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Abstract

In this paper we study the distribution properties of d-FCSR sequences. These se-
quences have efficient generators and have several good statistical properties. We show
that for d = 2 the number of occurrences of an fixed size subsequence differs from the
average number of occurrences by at most a small constant times the square root of the
average.

Keywords: FCSR sequence, pseudonoise sequence, pseudorandom sequence, distribution prop-
erty.

1 Introduction

Pseudorandom sequences play a crucial role in a wide range of applications in areas as diverse
as cryptography, radar ranging, Monte Carlo simulation, and probabilistic algorithms. In many
cases it is desirable to use sequence for which the distribution of occurrences within a single
period of any given s-element pattern is highly uniform, as well as having other statistical
properties.

If p is a prime number, then a p-ary m-sequence is a maximal period sequence generated by
a linear feedback shift register (LFSR) over Fp, the finite field with p elements. Such a sequence
has many excellent properties for these sorts of application (see, for example, [10, Part I, §5.4]).
It is easy to generate in hardware. It can be analyzed using standard mathematical techniques.
Its autocorrelation function is 2-valued (and hence optimal). It is a pseudo-noise sequence,
meaning that if L is the period of the sequence, then the number of occurrences within a single
period of any given s-element pattern differs from L/ps by less than 1. In some cases particular
m-sequences have been shown to have additional desirable properties [9].
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An `-sequence is a maximal length sequence generated by a feedback-with-carry shift register
(FCSR) [6], and it shares many of these advantages: it is easy to generate in hardware and it can
be analyzed using standard mathematical techniques. Its arithmetic autocorrelation function
[7] is 2-valued and optimal, and it is a pseudo-noise sequence in the above sense.

In this paper we consider generalized `-sequences. These are the maximal length sequences
which are obtained from the output of a d-FCSR [5], in which each feedback element is delayed
for d − 1 clock cycles before being fed back. Previously we showed that the d-arithmetic auto-
correlation function of such a sequence is two-valued and optimal [4]. In this paper we consider
the pseudo-noise properties of these sequences. Suppose the alphabet has p = f 2r elements with
r square free. In Theorem 4.4 we show that if r is congruent to 2 or 3 modulo 4, d = 2, and s is
an even number, then the number of occurrences within a single period of any s-element pattern

differs from (L + 1)/ps by no more than c
√

(L+ 1)/ps + 2. Here c is a constant depending on
p. For p = 2 we have c = 3. For d ≥ 3 we obtain a weaker estimate on the distribution of
s-element patterns. The problem of finding sharp estimates on the distributions of patterns in
a generalized `-sequence seems quite intriguing.

Computer search has shown that, within these constraints, different `-sequences have widely
varying distribution properties. In some cases the maximum variation from (T + 1)/ps is close
to our bound. But in some cases the maximum variation from (T + 1)/ps is less than 2 (in fact
in some cases the numbers of occurrences of any two s-element patterns differs by at most 2).
Finding conditions on `-sequences that ensures such near optimal behaivour is an open problem.

2 Generalized `-Sequences

In this section we review some results of [4] to which we refer the reader for further explanations,
generalizations, and proofs. Throughout this paper we let p denote an integer, fix d ≥ 1 so that
xd−p is an irreducible polynomial over the rational numbers (this occurs if and only if for every
prime number t|d, p is not a tth power in Q and, if 4|d, p is not −4 times a 4th power in Q [8,
Chap. VIII, §9]), and let π ∈ R be the positive real solution to πd = p. The ring Z[π] consists
of all real numbers of the form

u0 + u1π + · · ·+ ud−1π
d−1 (1)

with ui ∈ Z. The field Q[π] consists of the real numbers (1) with ui ∈ Q. It is the fraction field
of Z[π]. That is, every element of Q[π] may be expressed as a fraction u/v with u, v ∈ Z[π]. It
is also a vector space over Q of dimension d, and a basis is given by the collection of vectors{
1, π, π2, . . . , πd−1

}
. We refer to Z[π] as the set of lattice points in Q[π].

The ring Zπ consists of all infinite formal expressions

α = a0 + a1π + a2π
2 + · · · (2)
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where ai ∈ T = {0, 1, · · · , p − 1}, with the obvious operations of addition and multiplication
(using πd = p). If d = 1, then Z[π] = Z, Q[π] = Q and Zπ = Zp is the p-adic numbers. In
general, the ring Zπ contains both Zp and Z[π] as well as many elements of Q[π]. In fact, if
u, q ∈ Z[π] then the fraction u/q ∈ Q[π] is in Zπ if and only if the denominator q =

∑d−1
i=0 qiπ

i is
invertible modulo π, which is equivalent to q0 being relatively prime to p. The π-adic expansion

u

q
=

∞∑
i=0

aiπ
i ∈ Zπ (3)

(with ai ∈ T ) is then unique and we refer to the sequence a0, a1, · · · as the coefficient sequence
of u/q.

Definition 2.1 The d-FCSR sequence S(d, u, q) is the coefficient sequence of the π-adic expan-
sion (3) of the fraction u/q where u, q ∈ Z[π] and where q is invertible modulo π.

The element q ∈ Z[π] is called the connection number of the sequence. The sequence S(d, u, q)
is eventually periodic. Conversely, for any eventually periodic p-ary sequence a there exists
u, q ∈ Z[π] so that a = S(d, u, q). (In Theorem 2.3 we recall how to choose u so that the
resulting sequence is strictly periodic.) Such sequences may be generated using a simple shift
register circuit whose feedback connections are determined by the choice of q and whose initial
state is determined by the choice of u [5, 4].

The norm N(q) ∈ Q of an element q ∈ Q[π] is the determinant of the linear transformation
given by multiplication by q on the d-dimensional vector space Q[π]. If u ∈ Z[π], then N(u) ∈ Z.
With respect to the basis 1, π, π2, . . . , πd−1 the matrix of multiplication by q =

∑d−1
i=0 qiπ

i is

q0 pqd−1 pqd−2 · · · pq2 pq1
q1 q0 pqd−1 · · · pq3 pq2

...
qd−2 qd−3 qd−4 · · · q0 pqd−1

qd−1 qd−2 qd−3 · · · q1 q0

 (4)

from which the norm may be computed. The norm of q is relatively prime to p if and only if
q is invertible modulo π. Let N = |N(q)|. The composition Z → Z[π] → Z[π]/(q) passes to a
well defined homomorphism of rings

ψ : Z/(N) → Z[π]/(q) (5)

which is an isomorphism if N is prime. In this case, we say that π is primitive modulo q if,
in Z[π]/(q) the collection of elements {1, π, π2, . . . , πN−2} exactly accounts for all the nonzero
elements in Z[π]/(q) (or equivalently, if the element ψ−1(π) is primitive in Z/(N)).
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Definition 2.2 Let u, q ∈ Z[π]. Suppose that N = |N(q)| is prime and that π is primitive
modulo q. Suppose the d-FCSR sequence S(d, u, q) is strictly periodic with maximal period N−1.
Then the sequence S(d, u, q) is called a generalized `-sequence.

In the case d = 1 (so π = p and N = q) it is an `-sequence in our earlier sense [6]. That is,
it is the reverse of the base p expansion of the fraction u/q (cf. [1]). Such sequences have been
studied for 200 years (cf. [3]).

We previously characterized those numerators u so that the sequence S(d, u, q) is strictly
periodic [4]. Consider the parallelepiped in Z[π] which is spanned by the d linearly independent
vectors −q,−qπ, . . . ,−qπd−1,

P =

{
d−1∑
i=0

viqπ
i| vi ∈ Q and − 1 ≤ vi ≤ 0

}
⊂ Q[π] (6)

and its interior

P0 =

{
d−1∑
i=0

viqπ
i| vi ∈ Q and − 1 < vi < 0

}
⊂ Q[π]. (7)

Let ∆ (respectively, ∆0) be the set of lattice points in P (respectively, P0):

∆ = P ∩ Z[π] and ∆0 = P0 ∩ Z[π].

Theorem 2.3 Suppose q ∈ Z[π] is odd, N = |N(q)| is prime, and π is primitive modulo q.
Let δ = |N(q)|/q ∈ Z[π]. Choose u ∈ Z[π] to be nonzero. Then the following statements are
equivalent.

1. The d-FCSR sequence S(d, u, q) is strictly periodic

2. u ∈ ∆

If u ∈ ∆0 then the sequence S(d, u, q) is a generalized `-sequence. The projection φ : Z[π] →
Z[π]/(q) determines a one to one correspondence between ∆0 and the nonzero elements in
Z[π]/(q). The generalized `-sequences with given connection number q are cyclic shifts of one
another.

Hence, as v varies within ∆0, the resulting N − 1 generalized `-sequences S(d, v, q) account
precisely for set of all cyclic shifts of any one particular generalized `-sequence S(d, u, q).
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3 Distributions and Lattice Points

As in the previous section, we fix d ≥ 1, and fix q ∈ Z[π] so that q is invertible modulo
π, N = |N(q)| is prime, and π is primitive modulo q. Let a = S(d, u, q) = a0, a1, · · · be a
generalized `-sequence with connection number q (and thus with period N − 1), corresponding
to some fixed u ∈ ∆0. If b = (b0, b1, · · · , bs) with bi ∈ T = {0, 1, · · · , p − 1} is an s-element
pattern, then an occurrence of b in a period of a is an index i such that 0 ≤ i ≤ N − 2 and
ai+j = bj for j = 0, · · · , s − 1. In this section we show that the number of occurrences of an
s-element pattern within a single period of the `-sequence a is equal to the number of points of
a certain integer lattice which lie in a certain hypercube.

The number of occurrences of the pattern b in a single period of a is equal to the number
of cyclic shifts of a for which the pattern b occurs as the first s elements. So we need to count
the number of v ∈ ∆0 so that the pattern b occurs as the first s elements in the generalized
`-sequence S(d, v, q).

If x, y ∈ Zπ with x =
∑

i≥0 xiπ
i and y =

∑
i≥0 yiπ

i we write x ≡ y (mod πs) if xi = yi for
0 ≤ i ≤ s− 1. This is the same as saying that the images x̄, ȳ ∈ Zπ/(π

s) of x and y are equal.
Then a given s element pattern (b0, b1, . . . , bs−1) occurs as the first s elements of the `-sequence
S(d, v, q) if and only if

b ≡ v

q
(mod πs), (8)

where b =
∑d−1

i=0 biπ
i. The element q is invertible modulo πs, so equation (8) is equivalent to

the statement that qb ≡ v (mod πs). Multiplication by q acts as a permutation on Zπ/(π
s), a

ring which we may think of as consisting of the collection of all s element patterns. Since our
goal is to determine the distribution of the number of occurrences of each s element pattern in
a = S(d, u, q) it suffices to determine, for each s element pattern b′, the number of v ∈ ∆0 such
that b′ ≡ v (mod πs). (Now we drop the prime on the b.) So for each fixed b we need to find
the number of w ∈ Z[π] such that

b+ wπs ∈ ∆0. (9)

Suppose s is a multiple of d, say s = md. Let δ = N/q. We previously proved that δ ∈ Z[π]
[4], so equation (9) becomes

δwpm ∈ δ∆0 − δb,

where δ∆0− δb = {δu− δb|u ∈ ∆0}. We claim that the set δ∆0 is the set of lattice points in the
interior of a hypercube of side N (and so the same is true of δ∆0−δb). For if v =

∑d−1
i=0 viπ

iq ∈ ∆0

with −1 < vi < 0 then δv =
∑d−1

i=0 viNπ
i ∈ Z[π] from which it follows that zi = viN is an integer

and that −N < zi < 0.

Lemma 3.1 For any w ∈ Z[π] there is a unique k ∈ Z with 0 ≤ k < N and a unique a ∈ Z[π]
such that wδ = kδ + aN .
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Proof: By equation (5), given v ∈ Z[π] there is a unique k ∈ Z with 0 ≤ k < N so that
v ≡ k (mod (q)). So there is a unique a ∈ Z[π] with v = k + aq. Multiplying by δ gives
vδ = kδ + aN . 2

It follows that it suffices for us to count the number of pairs k ∈ Z, a ∈ Z[π] such that

kδ + aN ∈ 1

pm
(δ∆0 − δb) . (10)

This is the number of lattice points of the form kδ + aN which lie in a real hypercube, each of
whose edges has length N/pm.

4 The Case d = 2

In this section we apply the results of Section 3 to the case when d = 2. We show that the
number of occurrences of each s-tuple, s even, differs from the average number of occurrences
by at most a small constant times the square root of the average number of occurrences.

Note that since d = 2 we have δ = ±(q0 − q1π). Let s be even and let t = N/ps/2. Let
B be a t by t square with sides parallel to the axes. We want to bound the cardinality of the
set S of points of the form k(q0,−q1) + (Nw0, Nw1), with k, w0, w1 ∈ Z. Let us assume that
q1 < 0. The case when q1 > 0 is similar and is omitted. For fixed w = (w0, w1) ∈ Z2, let Lw

be the real line Lw = {k(q0,−q1) + Nw : k ∈ R}. Then S is the union over all w of the set
of points k(q0,−q1) + (Nw0, Nw1) ∈ Lw ∩ B. That is, the points in S are in a union of line
segments. The number of lattice points on each such segment is approximately the length of the
segment divided by the (constant) distance between consecutive lattice points. Alternatively,
it is approximately the variation in the second coordinate along the segment divided by the
variation in the second coordinate between two consecutive lattice points. The error in this
estimate is at most one per line segment. Thus we can bound the size of S by the following
steps:

1. Find numbers m0 and m1 so that the sum of the variations in the second coordinates along
the segments is between m0 and m1.

2. The variation in the second coordinate between consecutive lattice points is |q1|.

3. Bound the error: the actual number of lattice points on a segment whose second coordinate
varies by r is greater than (r/|q1|) − 1 and at most (r/|q1|) + 1. Let ` be the number of
segments.

4. Thus the total number of lattice points is at least (m0/|q1|)− ` and at most (m1/|q1|) + `.
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The slope of the segments is positive, so there are three types of lines: (a) those that start on
the left hand vertical side of B and end on the upper horizontal side; (b) those that start on the
lower horizontal side and end on the upper horizontal side; and (c) those that start on the lower
horizontal side and end on the right hand vertical side. We can count the number ` of segments
by counting the x-intercepts and y-intercepts. The x-intercept of a line Lw, w = (w0, w1), is a
point k(q0,−q1) +N(w0, w1) such that Nw1 − kq1 = 0. That is, k = Nw1/q1. The intercept is
the x coordinate, N(q0w1 + q1w0)/q1. But q0 and q1 are relatively prime, so as we let w vary all
possible numbers of the form Na/|q1| occur as intercepts.

Suppose that the first x-intercept in B occurs at distance z from the left hand vertical edge.
Then the first y-intercept occurs at distance

|q1|
q0

(
N

|q1|
− z

)

from the bottom horizontal edge. Thus the number of intercepts is at most⌈
t− z

N/|q1|

⌉
+

⌈
t− (|q1|/q0)(N/|q1| − z)

N/q0

⌉
≤ t− z

N/|q1|
+
t− (|q1|/q0)(N/|q1| − z)

N/q0
+ 2

=
t(q0 + |q1|)

N
+ 1.

Similarly, the number of intercepts is at least

t(q0 + |q1|)
N

− 1.

Next we want to bound the sum of the variations in the second coordinates along the seg-
ments. For a lower bound, let t′ = bt|q1|/Nc (N/|q1|) be the largest integral multiple of N/|q1|
that is less than or equal to t. We can shrink B slightly to obtain a t′ by t rectangle B′ and
just measure the parts of the segments in B′. Every segment of type (1) in B′ matches up with
a segment of type (3) in B′ so that the sum of the differences in the second coordinate along
the two segments is exactly t. If we call these combined segments and the segments of type (2)
super segments, then the number of super segments in B′ is the number of x-intercepts in B′

and each super segment varies in its second coordinate by t. Thus the number of super segments
is at least ⌊

t′

N/|q1|

⌋
=

⌊
t|q1|
N

⌋
≥ t|q1|

N
− 1 =

|q1|
ps/2

− 1,

and the sum of the variation in the second coordinates is at least

m0 =
t|q1|
ps/2

− t =
N |q1|
ps

− N

ps/2
.
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It follows that the number of lattice points in B is at least

m0

|q1|
− ` ≥ N

ps
− N

ps/2|q1|
− t(|q0|+ |q1|)

N
− 1

=
N

ps
− N

ps/2|q1|
− |q0|+ |q1|

ps/2
− 1.

By reversing the roles of q0 and q1 we can replace the |q1| in the first error term by |q0|, and
thus by max |q1|, |q2|. A similar derivation of an upper bound gives the following theorem.

Theorem 4.1 Let a be an `-sequence defined over Z[π], π2 = p, whose connection element q
has absolute norm N . If s is even, then the number K of occurrences of any s-tuple in one
period of a satisfies

N

ps
− N

ps/2 max(|q0|, |q1|)
− |q0|+ |q1|

ps/2
− 1 ≤ K ≤ N

ps
+

N

ps/2 max(|q0|, |q1|)
+
|q0|+ |q1|
ps/2

+ 1.

Next we show that in some cases we can choose the connection number q so the error term
is bounded. Suppose that u is a unit in R. Then uv/uq = v/q, so the π-adic expansion of v/q
equals the π-adic expansion of uv/uq. Also, if u is a unit then R/(q) = R/(uq), so our analysis
works equally well with q replaced by uq. Thus we can bound the error term if we can find a
unit u so that uq = q′0 + q′1π with N/|q′1| and |q′0|+ |q′1| bounded.

The groups of units in quadratic extensions of the rationals have been well studied. We refer
the reader to Borevic and Shafarevic’s book for details [2]. In general a number field F has
some number r1 of embeddings in the real numbers, and some number 2r2 of embeddings in the
complex numbers but not strictly in the real numbers. Every such field contains a subring AF

consisting of the set of elements of F that are roots of polynomials with integer coefficients (the
ring of algebraic integers in F ). The group of units in AF (also called the unit group of F ) is
isomorphic to a group of the form

U × Zr1+r2−1,

where U is finite. Every quadratic (degree 2) extension of the rationals is of the form Q[
√
d] for

some integer d, which can be assumed to be square-free (i.e., there is no prime number whose
square divides r). Such an extension is real if d > 0, in which case r1 = 2 and r2 = 0, and is
imaginary otherwise, in which case r1 = 0 and r2 = 1. Thus the unit group of a real quadratic
number field contains an infinite cyclic subgroup. In this case the finite subgroup U consists
only of plus and minus one. The unit group contains an element v such that every unit is of
the form ±vi with i ∈ Z, and v can be replaced by 1/v, −v, or −1/v. Exactly one of these is
greater than 1, so we may assume 1 < v = a + b

√
d. In fact it can be shown that then a > 0

and b > 0. The element v is called the fundamental unit.
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In our case we can assume that π is the positive square root of p. Let p = f 2r where f, r ∈ Z
and r is square free . Thus F = Q[

√
p] = Q[

√
r]. We have R = Z[

√
p] ⊆ AF , with equality if

and only if f = 1 and r ≡ 2, 3 (mod 4). The ring R is called an order in the field F . Every unit
in R is a unit in AF . If r ≡ 1 (mod 4), then all powers of the fundamental unit are in AF −R,
so the unit group of R is just {1,−1} and we are unable to modify q. Thus we assume from here
on that r ≡ 2 or 3 (mod 4). For example, if p = 2 then v = 1 + π. If p = 3 then v = 2 + π. If
p = 7, then v = 8 + 3π. There is no known simple general expression for the fundamental unit
in terms of r, but there are efficient methods for finding it and there are computable bounds on
a and b so that v = a+ b

√
r (cf. [2, §7.3]). Suppose that v = a+ bπ is the fundamental unit in

AF . Then the image w of v in AF/(f) is also a unit. But AF/(f) is a finite ring, so some power
wn of w equals 1. This implies that vn = c + df

√
r = c + d

√
p ∈ R. That is, R contains a unit

with infinite multiplicative order. Moreover, n is positive so both c and d are positive. We refer
to the smallest unit of R whose coefficients are positive as the fundamental unit of R. When r
is prime and f is a power of r we can say precisely what power of the fundamental unit of F is
the fundamental unit of R.

Lemma 4.2 Suppose that r is prime and µ =
√
r. Let a + bµ be the fundamental unit in

Q[µ]. Let ` be the largest power of r that divides b. For any k and m with gcd(m, r) = 1, if
(a+ bµ)rkm = c+ dµ, then k + ` is the largest power of r that divides d.

Proof: We must have gcd(a, r) = 1 or a+ bµ would not be a unit. For any t > 0 we have

(a+ bµ)t =
∑

i even

(
t

i

)
biat−iri/2 +

(∑
i odd

(
t

i

)
biat−ir(i−1)/2

)
µ. (11)

The first sum is congruent to at modulo r, so gcd(c, r) = 1.
We prove the lemma by induction on rkm. For rkm = 1 the lemma is true by definition. If

gcd(t, r) = 1, then the second sum in equation (11) is congruent to bat−1 modulo r`+1, so the
lemma is true if k = 0.

Suppose it is true for some m and k, with (a+ bµ)rkm = c+ dµ. Let a be replaced by c, let
b be replaced by d, and let t = r in equation (11). Then the second sum is congruent to rcdr−1

modulo rk+`+2, so the lemma also holds in this case. 2

It follows that if r is prime, v = a + b
√
r is the fundamental unit of Q[

√
r], and ` is the

largest power of r that divides b, then the fundamental unit of R = Z[rk
√
r] is v if k ≤ ` and is

vrk−`
otherwise. For example, if r = 2 then v = 1 +

√
2 and v2k

is the fundamental unit in R.
We can use the fundamental unit of R to modify q to obtain reasonable bounds.

9



Proposition 4.3 Suppose that p = f 2r with r square free and r ≡ 2, 3 (mod 4). Let v be
the fundamental unit of R. Let q = q0 + q1π ∈ R. Let N = |q2

0 − 2q2
1| be the absolute norm

of q. Then there is a unit w in R such that wq = r0 + r1π with |r0| + |r1| < vN1/2 and
N1/2/(1 + π) < max(|r0|, |r1|).

Proof: By repeated multiplication or division by v, we can find a unit w with N1/2 < wq =
r0 + r1π < vN1/2. Since π, N , and v are positive, it is impossible that both q0 and q1 are
negative. We claim that they are in fact both positive.

Suppose that r0 > 0 and r1 < 0. Then r0 > N1/2 + |r1|π, so r2
0 > (N1/2 + |r1|π)2 =

N + 2|r1|π + pr2
1. Therefore r2

0 − pr2
1 > N + 2|r1|π > N . But N = |r2

0 − pr2
1| is positive, so

N = r2
0 − pr2

1 > N , a contradiction.
Suppose that r0 < 0 and r1 > 0. Then r1π > N1/2 + |r0|, so pr2

1 > (N1/2 + |r0|)2 =
N + 2|r0| + r2

0. Therefore pr2
1 − q2

0 > N + 2|r0| > N . But N = |r2
0 − pr2

1| is positive, so
N = pr2

1 − r2
0 > N , a contradiction.

Therefore r0, r1 > 0. Since π > 1, the maximum of r0+r1 with the constraint r0+r1π ≤ vN1/2

occurs when r0 = vN1/2 and r1 = 0. Since r1 6= 0, |r0| + |r1| < vN1/2. If both r0 and
r1 are less than or equal to N1/2/(1 + π), then r0 + r1π ≤ N1/2, a contradiction. Thus
N1/2/(1 + π) < max(|r0|, |r1|), which proves the proposition. 2

Thus we have the following theorem.

Theorem 4.4 Suppose that p = f 2r with r square free and r ≡ 2, 3 (mod 4). Let a be an
`-sequence defined over Z[π], π2 = p, whose connection element q has absolute norm N . If s is
even, then the number K of occurrences of any s-tuple in one period of a satisfies

N

ps
−
(

(1 + π + v)N

ps

)1/2

− 1 ≤ K ≤ N

ps
+

(
(1 + π + v)N

ps

)1/2

+ 1.

Since N = L+1 where L is the period, and (1+π+ v)1/2 is a constant depending only on p,
this says that the number of occurrences within a single period of any s-element pattern differs

from (L + 1)/ps by no more than c
√

(L+ 1)/ps + 2, where c is a constant depending on p, as
claimed in the introduction. In specific cases the error can be reduced by more careful analysis
of the specific values of the fundamental unit. For example, for p = 2 we have v = 1 + π, so
1 + π + v ∼ 4.828, but his constant can be replaced by 3. In fact, it is likely that in general the
error is much smaller than this since our analysis assumes the maximal error along every line
segment. Moreover, it is clear from experimental evidence that there is considerable variation
in the distributions for different connection numbers q. For example, for p = 2 Table 1 gives the
connection numbers q = q0+q1π, 0 < q0, q1 ≤ 1000, that satisfy the conclusion of Proposition 4.3
and such that for every s < log2(N), the numbers of occurrences of any two s-element patterns
differ by at most 2.
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q |N(q)| q |N(q)|
1 + 6π 71 23 + 43π 3169
3 + 10π 191 25 + 31π 1297
3 + 17π 569 27 + 49π 4073
3 + 37π 2729 31 + 10π 761
3 + 262π 137279 49 + 51π 2801
5 + 9π 137 55 + 17π 2447
5 + 13π 313 55 + 87π 12113
7 + 11π 193 111 + 127π 19937
7 + 15π 401 127 + 13π 15791
7 + 79π 12433 127 + 32π 14081
9 + 134π 35831 223 + 263π 88609
11 + 21π 761 249 + 259π 72161
11 + 129π 33161 255 + 44π 61153
13 + 6π 97 449 + 197π 123983
15 + 31π 1697 479 + 507π 284657
17 + 26π 1063 511 + 17π 260543
17 + 35π 2161

Table 1: Connection numbers with nearly perfect distributions

5 Larger d

In this section we give a heuristic argument that for d ≥ 3 the errors will be significantly larger
than for d = 2. Let d ≥ 3 and as usual let q =

∑d−1
i=0 qiπ

i − 1 be the connection element of an
`-sequence a defined over Z[π] with πd = p. Let N be the absolute value of the norm of q, let
s be divisible by d, and let t = N/ps/d. Note that the number of possible s-tuples is ps and
the number of s-tuples in one period of a is N − 1, so each s-tuple occurs (N − 1)/ps times
on average, or about td/Nd−1 times. A geometric argument yields the same result: there are
N points in the hypercube [0, N ]d. We expect about (t/N)d of them to be in a subhypercube
b̄+ [0, t]d.

Let δ = |N |/q =
∑d−1

i=0 riπ
i − 1. Recall that by equation (10), the number of occurrences of

any s-tuple in one period of a equals the cardinality of

Γ(r0, · · · , rd−1;N, t; b̄)
def
= {k(r0, · · · , rd−1) +N(w0, · · · , wd−1) : k, w0, · · · , wd−1 ∈ Z

and bi ≤ kri +Nwi ≤ bi + t}

for some vector b̄ = (b0, · · · , bd−1). For any such b̄, let B = b̄ + [0, t]d be the hypercube with
corner b̄ and faces parallel to the coordinate hyperplanes. For any w̄ = (w0, · · · , wd−1) ∈ Zd, we
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let
Γw̄(r0, · · · , rd−1;N, t; b̄)

def
= {k(r0, · · · , rd−1) +N(w0, · · · , wd−1) ∈ B : k ∈ Z},

so that
Γ(r0, · · · , rd−1;N, t; b̄) = ∪w̄∈ZdΓw̄(r0, · · · , rd−1;N, t; b̄).

We simply write Γ and Γw̄ when the parameters are understood.
As in the case d = 2, we can estimate Γ by estimating the sum of the variations in the last

coordinate along each Γw̄, dividing by |rd−1|, and adding an error term equal to the number of
nonempty Γw̄. If Lw̄ is the line we obtain by allowing k to be an arbitrary real number in the
definition of Γw̄, then each Lw̄ intersects the boundary of B twice, so the size of the number
of nonempty Γw̄ is bounded by one half the number of points of the form k(r0, · · · , rd−1) +
N(w0, · · · , wd−1) on the boundary of B, with k real.

By symmetry it suffices to consider a single face of B, say determined by setting the first
coordinate to b0. This implies that kr0 +Nw0 = b0, so k = b0 − (N/r0)w0, and the intersection
point is (

b0,
(
b0 −

N

r0
w0

)
r1 +Nw1, · · · ,

(
b0 −

N

r0
w0

)
rd−1 +Nwd−1

)
.

But the number of such points is exactly

Γ

(
r1, · · · , rd−1; |r0|,

t|r0|
N

;
|r0|
N

(b1 − b0r1, · · · , bd−1 − r0rd−1)

)
. (12)

This is an instance of the same problem, but with dimension one lower, so we can hope to bound
it inductively.

Now suppose that we have shown inductively that for dimension k < d, Γ(r0, · · · , rk−1;N, t; b̄)
is close to tk/Nk−1, its expected value. Then the quantity in equation (12) is close to

(t|r0|/N)d−1

|r0|d−2
=
|r0|td−1

Nd−1
=

|r0|
ps d−1

d

.

For the remaining faces the error terms are the same, with r0 replaced by other ri. Thus the
total ` of this error estimate is about

` ∼
∑d−1

i=0 |ri|
ps d−1

d

.

However, the absolute norm of δ is Nd−1. Thus if ζ is a complex dth root of one, then

Nd−1 = |
d−1∏
j=0

d−1∑
i=0

riζ
jiπi|

12



≤
d−1∏
j=0

d−1∑
i=0

|ri|πi

≤ max{|ri|d}(
d−1∑
i=0

πi)d

=
max{|ri|d}
(π − 1)d

.

Thus the error term we obtain is at least

(π − 1)

(
N

ps

)(d−1)/d

,

which is larger for d > 2 than for d = 2.
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