
1

Expected π-Adic Security Measures of Sequences
Andrew Klapper, Senior Member, IEEE

Abstract—Various measures of security of stream ciphers
have been studied that are based on the problem of finding a
minimum size generator for the keystream in some special class
of generators. These include linear and p-adic spans, as well as
π-adic span, which is based on a choice of an element π in a finite
extension of the integers. The corresponding sequence generators
are known as linear feedback shift registers, feedback with carry
shift registers, and the more general algebraic feedback shift
registers, respectively. In this paper the average behavior of such
security measures when πd = p > 0 or π2 = −p < 0 is studied. In
these cases, if Z[π] is the ring of integers in its fraction field and is
a UFD, it is shown that the average π-adic span is n−O(log(n))
for sequences with period n.

Keywords: algebraic feedback shift register, applied abstract
algebra, security measure, stream cipher.

I. INTRODUCTION

A variety of measures, such as linear span and 2-adic
span, have been proposed for deciding the cryptographic
security of stream ciphers. Recently there has been interest in
understanding the average behavior of such measures. Several
variations have been studied, both for linear and 2-adic span
[13], [14], [15], [16]. In this paper we extend this work to
more general π-adic span, where π is an element of a general
algebraic ring.

Many of these measures arise as follows: We are given
a class F of sequence generators. There is a notion of size
of a generator with a particular initial state. This integer
should be approximately the number of elements of the output
alphabet needed to represent all states in the execution of the
generator starting at that initial state. That is, the size should
be approximately the ceiling of the log with base equal to the
size of the output alphabet of the cardinality of the state space.
But for practical reasons it is usually the number of alphabet
symbols in some natural encoding of the state space as strings.
For example, if the state were a monic polynomial of degree
d over a field, then it might be encoded as the d-tuple of its
coefficients. Thus the size would be d, even if not all monic
polynomials of degree d actually occurred as states.

The F-span of a (finite or infinite) sequence is the smallest
size of a generator in the given class that outputs the sequence.
It is infinite if there is no such generator. Often there is another
closely related measure that is defined algebraically and is
easier to work with. We typically call this related measure the
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F-complexity. It may be based on a function defined on some
related algebraic structure that satisfies properties such as

f(ab) = f(a) + f(b)

or
f(a+ b) ≤ max(f(a), f(b)) + c

for some constant c. In the case when F is the set of linear
feedback shift registers (LFSRs) the F-span is called the linear
span. The size of an LFSR with connection polynomial q(x)
is simply the number of cells it contains. If the generating
function of the output sequence is u(x)/q(x), then the linear
complexity is

max(deg(q),deg(u) + 1)

and equals the linear span. In the case of feedback with carry
shift registers (FCSRs) with output alphabet {0, 1, · · · , N−1},
N ∈ Z [7], the F-span is called the N -adic span. The integer
values of the carry are encoded by their base N expansions.
Thus the size of an FCSR with connection integer q is the
number of cells in the basic register plus the ceiling of the
log base N of the maximum absolute value of the carry over
its infinite execution. If the output sequence has associated
N -adic number α = u/q, then the related N -adic complexity
is

logN (max(|u|, |q|)).

It is different from the N -adic span (it may not even be an
integer) but the difference is in O(log(the N -adic span)) [7].

More generally we may consider algebraic feedback shift
registers (AFSRs) with respect to some particular algebraic
ring R and parameter π. AFSRs include both LFSRs (R =
F [x] with F a field, π = x) and FCSRs (R = Z, π ≥ 2) [8].
The F-span associated with the class F of AFSRs based on
R and π is called the π-adic span. However, we know of no
algebraic definition of a “π-adic complexity” that makes sense
for all (or even many) classes of AFSRs.

Now we describe AFSRs in more detail. Let R be a
commutative ring and π ∈ R. Assume that R/(q) is finite
for every nonzero q ∈ R. We consider sequences over the
ring R/(π), whose cardinality we denote by p. We also let
S ⊆ R be a fixed complete set of representatives for R/(π).
We identify sequences over R/(π) with sequences over S. An
AFSR based on R, π, and S is a stated device D with output.
It is determined by constants q0, · · · , qr ∈ R, r ≥ 1, with the
image of q0 in R/(π) invertible. Its state is an (r + 1)-tuple

σ = (a0, a1, · · · , ar−1;m)

where ai ∈ S, i = 0, · · · , r − 1, and m ∈ R. From this state
the AFSR outputs a0 and changes state to (a1, · · · , ar;m′)



where ar ∈ S and

q0ar + πm′ = m+

r∑
i=1

qiar−i.

By repeating the state change operation, the AFSR generates
an infinite sequence, denoted by D(σ). We refer to D(σ) as
the sequence generated by D with initial state σ. Note that
in general an AFSR is not a finite state device (due to the
carry m). However, it can be shown that in many important
cases every AFSR goes through only finitely many distinct
states in any infinite execution (equivalently, m is constrained
to a finite set in any infinite execution and, equivalently, the
state sequence is eventually periodic). In this paper we are
concerned with average behavior of the F-span where F is the
class of AFSRs based on R, π, S. The F-span is commonly
referred to as the π-adic span. See [8] for more details on
AFSRs and their analysis by π-adic numbers.

The element

qD = q =

r∑
i=1

qiπ
i − q0 (1)

is known as the connection element of the AFSR. If we start
with q, we denote by Dq the AFSR with q the connection
element.1 We may also refer to it as a connection element
for any sequence a generated by Dq . Any given sequence
has many connection elements. The connection element plays
a critical role in the analysis of AFSR sequences. We can
associate a π-adic integer

α =

∞∑
i=0

aiπ
i

to the sequence a = a0, a1, · · · , ai ∈ S. The set of all π-
adic integers is a ring in a natural way. But note that this
is not simply a power series ring – the sum or product of
two elements of S may not be in S, so expressing sums
and products of π-adic integers as π-adic integers in general
involves complicated carries to higher degree terms, perhaps
even carries to infinitely many terms. Again, we refer to [8]
for more details on π-adic integers.

If q is as in equation (1) with q0 invertible modulo π,
then any rational element u/q ∈ R[1/q], u ∈ R, can also
be expressed as such a π-adic integer2 and it can be shown
that a is the output from an AFSR with connection element q
if and only if there exists u ∈ R so that u/q = α. In fact u can
be expressed in terms of the initial state (a0, · · · , ar−1;m) by

α =

∑r−1
n=0

∑n
i=1 qian−iπ

n − q0
∑r−1
n=0 anπ

n −mπr

q

=
u

q
. (2)

The question of what values to allow as the coefficients qi
is a delicate one. In theory one may allow arbitrary elements

1We are being a little sloppy here since a given q may have several
representations in the form in equation (1), but this causes no problems in
what follows.

2Actually, for this statement to be true we need a separability condition on
R, that ∩∞i=1(π)

i = (0). This condition always holds when R = Z[π] and
π is integral over Q.

of R to be qis (as long as q0 is invertible modulo π). But this
would make implementation of AFSRs potentially problematic
and complicate defining the size of an AFSR. At the other
extreme, we might restrict the qi to be in the complete set S
of representatives modulo π. But this would lead to situations
where not all q that are invertible modulo π can be realized
as connection elements of AFSRs. For example, if R = Z, π
is a positive integer, and S = {0, 1, · · · , π − 1}, then most
negative integers q cannot be written in the form in equation
(1). We settle for an intermediate solution: we assume there
is a finite coefficient set T ⊂ R such that every element of
R can be expressed as a finite linear combination of powers
of π with coefficients in T (perhaps not uniquely). This will
be an assumption throughout the paper. In the example above,
we might take T = {−π+ 1,−π+ 2, · · · , π−2, π−1}. Note
that varying T only affects our estimates of the average span
by an additive constant.

More discussion of AFSRs, π-adic numbers, and π-adic size
measures can be found in a paper by Xu and Klapper [17]. We
emphasize that the π-adic span of an AFSR depends both on
the structure of the AFSR (that is, on the connection element
q) and on a particular initial state. It also depends on T and
the specific class F . For example, if we replaced Fibonacci
mode AFSRs by Galois mode AFSRs, the span would also
change in general.

The π-adic span of a sequence is important as a security
measure if there is an AFSR synthesis algorithm for R, π, S,
and T . This is an algorithm which takes a prefix of a sequence
as input and outputs a minimal AFSR over R, π, and S that
outputs the prefix. If the prefix is sufficiently large (typically
a constant times the π-adic span of the sequence), then the
AFSR in fact generates the entire sequence. Thus if such
an algorithm is known (register synthesis algorithms are only
known for certain types of AFSRs [17]), any sequence used
as a key in a stream cipher should have large π-adic span. F-
synthesis algorithms are known in a number of cases, notably
for LFSRs (the Berlekamp-Massey algorithm [12]), for FCSRs
(the 2-adic Rational Approximation algorithm [7] and the
Euclidean algorithm [1]), and AFSRs over various extensions
of the integers, including the cases where we estimate the
average F-span in this paper (Xu’s algorithm [17]). In all
these cases the length of the required prefix of the sequence is
linear in the F-span and the time complexity of the algorithm
is quadratic in the number of symbols used. It is important,
then, to understand the average behavior of π-adic span, as
has been done for linear span and 2-adic span [13], [14], [15],
[16].

The π-adic span of an infinite sequence is not always
defined. As is the case with linear feedback shift registers and
feedback with carry shift registers, some sequences are not
generated by any AFSR over R, π, and S at all. For example,
the sequences generated by LFSRs are exactly the eventually
periodic sequences. Thus they make up a countable subset
of the uncountable set of all sequences over S. The same is
true of the sequences generated by FCSRs. However, some
AFSRs generate sequences that are not eventually periodic.
This implies that the memory is unbounded over an infinite
execution of the AFSR, so the π-adic span is infinite. However,
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it is known that if R is an integral domain whose field of
fractions is a number field, and for every embedding of R
in the complex numbers, the complex norm of π is greater
than 1, then the memory of every AFSR is bounded over
every infinite execution [8]. When this happens, the sequences
for which π-adic span is defined are exactly the eventually
periodic sequences. This is the case for all rings studied here.

Our goal in this paper is to find the average π-adic span
of periodic sequences with fixed period n. All such sequences
have πn− 1 as a connection element. Thus we can generalize
to finding (or estimating) the average π-adic span of sequences
with a fixed q as a connection element. We work initially as
generally as possible, then specialize to particular rings.

In Section II we study notions of the span of sequences
associated with a class of AFSRs. In Section III we lower
bound the expected span in terms of minimal connection
elements of sequences. In Section IV we relate the algebraic
norm and sizes of AFSRs and introduce two classes of
algebraic number fields whose associated AFSRs we focus
on in the remainder of the paper: R = Z[π] where either
π2 = −p < 0 with p ∈ Z, or πd = p > 0 with p ∈ Z
and xd − p irreducible over Z. in Section V we lower bound
the number of n-periodic sequences with a given minimal
connection element. In Section VI we put the results of the
previous sections to prove our main result that in the cases
of R just mentioned, if R is a unique factorization domain,
then the expected π-adic span is at least n − O(log(n)) (see
Theorem 4). Finally, in Section VII we discuss the extension
of these results to rings Z[π] whose integral closure is a unique
factorization domain.

Some of the results in this paper have appeared previously
in the SETA 2008 conference [10]. That paper was restricted to
the case where π2 = 2, and many of the proofs were omitted.

II. DEFINITIONS: SIZE, SPAN, AND COMPLEXITY

In this section we give formal definitions of and basic results
on the span and complexity of sequences based on a notion
of the size of an element of the ring R.

Definition 1: Let R be a ring. A size function on R relative
to π is a function

λ : R→ R≥0

satisfying the following axioms.
S1: The size of a sum is at most the maximum of the sizes of

the addends plus a constant. That is, there is a constant
c1 so that for all a, b ∈ R,

λ(a± b) ≤ max(λ(a), λ(b)) + c1;

S2: The size of a product is at most the sum of the sizes
of the multiplicands plus a constant. That is, there is a
constant c2 so that for all a, b ∈ R,

λ(ab) ≤ λ(a) + λ(b) + c2;

S3: Multiplying by π increases the size by one. That is, for
all a ∈ R,

λ(πa) = 1 + λ(a);

S4: There is a constant c4 so that for all a0, · · · , ar−1 ∈ S
with ar−1 6= 0,∣∣∣∣∣λ

(
r−1∑
i=0

aiπ
i

)
− r

∣∣∣∣∣ ≤ c4.
S5: For any real number x, there are finitely many elements

a ∈ R with λ(a) ≤ x.

For example, if R = F [x] is a polynomial ring over a finite
field F , π = x, and S = F , then these axioms hold with λ(a)
equal to the degree of a and c1 = c2 = 0 and c4 = 1. If
R = Z, π ≥ 2, and S = {0, 1, · · · , π − 1}, then the axioms
hold with

λ(a) = logπ(|a|), c1 = logπ(2), c2 = 0, and c4 = 1.

They also hold with

λ(a) = r if |a| =
r−1∑
i=0

aiπ
i

with all ai ∈ S and ar−1 6= 0. That is, λ(a) = dlogπ(|a|+ 1)e.
In this case c1 = 1, c2 = 1, and c4 = 0. More examples appear
later in the paper.

Lemma 1: If axiom S1 holds, then for any a1, · · · , an ∈ R
we have

λ(a1±· · ·±an) ≤ max{λ(ai), i = 1, · · · , n}+c1 dlog2(n)e .

Proof: By axiom S1 we have

λ(a1 ± · · · ± an) ≤ max(λ(a1 ± · · · ± abn/2c),
λ(abn/2c+1 ± · · · ± an)) + c1.

The lemma then follows by induction on n. 2

Such a size function λ is extended to states of an AFSR
and to sequences generated by AFSRs.

Definition 2: Let λ be a size function on R relative to π.
1) If (a0, · · · , ar−1;m) is a state, then

λ(a0, · · · , ar−1;m) = r + λ(m).

2) If D is an AFSR and λ is a state of D, then λ(D,σ) is
the maximum of λ(τ) over all states τ that occur in the
infinite execution of the AFSR starting with initial state
σ.

3) Let a be a sequence over S. Then λ(a) is the minimum
of λ(D,σ) over all AFSRs D and states σ so that
D(σ) = a, if there are any. If not, then λ(a) =∞.

We refer to λ(a) as the π-adic span of a.

Note that the π-adic span of a depends on the choice of
λ : R→ R, as well as the choice of R, π, S, and T .

As discussed in Section I, it is sometimes desirable to find
a more algebraically defined measure, π-adic complexity, that
approximates π-adic span.
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Definition 3: For any pair of elements a, b ∈ R, let

φ(a, b) = max(λ(a), λ(b)).

Let a = a0, a1, · · · be a sequence over S with associated π-
adic number

α =

∞∑
i=0

aiπ
i.

If α has a rational representation, α = u/q, then let

φ(a) = min{φ(u, q) : α = u/q}.

Otherwise φ(a) = ∞. We refer to φ(a) as the π-adic
complexity of a.

If a is a periodic sequence over S, say with period n, then
the associated π-adic element is v/(1− πn) where

v =

n−1∑
i=0

aiπ
i.

Thus

φ(a) ≤ n+O(log(n)).

Note that if R is a unique factorization domain (see Section
III), then there is a minimal connection element of a, in
the sense that it divides all other connection elements. In
particular, it divides πn − 1.

Let Γn denote the set of pairs (D,σ) such that D is an
AFSR, σ is a state of D, and D(σ) has period n.

Now suppose that a = a0, a1, · · · is a sequence over S.
Suppose that Dq(σ) = a for some initial state σ, and λ(a) =
λ(Dq, σ). We say that the pair (q, σ) is a witness to λ(a).

We want to show that the carry m of the AFSRs makes
a negligible contribution to the expected π-adic span of a
periodic sequence.

Lemma 2: Let σ = (a0, · · · , ar−1;m) be a state of an AFSR
Dq with

q =

r∑
i=1

qiπ
i − q0, qi ∈ T.

Suppose the π-adic number associated with Dq(σ) is u/q.
Then

λ(σ) ≤ max(λ(u), r +O(log(λ(q)))) + c1

≤ max(λ(u), r +O(log(r))) + c1.

Proof: By equation (2) we have

mπr =

r−1∑
n=1

n∑
i=1

qian−iπ
n − q0

r−1∑
n=0

anπ
n − u.

Thus

λ(σ) = r + λ(m)

= λ(πrm)

≤ max

(
λ(u), λ

(
r−1∑
n=1

n∑
i=1

qian−iπ
n

−q0
r−1∑
n=0

anπ
n

))
+ c1

≤ max(λ(u),max{λ(stπr) : s ∈ S, t ∈ T}
+
⌈
log2

(
r2 +

r

2

)⌉
c1) + c1

≤ max(λ(u), r + 2 log(r) + e) + c1

≤ max(λ(u), r + 2 log(λ(q) + f) + e) + c1

≤ max(λ(u), r + 2 log(λ(q)) + g) + c1

≤ max(λ(u), r +O(log(λ(q)))) + c1,

where e, f , and g are constants. This proves the first inequality.
The second inequality follows from Lemma 1. 2

It follows that the size of the AFSR in its initial state is at
most

max(λ(u), λ(q) +O(log(λ(q)))) + c1.

We want to bound the size of the carry throughout the
execution of Dq . Let the memory after j state changes be
denoted by mj . If we take the state after j state changes as
a new initial state, then the output is aj , aj+1, · · · and the
associated π-adic number is uj/q for some uj . Thus the size
of the AFSR after j state changes is bounded by

max(λ(uj), λ(q) +O(log(λ(q)))) + c1.

Lemma 3: Suppose that a is strictly periodic with period n.
Then

λ(a) ∈ λ(q) +O(log(λ(q))) = r +O(log(r)).

Proof: Since by axiom S5 there are only finitely many
elements z in R with λ(z) ≤ λ(u), if we take n sufficiently
large we may assume that

λ(u) < λ(u(πn − 1)).

We have
u

q
=

v

πn − 1
,

where
v = a0 + a1π + · · ·+ an−1π

n−1.

Thus
u(πn − 1) = vq.
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Then

n+ λ(u) = λ(uπn)

= λ(u(πn − 1) + u)

≤ max(λ(u(πn − 1)), λ(u)) + c1

= λ(u(πn − 1)) + c1

= λ(vq) + c1

≤ λ(v) + λ(q) + c2 + c1.

Therefore

λ(u) ≤ λ(q) + λ(v)− n+ c2 + c1

≤ λ(q) + c4 + c2 + c1.

Since the output of the AFSR is periodic if it is begun from
any state (aj , · · · , aj+r−1;mj), the same bound applies to
every λ(uj). Combining this with Lemma 2 proves the current
lemma. 2

Corollary 1: For any sequence a over S we have

λ(a) ≤ φ(a) +O(log(φ(a))).

III. EXPECTED π-ADIC SPAN

Our goal is to approximate the expected π-adic span of
sequences with fixed period n. This expected value is upper
bounded by n+O(1), so we focus on finding lower bounds,
hopefully of the form n − O(small). Let R, π, S, and T be
as before.

Let λ be a size function for R. Let Γ∗n denote the set of
pairs (D,σ) ∈ Γn such that (qD, σ) is a witness to λ(D(σ)),
i.e., such that λ(D(σ)) = λ(D,σ). Suppose (D,σ) ∈ Γ∗n and

qD =

r∑
i=1

qiπ
i − q0.

If there is more than one such minimal (D,σ), we choose one
arbitrarily. Then

λ(D(σ)) ≥ r ≥ λ

(
r∑
i=1

qiπ
i

)
− c4

by axiom S4. Furthermore,

λ(qD) = λ

(
r∑
i=1

qiπ
i − q0

)

≤ max(λ

(
r∑
i=1

qiπ
i

)
, λ(q0)) + c1

≤ λ

(
r∑
i=1

qiπ
i

)
+ max(λ(t) : t ∈ T ) + c1.

It follows that
λ(D(σ)) ≥ λ(qD)− c

for some constant c.

There are two notions of minimality that we can consider
for connection elements of a sequence a. We denote by qa ∈ R
a connection element that is a witness to λ(a) and say that qa
is λ-minimal for a (if there is not a unique witness we simply
choose one to call qa). A connection element q is R-minimal
if it divides every other connection element of a. The two
notions are not equivalent, since we might have λ(zq) < λ(q)
for some z. Nor is a minimal element necessarily unique. For
example, if q is R-minimal for a and z is a unit, then zq is
also R-minimal for a. In fact, there may be no R-minimal
connection element for a at all.

Let Eλn be the expected π-adic span of the set of sequences
with period n over an alphabet with p elements. Thus

Eλn =
1

pn

∑
a

λ(a)

=
1

pn

∑
a

λ(Da(σa))

≥ 1

pn

∑
a

(λ(qa)− c)

=

(
1

pn

∑
a

λ(qa)

)
− c, (3)

where the sums are over all periodic sequences over R/(π)
with period n.

IV. NORMS AND EXAMPLES

From this point on in the paper we focus on AFSRs whose
underlying ring is of the form R = Z[π], where π is an
algebraic number and is not a unit. We do not know whether
for every such ring R there is a finite set T such that every
element of R can be expressed as a finite linear combination
of powers of π with coefficients in T , so we must check this
in the specific cases we consider later.

In this section we review some basic properties of the
algebraic norm that are useful later. Let F be a finite extension
of the rational numbers Q. Then there is a norm function
N : F → Z. If a ∈ F , then N(a) can be defined as
the norm of the matrix representation of the linear function
“multiply by a”. This is a multiplicative function (meaning
that N(ab) = N(a)N(b) for all a, b ∈ F ) whose properties
can be found in any good book on abstract algebra or algebraic
number theory. If F is a Galois extension of Q and G is the
Galois group of F over Q, then also

N(a) =
∏
g∈G

g(a).

If R is the ring of integers in F (i.e., the roots of monic
polynomials with integer coefficients), then N maps R into
Z. An element in R is a unit if and only if its norm is 1 or
−1.

Lemma 4: If R = Z[π] with π integral, F is the fraction
field of R and z ∈ R, then |R/(z)| = |N(z)|.

This follows from basic results in number theory [2, Lemma
1, p. 125].

We will also need to know about the density of primes.
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Theorem 1: (Landau’s Theorem [3, p. 448]) If F is a number
field and R is the ring of integers in F , then the number of
prime ideals with norm at most n is asymptotically n/ ln(n).

If R is a principal ideal domain, then there is a one to one
correspondence between the set of prime ideals and the set
of irreducible elements, where we identify elements that are
associates3.

Corollary 2: If F is a number field, R is the ring of
integers in F , and R is a principal ideal domain, then the
number of irreducible elements in R with norm at most n is
asymptotically n/ ln(n) (where we identify elements that are
associates).

A. π2 = −p < 0

Suppose that p ≥ 2 is an integer, so that x2+p is irreducible,
and F = Q[π] with π2 = −p. We let R = Z[π] and S =
{0, 1, · · · , p − 1}. The only units in R are 1 and −1. If p is
square-free, then the ring of integers in F is Z[(1 + π)/2] if
p ≡ 3 mod 4 and is Z[π] otherwise. The only units in the
ring of integers are 1 and −1, unless p = 3u2 for some integer
u, when the elements (±1±

√
3)/2 are also units.

We can parametrize R by R = {b = b0 + b1π : bi ∈ Z}. If
we write

bi = ±
k∑
j=0

bi,jp
j =

k∑
j=0

±bi,jπ2j

with bi,j ∈ S, then we have

b = b0 + b1π =

1∑
i=0

k∑
j=0

±bi,jπ2j =

2k+1∑
`=0

c`π
`,

with

c` ∈ {−(p− 1),−(p− 2), · · · , p− 1} = S ∪ −S.

Thus we let T be this set.
We have

N(b0 + b1π) = b20 + pb21 ≥ 0

and so
|R/(π)| = |Z/(p)| = p = |N(π)|.

Define
λ(z) = logp(N(z)). (4)

This is the same size function that was used to establish the
existence of a rational approximation algorithm for AFSRs
over quadratic imaginary fields [17].

Theorem 2: If λ is defined as above, then axioms S1, S2,
S3, S4, and S5 are satisfied with c1 = logp(8), c2 = 0, and
c4 = logp(2).

Proof: Let

α = a0 + a1π and β = b0 + b1π

3Recall that elements x, y ∈ R are associates if there is a unit u ∈ R with
x = uy.

with a0, a1, b0, b1 ∈ Z. we have

(a0 + b0)2 ≤ (2 max(a0, b0))2

≤ 4 max(N(α), N(β)),

and similarly

p(a1 + b0)2 ≤ 4 max(N(α), N(β)).

Thus

N(α+ β) ≤ 8 max(N(α), N(β))

and so

λ(α+ β) ≤ max(λ(α), λ(β)) + logp(8).

This gives axiom S1.
The norm function is multiplicative, so axioms S2 and S3

are immediate.
For axiom S4, we have

λ(a+ bπ) = logp(a
2 + pb2)

≤ logp(2 max(a2, pb2))

= max(2 logp |a|, 2 logp |b|+ 1) + logp(2).

Also,

λ(a+ bπ) = logp(a
2 + pb2)

≥ logp(max(a2, pb2))

= max(2 logp |a|, 2 logp |b|+ 1).

Thus

|λ(α)−max(2 logp |a|, 2 logp |b|+ 1)| ≤ logp(2).

For axiom S5, we have

|a0| ≤ N(α)1/2 and |a1| ≤ p−1N(α)1/2,

so the set of elements with bounded norm is finite. 2

In order to analyze sequences of period n, we need to know
the norm of πn − 1.

Lemma 5: We have

N(πn − 1) =

 pn − 2pn/2 + 1 if 4|n
pn + 2pn/2 + 1 if n ≡ 2 mod 4
pn − 1 if n is odd.

Thus logp |N(πn − 1)| ∈ n+ o(1).

Proof: The proof is straightforward. 2
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B. πd = p > 0

Suppose that p, d ≥ 2 are integers, that F = Q[π] with
πd = p, and that xd − p an irreducible polynomial. Then

N

(
d−1∑
i=0

biπ
i

)
=

d−1∏
j=0

(
d−1∑
i=0

biζ
ijπi

)
,

where ζ is a complex primitive dth root of 1.
Let R = Z[π] and S = {0, 1, · · · , p− 1}. Then

R =

{
d−1∑
i=0

biπ
i : bi ∈ Z

}
.

Note that |R/(π)| = p. AFSRs over such a ring are called
d-FCSRs, and many of their properties have been studied [4],
[5], [6], [9]. By an argument similar to the one in Section
IV-A, we can take T = {−(p− 1),−(p− 2), · · · , p− 1}.

We define

λ

(
d−1∑
i=0

biπ
i

)
= max(d logp |bi|+ i).

This is the same size function that was used to establish the
existence of a rational approximation algorithm for d-FCSRs
[17].

Theorem 3: If λ is defined as above, then axioms S1, S2, S3,
S4, and S5 are satisfied with c1 = d logp(2), c2 = d logp(d),
and c4 = d.

Proof: Let

α =

d−1∑
i=0

aiπ
i and β =

d−1∑
i=0

biπ
i.

For axiom S1 we have

λ(α± β) = max{d logp |ai ± bi|+ i}

≤ max{d logp(2 max(|ai|, |bi|)) + i :

i = 0, · · · , d− 1}

= max{d logp |ai|+ i, d logp |bi|+ i :

i = 0, · · · , d− 1}+ d logp(2)

= max(λ(α), λ(β)) + d logp(2).

For axiom S2 first observe that

αβ =

d−1∑
i=0

eiπ
i

where

ei =

i∑
j=0

ajbi−j + p

d−1∑
j=i+1

ajbi+d−j .

Then we have

λ(αβ) = max{d logp(ei) + i : i = 0, · · · , d− 1}

≤ max{d logp(dmax{|ajbi−j |, p|ajbi+d−j | :
j = 0, · · · , d− 1}) + i : i = 0, · · · , d− 1}

= max{d logp |ajbi−j |+ i, d logp |ajbi+d−j |+ i

+d : j = 0, · · · , d− 1, i = 0, · · · , d− 1}
+d logp(d)

= max{d logp |aibj |+ i+ j : i, j = 0, · · · , d− 1}
+d logp(d)

≤ max{d logp |ai|+ i : i = 0, · · · , d− 1}
+ max{d logp |bj |+ j : j = 0, · · · , d− 1}
+d logp(d)

= λ(α) + λ(β) + d logp(d).

For axiom S3, we have

λ(πα) = λ(pad−1 +

d−1∑
i=1

ai−1π
i)

= max(d logp(pad−1), d logp(a0) + 1, · · · ,
d logp(ad−1) + d)

= 1 + λ(α).

For axiom S4, suppose ai ∈ S = {0, · · · , p − 1}, i =
0, · · · , r, and ar 6= 0. Let

γ =

r∑
i=0

aiπ
i

=

d−1∑
j=0

(aj + paj+d + · · ·+ pb(r−j)/dcaj+b(r−j)/dcd)π
j .

Then

λ(γ) = max

d logp

b(r−j)/dc∑
i=0

aj+idp
i

+ j :

j = 0, · · · , d− 1}

≤ max

{
d

(⌊
r − j
d

⌋
+ 1

)
+ j :

j = 0, · · · , d− 1}

≤ r + d.

Also,
arπ

r = arp
br/dcπr−dbr/dc

is nonzero, so the log of the coefficient of

πr−dbr/dc

is at least br/dc. Thus λ(γ) ≥ r.
Finally, axiom S5 holds because there are finitely many

integers a with logp |a| less than any given bound. This
completes the proof. 2
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Lemma 6: Suppose that F = Q[π] with πd = p and xd − p
an irreducible polynomial. Let R = Z[π] and let z ∈ R. Then

1) logp |N(z)| ≤ d logp(d) + λ(z).
2) If d = 2, then logp |N(z)| ≤ λ(z).
3) If d = 2 and R is the full ring of integers in its fraction

field, then there is a unit u ∈ R and a constant cp ∈ R+

so that λ(uz) ≤ 2 logp(|N(z)|+ cp)− logp(4).
4) If d = 2 and p = 2, then there is a unit u ∈ R so that

λ(uz) ≤ log2 |N(z)|+ 1.

Proof: To prove the first statement, observe that if

z =

d−1∑
i=0

biπ
i with bi ∈ Z,

and ζ is a complex primitive dth root of unity, then

|N(z)| =

∣∣∣∣∣∣
d−1∏
j=0

(
d−1∑
i=0

biζ
ijπi

)∣∣∣∣∣∣
≤

d−1∏
j=0

(
d−1∑
i=0

|biζijπi|

)

≤
d−1∏
j=0

(dmax |bi|pi/d)

= dd max |bi|dpi.

Thus
logp |N(z)| ≤ d logp(d) + λ(z)

as claimed.
When d = 2,

N(b0 + b1π) = b20 − pb21,

so
|N(z)| ≤ max(b20, pb

2
1).

Thus

logp |N(z)| ≤ max(2 logp |b0|, 1 + 2 logp |b1|) = λ(z)

as claimed in the second statement.
To prove the third statement, suppose that d = 2 and R is

the full ring of integers in its fraction field. We can consider
R to be a subset of the real numbers. The group of units in
R is isomorphic to {1,−1}×Z [2]. This isomorphism can be
arranged so that there is a generator v of the infinite part that is
a real number greater than 1. This is the so-called fundamental
unit. So it suffices to see that the lemma is true when u or −u
is a power of v or v−1.

Let z = a+bπ. If z is a unit, we can take u = z−1. If z = 0,
the result is trivial. So assume that z is neither 0 nor a unit.
Both N(z) and λ(z) are unchanged by multiplying z by −1
and by replacing z by its Galois conjugate a − bπ. Also, the
conjugate of the product uz is the product of the conjugates
of u and z, and u is a unit if and only if its conjugate is a unit.
Thus we can multiply z by −1 or replace z by its conjugate.

Therefore we may assume that a and b are positive, so that
z > 1. It follows that for some k we have

vk < z < vk+1.

Take u = v−k so that 1 < uz < v. We can replace z by uz
and assume that

1 < z < v. (5)

Suppose that N(z) > 0. We have

a− bπ =
N(z)

z
,

so also
N(z)

v
< a− bπ < N(z). (6)

Adding equations (5) and (6) and dividing by 2 gives

N(z) + v

2v
< a <

N(z) + v

2
.

Subtracting the equations and dividing by 2 gives

1−N(z)

2π
< b <

v2 −N(z)

2πv
.

Thus
λ(a+ bπ) ≤ 2 logp(N(z) + v)− logp(4).

Now suppose that N(z) < 0. We have

N(z) < a− bπ < N(z)

v
. (7)

Adding equations (5) and (7) and dividing by 2 gives

N(z) + 1

2
< a <

N(z) + v2

2v
.

Subtracting the equations and dividing by 2 gives

1−N(z)

2π
< b <

v2 −N(z)

2πv
.

Thus

λ(a+ bπ) ≤ 2 logp(|N(z)|+ v)− logp(4).

This proves the third assertion with cp = v.
Finally, consider the fourth statement. As before, we may

assume that a, b ≥ 0. Suppose that b ≥ a. Then

b2 ≤ 2b2 − a2 = |N(z)|,

so
a ≤ b ≤ |N(z)|1/2.

Thus

λ(z) = max(2 log2(a), 1 + 2 log2(b)) ≤ log2 |N(z)|+ 1,

as claimed. Similarly, if b = 0, then

a = |N(z)|1/2,

and the same bound holds.
Now suppose a > b > 0. Multiplying z by w = −1 + π

(the negative of the conjugate of the fundamental unit) gives

wz = 2b− a+ (a− b)π.
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We have 0 < |a− b| < a. If b < a ≤ 2b, then also

0 ≤ 2b− a = b− (a− b) < max(b, a− b) < a.

If 2b < a, then 0 ≤ a − 2b < a. By induction there is a unit
u such that

λ(uwz) ≤ log2 |N(wz)|+ 1 = log2 |N(z)|+ 1.

This proves the lemma. 2

Again, in order to analyze sequences of period n, we need
to know the norm of πn − 1.

Lemma 7: Let n > 0 and let e = gcd(n, d). Then

N(πn − 1) = (pn/e − 1)e.

Moreover
logp |N(πn − 1)| ∈ n+ o(1).

Proof: For any k > 0, if γ is a complex primitive kth root of
one, then

k−1∏
i=0

(x− γi) = xk − 1.

Let ζ be a complex primitive dth root of one. Then ζn is a
primitive (d/e)th root of one. We have

N(πn − 1) =

d−1∏
i=0

(ζniπn − 1)

= pn(−1)d
d−1∏
i=0

(π−n − ζni)

= pn(−1)d

d/e−1∏
i=0

(π−n − ζni)

e

= pn(−1)d(π−nd/e − 1)e

= pn(−1)d(p−n/e − 1)e

= (−1)d+e(pn/e − 1)e.

This proves the first statement. The second statement follows
by taking log base p of the absolute value of the penultimate
line. 2

C. Expectation in Terms of the Norm

Now we suppose we are in either of the cases considered
in Sections IV-A and IV-B. Let

e =

{
d logp(d) if πd = p > 0

0 if π2 = −p < 0.

Then in both cases for every q ∈ R we have

λ(q) ≥ logp |N(q)| − e.

If a is a periodic sequence over S with period n, let q̂a be a
connection element of an AFSR that outputs a so that |N(q̂a)|
is minimal. For any q ∈ R, let ∆n(q) denote the number of

period n sequences with q as a connection element, and let
∆∗n(q) denote the number of period n sequences a such that
q is an associate of q̂a.

Then by equation (3) we have

Eλn ≥

(
1

pn

∑
a

λ(qa)

)
− c

≥ 1

pn

∑
a

(logp |N(qa)| − e)− c

=
1

pn

∑
a

logp |N(qa)| − e− c

≥ 1

pn

∑
a

logp |N(q̂a)| − e− c. (8)

Recall that R is a unique factorization domain (UFD) if
every element q ∈ R can be written as a product

z = u
∏

zeii ,

where u is a unit, the zi are irreducible, each ei is positive, and
zi and zj are not associates if i 6= j. This representation of q
is unique up to permutation of the zi and up to replacing a zi
by an associate and changing the unit u. If R is a UFD then
every sequence has an R-minimal connection element. Any
two R-minimal connection elements for a given sequence are
associates. Also, in a UFD, if a is irreducible and divides uv
then a divides u or a divides b.

Suppose that R is a UFD. If a is a sequence with period n,
then it is the sequence of coefficients in the π-adic expansion
of some

u

πn − 1
=

v

q̂a
.

Thus
uq̂a = v(πn − 1).

If v and q̂a had a common divisor z and z were not a unit,
then q̂a/z would be the connection element of an AFSR that
outputs a, and its norm would be smaller than that of q̂a. Thus
v and q̂a are relatively prime. By the fact that R is a UFD, q̂a
divides πn − 1. Thus equation (8) implies

Eλn ≥
1

pn

∑
q|∗πn−1

logp |N(q)|∆∗n(q)− e− c, (9)

where the notation q|∗πn − 1 means we take one associate
from each set of associate divisors of πn − 1.

V. ∆∗n IN CERTAIN UFDS

Throughout this section p is a positive integer. We analyze
∆∗n(z) when R = Z[π] with

π2 = −p < 0 or πd = p > 0.

In the former case we always assume that x2+p is irreducible
over Z and in the latter case we always assume that xd− p is
irreducible over Z. In the former case we also let d = 2.

To proceed we need a better understanding of when the
coefficient sequence of the π-adic expansion of a rational u/z

9



is periodic, and when it has a given period. First, we do this
for R = Z.

Lemma 8: Let p and q be integers greater than 1 with
gcd(p, q) = 1.

1) A rational element u/q, with u, q ∈ Z, q > 0, and
gcd(q, p) = 1, has a strictly periodic p-adic expansion
if and only if −q ≤ u ≤ 0. If q divides pn − 1, then
in any case the eventual period of the p-adic expansion
divides n.

2) A rational element u/q, with u, q ∈ Z, q > 0, and
gcd(q, p) = 1, has a strictly periodic (−p)-adic expan-
sion if and only if

−q/(p+ 1) ≤ u ≤ pq/(p+ 1). (10)

If q divides pn − 1 and

u

q
6∈
{
− 1

p+ 1
,

p

p+ 1

}
,

then in any case the eventual period of the p-adic
expansion divides n.

Proof: The first claim is well known [7]. Suppose that u/q has
a periodic (−p)-adic expansion. We may assume the period,
n, is even. Then

u

q
=

v

1− pn

with

v =

n−1∑
i=0

vi(−p)i

and 0 ≤ vi < p. It follows that

−(p− 1)p− (p− 1)p3 + · · · − (p− 1)pn−1

≤ v ≤ (p− 1) + (p− 1)p2 + · · ·+ (p− 1)pn−2.

That is,

−p(p
n − 1)

p+ 1
≤ v ≤ pn − 1

p+ 1
. (11)

We have u = vq/(1 − pn) and q/(1 − pn) < 0 so equation
(10) holds.

Conversely, we want to see that if equation (10) holds, then
the (−p)-adic expansion of u/q is periodic. Since p and q are
relatively prime, there is an integer n so that

q|(−p)n − 1.

First suppose that n is even. Let pn − 1 = qz, so z > 0.
Multiplying equation (10) by z gives equation (11). The
number of v satisfying equation (11) is exactly pn, the number
of sequences with period n, so the (−p)-adic expansion of
every u/q with u satisfying equation (10) is periodic. This
also proves the last statement for periodic expansions with
even period.

When n is odd, the equation analogous to equation (11) is

−p
n + 1

p+ 1
≤ v ≤ p(pn + 1

p+ 1
.

There are pn + 2 solutions v to this equation, so there are
two (v/((−p)n − 1)s with periodic expansion whose period

divides 2n but not n. It is straightforward to check that the
(−p)-adic expansions of

−1

p+ 1
=

1− p+ p2 −+ · · · − pn−1

(−p)n − 1

and
p

p+ 1
=
−p+ p3 −+ · · ·+ pn

(−p)n − 1

are (p − 1, 0, p − 1, 0, · · · ) and (0, p − 1, 0, p − 1, · · · ),
respectively. Both sequences have period 2, which divides 2n
but not n.

If the expansion of u/q is only eventually periodic, it
nonetheless has the same periodic part as some v/q with a
periodic expansion. This element’s expansion has period n.
2

Now we consider the periodic π-adic sequences. We use the
fact that these are either interleavings of d p-adic or (−p)-adic
sequences.

Lemma 9: Let πd = p > 0, let n ≥ 1 be an integer, and let

U = {u : u/(1− πn) has a strictly periodic
π-adic expansion with period n}.

Then U contains a complete set of representatives for R
modulo πn − 1.

Proof: First note that u ∈ U if and only if u can be written

u =

n−1∑
i=0

uiπ
i,

where 0 ≤ ui < p for 0 ≤ i < n. Let v 6= u be another
element of U with

v =

n−1∑
i=0

viπ
i,

where 0 ≤ vi < p for 0 ≤ i < n. We want to determine when
u ≡ v mod πn − 1.

Let e = gcd(n, d) and

δ = 1 + πn + · · ·+ πn(d/e−1).

Then
(πn − 1)δ = πnd/e − 1 = pn/e − 1 ∈ Z.

Let

uδ =

d−1∑
j=0

ajπ
j and vδ =

d−1∑
j=0

bjπ
j ,

where aj , bj ∈ Z, 0 ≤ j < d. Since the coefficient sequence
of the π-adic expansion of

u

1− πn
=

uδ

1− pn/e

is the interleaving of the coefficient sequences of the p-adic
expansions of the

aj
1− pn/e

10



and the former sequence is periodic, the latter sequences are
periodic as well. Thus

0 ≤ aj ≤ pn/e − 1.

Similarly,
0 ≤ bj ≤ pn/e − 1.

Moreover
u ≡ v mod πn − 1

if and only if pn/e−1 divides uδ−vδ. This holds if and only
if

(pn/e − 1)|(aj − bj)

for every 0 ≤ j < d. The only possibility is that for every j,
aj = bj or

{aj , bj} = {0, pn/e − 1}.

Let V be the set of u ∈ U such that, if

uδ =
d−1∑
j=0

ajπ
j

with ai ∈ Z, then every aj 6= 0. Then by the preceding
paragraph, no two elements in V are congruent modulo πn−1.
Since by Lemma 7 we have

|R/(πn − 1)| = (pn/e − 1)e,

we will have proved the lemma if we prove that

|V | = (pn/e − 1)e

as well.
Let

u =

n−1∑
i=0

uiπ
i with 0 ≤ ui < p,

and

uδ =

d−1∑
j=0

ajπ
j with aj ∈ Z.

Then
aj =

∑
uip

(i+nk−j)/d,

where the sum is over all 0 ≤ i < n and 0 ≤ k < d/e
with i + nk ≡ j mod d. For any 0 ≤ j < d, let Wj be
the set of 0 ≤ i < n such that there exists a (necessarily
unique) 0 ≤ k < d/e so that i + nk ≡ j mod d. Since all
ui are nonnegative, aj = 0 if and only if ui = 0 for every
i ∈ Wj . Moreover, if 0 ≤ ` < d, then W` = Wj if and only
if ` ≡ j − nt mod d for some t. Equivalently, if and only if
` ≡ j mod e for some t. Otherwise Wj and W` are disjoint.

This gives us a partition of {0, 1, · · · , n− 1} into e subsets
W0, · · · ,We−1. An element u is in V if and only if, for each
0 ≤ j < e, at least one i ∈Wj is nonzero. Each Wj has n/e
elements. Thus for each such j there are pn/e − 1 allowable
values for the set of ui with i ∈Wj . This gives

(pn/e − 1)e

allowable values of u0, · · · , un−1 with u ∈ V , and completes
the proof of the lemma. 2

Lemma 10: Let πd = p with p > 0 and xd − p irreducible.
If z ∈ R divides πn − 1 and is not a unit, then

∆n(z) ≥ |(R/(z))|.

If also R is a UFD, then

∆∗n(z) ≥ |(R/(z))∗|.

Proof: The first inequality follows from Lemma 9 since every
complete set of representatives modulo πn − 1 contains a
complete set of representatives modulo z.

Now suppose R is a UFD. Suppose that a = a0, a1, · · · is
a periodic sequence with period n. Then

a =

∞∑
i=0

aiπ
i

is rational and by our choice of T , the denominator in any
rational representation is the connection element of an AFSR.
Thus a = ua/q̂a for some ua. We have gcd(ua, q̂a) = 1 since
otherwise q̂a/ gcd(ua, q̂a) would be a connection element of
a with a smaller norm than that of q̂a.

Let V ⊆ ∆n(z) be a complete set of representatives for
R modulo z. Let v ∈ V be a unit modulo z. Let a be the
coefficient sequence of the π-adic expansion of v/z. Then
v/z = ua/q̂a, so vq̂a = uaz. But q̂a is relatively prime to
ua, so q̂a divides z. Since v is a unit modulo z, z divides q̂a,
so z and q̂a are associates. Thus v ∈ ∆∗n(z). This proves the
second inequality. 2

Lemma 11: Let π2 = −p with p > 0 and x2+p irreducible.
Let 4|n. If z divides πn − 1 = pn/2 − 1, then

∆n(z) ≥ |(R/(z))| and ∆∗n(z) ≥ |(R/(z))∗|.

Proof: Let u ∈ R. Then u/z has an eventually periodic π-adic
expansion [8], so there is an element a ∈ R so that

y

z
= a+

u

z

has a strictly periodic π-adic expansion. Then

u ≡ y mod z,

so the set of y such that y/z has a strictly periodic π-adic
expansion contains a complete set of representatives for R/(z).
Thus it suffices to show that if u/z is strictly periodic, then its
period divides n. To show this it suffices to prove the lemma
in the case when z = πn − 1.

Since 4|n,

πn − 1 = (−p)n/2 − 1 ∈ Z

is positive. Let u = u0 + u1π with u0, u1 ∈ Z. The π-adic
expansion of

u

pn/2 − 1

is the interlacing of the p-adic expansions of
u0

pn/2 − 1
and

u1
pn/2 − 1

.
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Thus by Lemma 8, u/(pn/2 − 1) is periodic if and only if

−(pn/2 − 1)

p+ 1
≤ ui ≤

p(pn/2 − 1)

p+ 1
,

for i = 0, 1. If v is a second element of R such that the π-adic
expansion of v/(pn/2 − 1) is periodic, and

v ≡ u mod pn/2 − 1,

then ui = vi or

ui, vi ∈
{
−(pn/2 − 1)

p+ 1
,
p(pn/2 − 1)

p+ 1

}
for i = 0, 1. Thus the elements u = u0 + u1π with

−(pn/2 − 1)

p+ 1
≤ ui <

p(pn/2 − 1)

p+ 1
,

for i = 0, 1 are all distinct modulo pn/2 − 1. There are

(pn/2 − 1)2

such elements, and this is also the cardinality of R/(pn/2−1).
Thus the set of such u is a complete set of representatives for
R modulo pn/2 − 1. Thus for every w ∈ (R/(z))∗, there is
such a u with

u ≡ w mod pn/2 − 1.

The lemma follows from this. 2

Note that Lemma 11 is false if n is not a multiple of 4.
Having lower bounded ∆∗n(z) by |(R/(z))∗|, we proceed

to analyze |(R/(z))∗| in terms of its irreducible factorization.

Lemma 12: Let R = Z[π], where πd = p or π2 = −p,
be a UFD If z1, · · · , zt ∈ R are not units and are pairwise
relatively prime, then∣∣∣∣∣R/

(
t∏
i=1

zi

)∣∣∣∣∣ =

t∏
i=1

|R/(zi)|

and ∣∣∣∣∣
(
R/(

t∏
i=1

zi)

)∗∣∣∣∣∣ =

t∏
i=1

|(R/(zi))∗|.

Proof: By induction it suffices to prove the result when t =
2. The ring R/(z1) is finite since z1|N(z1) ∈ Z. Thus the
sequence

1, z2, z
2
2 , · · · ∈ R/(z1)

eventually repeats. That is, there are ` < k with

z`2 ≡ zk2 mod z1.

Hence
z1|(zk2 − z`2) = z`2(zk−`2 − 1).

Since z1 and z2 are relatively prime,

z1|zk−`2 − 1.

Thus there are elements a, b ∈ R with az1 + bz2 = 1.
Consider the function

Ψ : R/(z1z2)→ (R/(z1))× (R/(z2))

defined by reduction modulo z1 and z2. If x ∈ R/(z1) and
y ∈ R/(z2), then

Ψ(bz2x+ az1y) = (x, y),

so Ψ is onto. Conversely, Ψ is one to one since ψ(x) = (0, 0)
implies that both z1 and z2 divide x, hence z1z2 divides x.
Thus Ψ is a ring isomorphism. This gives the first identity4.
Ψ also induces an isomorphism of unit groups, which gives
the second identity. 2

Lemma 13: Let R = Z[π], where πd = p or π2 = −p, be a
UFD. If z ∈ R is irreducible and t ≥ 1, then

|R/(zt)∗| = |R/(z)|t−1(|R/(z)| − 1).

Proof: We prove this by induction on t. Suppose t = 1. Then
for any nonzero u ∈ R/(z), the map v 7→ vu is a one to one
map from R/(z) to itself. Since this quotient is finite, this
map is also onto, so v is invertible. This proves the claim in
this case.

Now suppose t ≥ 2. Let

f : R/(zt)→ R/(zt−1)

be the function given by reduction modulo zt−1. Then f maps
units to units. Moreover, if x is a unit in R/(zt−1), then there
are y, u ∈ R with

xy = 1 + uzt−1.

Then

xy(1− uzt−1) = 1− u2z2(t−1) ≡ 1 mod zt,

so x is a unit in R/(zt). Thus f induces a surjective multi-
plicative group homomorphism

f∗ : (R/(zt))∗ → (R/(zt−1))∗.

The kernel of f∗ is

1 + zt−1(R/(zt)).

which has cardinality |R/(z)|. The lemma follows from this.
2

Corollary 3: Let R = Z[π], where πd = p or π2 = −p, be
a UFD. If z ∈ R is irreducible and t ≥ 1, then

t∑
i=1

∆∗n(zi) ≥
t∑
i=1

|R/(zi)∗| = |R/(z)|t − 1 = |N(z)|t − 1.

4We have shown that the Chinese Remainder Theorem holds in a UFD
when all the quotient rings are finite.
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VI. A LOWER BOUND ON THE EXPECTED SPAN

Throughout this section we assume that R = Z[π] is a
UFD, where πd = p (with xd − p irreducible) or π2 = −p
(with x2 + p irreducible) with p > 0. Let n ∈ Z be arbitrary
in the former case and let 4|n in the latter. We have seen that
it is possible to obtain lower bounds on ∆∗n(z) as long as R
is a UFD. In this section we use these bounds to obtain lower
bounds on the expected π-adic span of sequences with period
n.

The question of when a ring R = Z[π] is a UFD is a delicate
one, not fully understood. First, it is generally necessary to use
the integral closure of R rather than R to obtain a UFD. For
example, the full ring of integers of R = Z[

√
5] is R′ =

Z[(1 +
√

5)/2]. In R we have the distinct factorizations

2 · 2 = 4 = (1 +
√

5) · (−1 +
√

5).

These factorizations are equivalent in R′ because

1 +
√

5 =
1 +
√

5

2
· 2,

and (1 +
√

5)/2 is a unit in R′. Similarly for the other factor.
The p > 0 for which the integral closure of Z[

√
−p] is a

UFD are known: they are

p ∈ {163, 67, 43, 19, 11, 7, 3, 2, 1}.

However the p > 0 for which the integral closure of Z[
√
p] is

a UFD are only partly known: the known ones are

p ∈ {2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29,

33, 37, 41, 53, 57, 61, 69, 73, 77, 89, 93, 97}.

Since R is a UFD we can write

πn − 1 = u

t∏
i=1

zeii ,

where u is a unit and each zi is irreducible.

Theorem 4: If R = Z[π] is a UFD with π2 = −p < 0 or
πd = p > 0, and n is a multiple of 4 in the former case and
is arbitrary in the latter case, then

Eλn ∈ n−O(log(n)).

Proof: Suppose that

πn − 1 =

k∏
i=1

ztii

where zi ∈ R is irreducible, zi and zj not associates if i 6= j,
ti ≥ 1, i, j = 1, · · · , k. Let

J = {(j1, · · · , jt) : 0 ≤ ji ≤ ti, i = 1, · · · , k} ⊆ Zk.

Then by equation (9)

Eλn =
1

pn

∑
J∈J

logp

∣∣∣∣∣N
(

k∏
i=1

zjii

)∣∣∣∣∣∆∗n
(

k∏
i=1

zjii

)
−e− c. (12)

Let

∆∗0,n(x) =

{
1 if x is a unit

∆∗n(x) otherwise.

Thus by Corollary 3

t∑
i=0

∆∗0,n(zt) ≥ |N(z)|t. (13)

Then note that the right hand side of equation (12) is
unchanged if we replace ∆∗n by ∆∗0,n. Thus, using equation
(13) to obtain the third line, we have

Eλn ≥ 1

pn

∑
J∈J

k∑
i=1

ji logp |N(zi)|
k∏
i=1

∆∗0,n(zjii )− e− c

=
1

pn

k∑
`=1

t∑̀
j`=0

j` logp |N(z`)|∆∗0,n(zj`` )

·
k∏
i=1
i 6=`

ti∑
ji=0

∆∗0,n(zjii )− e− c

≥ 1

pn

k∑
`=1

t∑̀
j`=0

j` logp |N(z`)|∆∗0,n(zj`` )

·
k∏
i=1
i 6=`

|N(zi)|ti − e− c

=
1

pn

k∑
`=1

t∑̀
j`=0

j` logp |N(z`)|∆∗0,n(zj`` )
|N(πn − 1)|
|N(z`)|t`

−e− c

≥ |N(πn − 1)|
pn

k∑
`=1

logp |N(z`)|
|N(z`)|t`

·
t∑̀
j`=1

j`(|N(z`)|j` − |N(z`)|j`−1)− e− c

=
|N(πn − 1)|

pn

k∑
`=1

logp |N(z`)|
|N(z`)|t`

·

t`|N(z`)|t` −
t`−1∑
j`=0

|N(z`)|j`
− e− c

13



=
|N(πn − 1)

pn

k∑
`=1

logp |N(z`)|
|N(z`)|t`

·
(
t`|N(z`)|t` −

|N(z`)|t` − 1

|N(z`)| − 1

)
− e− c

=
|N(πn − 1)

pn

k∑
`=1

logp |N(z`)|

·
(
t` −

1− |N(z`)|−t`
|N(z`)| − 1

)
− e− c

=
|N(πn − 1)

pn
logp |N(πn − 1)|

−|N(πn − 1)|
pn

k∑
`=1

logp |N(z`)|
(

1− |N(z`)|−t`
|N(z`)| − 1

)
−e− c

≥ |N(πn − 1)|
pn

logp |N(πn − 1)|

−|N(πn − 1)|
pn

k∑
`=1

logp |N(z`)|
|N(z`)| − 1

− e− c.

Now we want to bound the summation in the last line. For
any f ≥ 2 we have

logp(f)

f − 1
≤

2 logp(f)

f
≤ 2 log2(f)

f
,

and if t ≥ 1 then 1− f−t < 1. Thus it suffices to bound

A
def
=

k∑
`=1

log2(|N(z`)|)
|N(z`)|

in terms of N(πn − 1). In bounding A, if we replace πn − 1
by a divisor q of πn− 1 with the same distinct prime factors,
while leaving A unchanged, or replace A by a larger number
while leaving q unchanged, this can only weaken our bound.
That is, if

|N(q)| < |N(πn − 1)|, A < A′, and A′ ∈ O(log |N(q)|),

then
A ∈ O(log |N(πn − 1)|).

So first we replace πn − 1 by

q =

k∏
`=1

z`.

That is, we assume that each t` = 1. The function log2(x)/x
is decreasing for integers x ≥ 3. Thus decreasing an N(z`)
will increase A while decreasing N(q). Thus we may assume
that the set of z`s consists of the k irreducible and pairwise
relatively prime elements of R with the k smallest norms.

Let m be a positive integer and consider the irreducible
elements with norms between 2m and 2m−1. By Landau’s
prime ideal theorem, Corollary 2, there are asymptotically

2m

ln(2m)
=

2m

m ln(2)

such elements. Each contributes at most m/2m to A, so the
total contribution to A is at most 1/ ln(2). It also follows

from Landau’s prime ideal theorem that the largest 2m we
must consider is asymptotically k ln(k). It follows that A ∈
O(log(k)).

Now consider |N(q)|. The contribution to |N(q)| from the
irreducible elements with norms between 2m and 2m+1 is
asymptotically at least

(2m)2
m/(m ln(2)) = 22

m/ ln(2).

The largest m we need is at most log(k ln(k)) < 2 log(k).
Thus

|N(q)| ∈ Ω

2 log(k)∏
m=1

22
m/ ln(2)


= Ω(2(

∑2 log(k)
m=1 2m/ ln(2)))

= Ω(2(2
2 log(k)+1/ ln(2)))

= Ω(22k
2/ ln(2)).

Therefore, by Lemmas 5 and 7,

A ∈ O(log log |N(q)|)

⊆ O(log log |N(πn − 1)|)

⊆ O(log(n)).

This proves the theorem. 2

VII. WHEN Z[π] IS NOT THE FULL RING OF INTEGERS

If Z[π] is not the full ring of integers, then it is not a
UFD and the arguments we have used apparently do not
work. However, we can instead consider AFSRs based on
the full ring of integers R. In switching from Z[π] to R as
the ring on which our AFSRs are based, we must see that
R/(π) = Z[π]/(π); that there is a size function on R relative
to π; and that the remainder of the derivation of the average
span goes through essentially unchanged.

It is well known from algebraic number theory that if π is
an integral element with F = Q(π) and [Q : F ] = d, then
both Z[π] and the ring of integers R in F are free Abelian
groups of rank d [2, p. 86]. Let ω1, · · · , ωd be a Z-basis of
R and let η1, · · · , νd be a Z-basis of Z[π]. Then there are
integers ai,j , 1 ≤ i, j ≤ d, so that

ηi =

d∑
j=i

aijωj .

It follows that the ideal πR in R is an Abelian group and
has a basis πω1, · · · , πωd and that the ideal πZ[π] in Z[π] is
an Abelian group and has a basis πω1, · · · , πωd. These bases
are related by equations

πωi =

d∑
j=i

bijωj

and

πηi =

d∑
j=i

cijηj =

d∑
j=i

cij

d∑
k=i

ajkωk,
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where bij , cij ∈ Z. We also have

πηi =

d∑
j=i

aijπωj =

d∑
j=i

aij

d∑
k=i

bjkωk.

If we form the matrices A = [aij ], B = [bij ], and C = [cij ],
then this says that AB = CA. All three matrices have rank d,
so det(B) = det(C). We also know that det(B) = |R/πR|
and det(C) = |Z[π]/πZ[π]|, so these two quotients have the
same cardinality. But Z[π]/πZ[π] injects into R/πR, so the
two quotients are equal and the complete set of representatives
S for Z[π] modulo π is also a the complete set of representa-
tives for R modulo π.

Also, by inverting the matrix A, we obtain an expression
for the ωi as linear combinations of the ηi with rational
coefficients with denominator r = det(A) ∈ Z. Thus every
z ∈ R can be written in the form

z =

d−1∑
i=0

zi
r
πi, (14)

where zi ∈ Z. (But possibly not every element of this form is
in R.)

Now let us specialize to the rings we have been studying,
namely R = Z[π] with π2 = −p < 0 or πd = p > 0. If
π2 = −p < 0, then we can define

λ(a) = logp(N(a))

as we did for Z[π]. If πd = p > 0, then we define

λ

(
d−1∑
i=0

zi
r
πi

)
= max(d logp |zi|+ i : i = 0, · · · , d− 1).

It is straightforward to see that axioms S1–S5 hold in both
cases. It then follows that all the results in Sections II, III,
and IV hold.

However, Lemma 9 and the proof of Lemma 11 do not hold
in general. The problem is that elements of the form

u

z
=

∑d−1
i=0

ui

r π
i

z
=

∑d−1
i=0 uiπ

i

rz
,

with ui ∈ Z may have strictly periodic π-adic expansions that
do not have period n. (This happens if z divides πn − 1, but
rz does not.) Thus we cannot show by exactly this method
that

∆n(z) ≥ |R/(z)| and ∆∗n(z) ≥ |(R/(z))∗|.

However, in some cases there are enough elements∑d−1
i=0 uiπ

i

z

with periodic π-adic expansions (which must have period n)
that the lower bounds still hold. This happens for the first
lower bound in the imaginary quadratic case, π2 = −p < 0.
Here r = 2. There are enough “extra” n-periodic (u/z)s with
u ∈ Z[π] to compensate for the ones whose periods are too
large. But this argument does not work for proving the lower
bound on ∆∗n(z).

However, if we also have p ≡ 7 ≡ −1 mod 8, then

N(u) = N

(
u0 + u1π

2

)
=

u20 + pu21
4

≡ u20 − u21
4

≡ 0 mod 2.

Thus if z is a multiple of 2, then u is not invertible modulo
z, so there are no (u/v)s with u invertible modulo z whose
π-adic expansions are periodic with period not dividing n.
Hence every invertible element v modulo z is congruent to an
invertible u so the expansion of u/z is periodic with period
n. This gives the desired lower bound. In this case the lower
bound in Theorem 4 holds in the integral closure R of Z[π].

In fact the lower bound may be false. If so, it would have
serious implications for cryptography. Let R, π ∈ R,S ⊆ R
be the setup for a class of AFSRs. Suppose that the average
π-adic span of sequences is substantially smaller than n
(in some sense of “substantially”). Suppose we also have
a register synthesis algorithm for this class of AFSRs with
similar time complexity and threshold for success (that is,
length of a prefix the algorithm needs in order to output the
correct AFSR, usually measured in terms of λ) to those of the
Berlekamp-Massey algorithm. Then cryptanalysis using this
class of AFSRs is more likely to be effective against random
n-periodic sequences, than the Berlekamp-Massey algorithm,
and π-adic span is a more important security measure than
linear span.

VIII. CONCLUSIONS

For a variety of algebraic settings for the construction of
algebraic feedback shift registers we have shown that the
average π-adic span of n-periodic sequences is asymptotically
n. This coincides with what is already known about linear
span and p-adic span (p an integer).

There remain many cases we have not yet been able to
analyze, including even the case when πd = ±p and R is not
a UFD.
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