2r; 0 (mod n;)forj=1,---,1—1, Statement of_the theorem._ _ L
then the linear complexity of is Thus the linear complexity for these generalized geometric
- . sequences is larger than the linear complexity of a cascaded
A(S) =nin3ng---nj  (2¢)*. GMW sequence based on the same tower of fields and the

Proof: Key showed that the linear complexity of such &ame exponents by a factor oF .
sequence equals the number of nonzero coefficients when the

function . , VIII. Conclusions - Families of Sequences
g(a) = f{trg (z + Bz”)) (8) In this section we use the results of the previous sections
is expressed a polynomial [7]. Let to construct families of sequences with good pairwise corre-
_ lations. We fix prime numberg and r, natural numbers
K ={t=(t1,t2, -, 1) : t; € {0, 7} }. and n, a primitive elementn in GF(p"¢), and a function
Lot s+ K — (30,50 s05111) - 0 < 5 < ni) be a L oM GF() © GF(r). As above, we ley = p' and
function with the property that whenevert’ € K satisfyt; = f (t“zq_;: Bthe retcrc]; IS & comple>(<j pfrlml(';lvath roott of u]r-1 'tyN ;
t’l,_.. ,t; =t/ for somej, s satisfiess(); = s(f')1,s(f)2 = he s(4,B) be essiq;)err]]ce © mel " s?tuaflorr: ( f) ote
s()2, -+, 8()j11 = s(f);11. For any suchs anda : K — that every sequenc as a cyclic shift of the form
{1,3}, let S}l B) Assume thatf is balanced. That is[(f) = 0. This
is only possible ifr = p, so we are assuming this. We also
h(s,a) — Z @ H qs(t_) +f, s( E)Hl assume thaf has ideal autocorrelations in the sense that
o > rwre)={ ) {17
= Za(ﬂz(ﬂ- WEGF(q) 9 o
teK

This is equivalent to saying that the sequence whgite
If we eXpand the I‘Ight hand side of equation (8), the reSUltir&ement isf(ﬁj), Whereﬁ is a pr|m|t|ve element |rGF(q),
polynomial can be expressed as a sum of the monomials wh@gg ideal autocorrelations. There are many examples of such
exponents are thi(s, a)s over all possibles anda. Thus we sequences (for example, m-sequences, GMW sequences, and
need to see that these are all distinct. cascaded GMW sequences). L&t = {S](cl’B) . B ¢

First suppose that for some fixedand a and for some Gr () B £ 0}. We want to show that every pair of

t# 1 € K, the base 2 expansions oft)z(t) anda(')z(f')  sequences in this set is cyclically distinct. By Theorems 1 and
have some nonzero term in common. We may assume thatio if p is odd, then for any two sequencsg B) and S(l B)

somej, t; = tl;" . i1 = t] Lty =0, andt’ =r;. Then S and anyr,
for somex (which is a power of 2)b, ande We havez(t) =
b T\ — T g C ibiliti
rq;,, andz(t') = 2¢;" 541 There are two possibilities. ICym gaa.0n (7] < ¢ (g% — 1) + 1 9)
1) If () < z(¥'), then we must have(t) = 3 and3z(t) > "
z(¥). It follows that2z(f) = z(#). Therefore2 = ¢, unless
which is impossible by the hypotheses. o € GF(q),a" B = QDT B/
2) If z(t) > z(t'), then we must have(¢) = 3 and
32(F') > 2(f). It follows that 22(#') = =(¥'). Therefore and Y F(u)F(au) #0. (10)
2q] = ¢j+1, Which is impossible by the hypotheses. ueGF(q)
Now suppose that(s,a) = h(s’,a’) for somes, s’,a,a’. It follows from our assumption on the autocorrelations fof
It follows first that the number of 1s among théf)s equals that if condition (10) holds, then = 0, and therefore tha =
the number of 1s among thé(#)s. Note also that; = s;(f) B’. Thus the only correlation that fails to satisfy inequality (9)
ands) = s)(¢) are independent af If we take the reductions is
modulon; of the exponents that occur on nonzero terms in Cgu.m) g5 (T) =¢° — 1.
the base two expansion &f’s, a), we obtain{sy, s; + 1} if _ o _
all a(f) = 1, and{s1,1+ 51,51 + 71,1 + 51 + 71} otherwise. Th|§ also implies that any twp sequencesSrare cyclically
We obtain{s}, s/ + 1} if all a(f) = 1, and{s},1+ s}, s, + distinct and proves the followmg theorgm.
1,1+ s, + 1} otherwise forh(s',a’). These sets must be 1n€orem 7:If pis odd, thenS is a family of¢” —1 GF (p)-
equal if h(s,a) = h(s',a'). If sy = s, +71 (mod n;) and ary sequences of periad — 1 all of whose cross-correlations
s = s +’7,1 (mod ’nl) then 2r, 12 0 (mod ny). This and shifted autocorellations are bounded by

is false by hypothesis. Thereforg = s. Also, all terms

e/2(.2
with t; = 1 or t) = 1 map to{s;, 1+ s;} when we reduce ‘05;1’5),5;1’3/)(7-)' <S¢ (¢ -1 +1 1)
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We have a similar family whep is even. [19]

Theorem 8:If p = 2, thenS is a family of ¢ — 1 binary
sequences of periogt — 1 all of whose cross-correlations and?”
shifted autocorellations are bounded by [21]

|CS;1,B)7S}1,B'>(T)|
2¢°/%(¢> —1) +1 if eis even
4 . .
< gqe/%]2 —1)+1 if eis odd andn is even

¢“/?(¢* —1)+1 if e andn are odd.
In particular, if f is as in Section VII, then the linear

complexity of every sequence i is large as well.

When n = 1 the sequences studied here reduce to one
case of Gold's sequences. However, in this case our estimates
of the cross-correlations are too high. For example, when
p = 2 and e is odd, they are too high by a factor of three.
We conjecture, therefore, that our estimates are too high in
general. In the case when wheris odd anden = 2m + 1,
some improvement would come if we could chogseo that
Y(Cu 4+ Dv)F(u)F(v) is small for everyC, D € GF(q°).
However, the greatest improvement would come from sharper
bounds oni¥3. The situation is similar whean is even and
whenp = 2.
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